Вычисление пределов замечательные пределы. Второй замечательный предел: примеры нахождения, задачи и подробные решения

Теперь со спокойной душой переходим к рассмотрению замечательных пределов .
имеет вид .

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.

Необходимо вычислить предел

Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.

Согласно нашему правилу №1 подставим вместо х ноль:

Получаем неопределенность .

Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:

Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:

Подставим решение первого замечательного примера и получаем:

Упрощаем дробь:

Ответ: 7/3.

Как видите – все очень просто.

Имеет вид , где e = 2,718281828… – это иррациональное число.

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .

Необходимо вычислить предел

Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.

Как всегда воспользуемся правилом №1 – подставим вместо х:

Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :

Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:

Не забываем выделять наш замечательный предел:

Вот такие действительно замечательные пределы !
Если у вас остались какие то вопросы по первому и второму замечательным пределам , то смело задавайте их в комментариях.
Всем по возможности ответим.

Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.

Мало информации? - Вы можете !

Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:

$ \bigg[\frac{\infty}{\infty}\bigg]^\infty $ и $ ^\infty $.

Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.

Формула и следствия

Формула второго замечательного предела записывается следующим образом: $$ \lim_{x \to \infty} \bigg (1+\frac{1}{x}\bigg)^x = e, \text{ где } e \approx 2.718 $$

Из формулы вытекают следствия , которые очень удобно применять для решения примеров с пределами: $$ \lim_{x \to \infty} \bigg (1 + \frac{k}{x} \bigg)^x = e^k, \text{ где } k \in \mathbb{R} $$ $$ \lim_{x \to \infty} \bigg (1 + \frac{1}{f(x)} \bigg)^{f(x)} = e $$ $$ \lim_{x \to 0} \bigg (1 + x \bigg)^\frac{1}{x} = e $$

Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.

Примеры решений

Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.

Пример 1
Найти предел $ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} $
Решение

Подставим бесконечность в предел и посмотрим на неопределенность: $$ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} = \bigg(\frac{\infty}{\infty}\bigg)^\infty $$

Найдем предел основания: $$ \lim_{x\to\infty} \frac{x+4}{x+3}= \lim_{x\to\infty} \frac{x(1+\frac{4}{x})}{x(1+\frac{3}{x})} = 1 $$

Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:

$$ \lim_{x\to\infty} \bigg(1 + \frac{x+4}{x+3} - 1 \bigg)^{x+3} = \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = $$

Смотрим на второе следствие и записываем ответ:

$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$
Пример 4
Решить предел $ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} $
Решение

Находим предел основания и видим, что $ \lim_{x\to\infty} \frac{3x^2+4}{3x^2-2} = 1 $, значит можно применить второй замечательный предел. Стандартно по плану прибавляем и вычитаем единицу из основания степени:

$$ \lim_{x\to \infty} \bigg (1+\frac{3x^2+4}{3x^2-2}-1 \bigg) ^{3x} = \lim_{x\to \infty} \bigg (1+\frac{6}{3x^2-2} \bigg) ^{3x} = $$

Подгоняем дробь под формулу 2-го замеч. предела:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{3x} = $$

Теперь подгоняем степень. В степени должна быть дробь равная знаменателю основания $ \frac{3x^2-2}{6} $. Для этого умножим и разделим степень на неё, и продолжим решать:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{\frac{3x^2-2}{6} \cdot \frac{6}{3x^2-2}\cdot 3x} = \lim_{x\to \infty} e^{\frac{18x}{3x^2-2}} = $$

Предел, расположенный в степени при $ e $ равен: $ \lim_{x\to \infty} \frac{18x}{3x^2-2} = 0 $. Поэтому продолжая решение имеем:

Ответ
$$ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} = 1 $$

Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.

В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.

Найти замечательные пределы трудно не только многим студентам первого, второго курса обучения которые изучают теорию пределов, но и некоторым преподавателям.

Формула первого замечательного предела

Следствия первого замечательного предела запишем формулами
1. 2. 3. 4. Но сами по себе общие формулы замечательных пределов никому на экзамене или тесте не помогают. Суть в том что реальные задания построены так что к записанным выше формулам нужно еще прийти. И большинство студентов, которые пропускают пары, заочно изучают этот курс или имеют преподавателей, которые сами не всегда понимают о чем объясняют, не могут вычислить самых элементарных примеров на замечательные пределы. Из формул первого замечательного предела видим, что с их помощью можно исследовать неопределенности типа ноль разделить на ноль для выражений с тригонометрическими функциями. Рассмотрим сначала ряд примеров на первый замечательный пределу, а потом изучим второй замечательный предел.

Пример 1. Найти предел функции sin(7*x)/(5*x)
Решение: Как видите функция под пределом близка к первому замечательному пределу, но сам предел функции точно не равен единице. В такого рода заданиях на пределы следует в знаменателе выделить переменную с таким же коэффициентом, который содержится при переменной под синусом. В данном случае следует разделить и умножить на 7

Некоторым такая детализация покажется лишней, но большинству студентов которым трудно даются пределы поможет лучше понять правила и усвоить теоретический материал.
Также, если есть обратный вид функции - это также первый замечательный предел. А все потому, что замечательный предел равен единице

Это же правило касается и следствий 1 замечательного предела. Поэтому если Вас спросят "Чему равен первый замечательный предел?" Вы без колебаний должны ответить, что это - единица.

