Возбудимые ткани и их общие свойства.

Раздражимость

Раздражимостью называют способность живых систем под влиянием раздражителей переходить из состояния физиологического покоя в состояние активности. Формы проявления раздражимости весьма разнообразны. У одних клеток при этом изменяются форма, структура, их рост и процесс деления; в других образуются различные химические соединения, совершается та или иная работа, движение.

Раздражителем живой клетки или организма как целого может оказаться любое изменение внешней среды или внутреннего состояния организма, если оно достигает определенной величины.

Среди раздражителей различают физические (