Пример 2. Найти предел функции sin(6x)/tan(11x)
Решение: Для понимания конечного результата распишем функцию в виде

Чтобы применить правила замечательного предела умножим и разделим на множители

Далее предел произведения функций распишем через произведение пределов

Без сложных формул мы нашли предел часки тригонометрических функций. Для усвоения простых формул попробуйте придумать и найти предел на 2 и 4 формулу следствия 1 замечательного предела. Мы рассмотрим более сложные задачи.

Пример 3. Вычислить предел (1-cos(x))/x^2
Решение: При проверке подстановкой получим неопределенность 0/0 . Многим неизвестно, как свести такой пример до 1 замечательного предела. Здесь следует использовать тригонометрическую формулу

При этом предел преобразится к понятному виду

Нам удалось свести функцию к квадрату замечательного предела.

Пример 4. Найти предел
Решение: При подстановке получим знакомую особенность 0/0 . Однако переменная стремится к Pi , а не к нулю. Поэтому для применения первого замечательного предела выполним такую замену переменной х , чтобы новая переменная направлялась к нулю. Для этого знаменатель обозначим за новую переменную Pi-x=y

Таким образом использовав тригонометрическую формулу, которая приведена в предыдущем задании, пример сведен к 1 замечательному пределу.

Пример 5. Вычислить предел
Решение: Сначала неясно как упростить пределы. Но раз есть пример, значит должен быть и ответ. То что переменная направляется к единице дает при подстановке особенность вида ноль умножить на бесконечность, поэтому тангенс нужно заменить по формуле

После этого получим нужную неопределенность 0/0. Далее выполняем замену переменных в пределе, и используем периодичность котангенса

Последние замены позволяют использовать следствие 1 замечательного предела.

Второй замечательный предел равен экспоненте

Это классика к которой в реальных задачах на пределы не всегда легко прийти.
В вычислениях Вам понадобятся пределы - следствия второго замечательного предела:
1. 2. 3. 4.
Благодаря второму замечательному пределу и его последствиям можно исследовать неопределенности типа ноль разделить на ноль, единица в степени бесконечность, и бесконечность разделить на бесконечность, да еще и в таком же степени

Начнем для ознакомления с простых примеров.

Пример 6. Найти предел функции
Решение: Напрямую применить 2 замечательный пределу не получится. Сначала следует превратить показатель, чтобы он имел вид обратный к слагаемому в скобках

Это и есть техника сведения к 2 замечательному пределу и по сути - вывода 2 формулы следствия предела.

Пример 7. Найти предел функции
Решение: Имеем задания на 3 формулу следствия 2 замечательного предела. Подстановка нуля дает особенность вида 0/0. Для возведения предела под правило превратим знаменатель, чтоб при переменной был тот же коэффициент что и в логарифм

Это также легко понять и выполнить на экзамене. Трудности у студентов при исчислении пределов начинаются с следующих задач.

Пример 8. Вычислить предел функции [(x+7)/(x-3)]^(x-2)
Решение: Имеем особенность типа 1 в степени бесконечность. Если не верите, можете везде вместо "икс" подставить бесконечность и убедиться в этом. Для возведения под правило поделим в скобках числитель на знаменатель, для этого предварительно выполним манипуляции

Подставим выражение в предел и превратим к 2 замечательному пределу

Предел равен экспоненте в 10 степени. Константы, которые являются слагаемыми при переменной как в скобках так и степени никакой "погоды" не вносят - об этом следует помнить. А если Вас спросят преподаватели - "Почему не превращаете показатель?" (Для этого примера в x-3 ), то скажите что "Когда переменная стремится к бесконечности то к ней хоть добавляй 100 хоть отнимай 1000, а предел останется такой как и был!".
Есть и второй способ вычислять пределы такого типа. О нем расскажем в следующем задании.

Пример 9. Найти предел
Решение: Теперь вынесем переменную в числителе и знаменателе и превратим оду особенность на другую. Для получения конечного значения используем формулу следствия 2 замечательного предела

Пример 10. Найти предел функции
Решение: Заданный предел найти под силу не каждому. Для возведения под 2 предел представим, что sin (3x) это переменная, а нужно превратить показатель

Далее показатель запишем как степень в степени


В скобках описаны промежуточные рассуждения. В результате использования первого и второго замечательного предела получили экспоненту в кубе.

Пример 11. Вычислить предел функции sin(2*x)/ln(3*x+1)
Решение: Имеем неопределенность вида 0/0. Кроме этого видим, что функцию следует превращать к использованию обеих замечательных пределов. Выполним предыдущие математические преобразования

Далее без труда предел примет значение

Вот так свободно Вы будете чувствовать себя на контрольных работах, тестах, модулях если научитесь быстро расписывать функции и сводить под первый или второй замечательный предел. Если заучить приведенные методики нахождения пределов Вам трудно, то всегда можете заказать контрольную работу на пределы у нас.
Для этого заполните форму, укажите данные и вложите файл с примерами. Мы помогли многим студентам - сможем помочь и Вам!

Похожие публикации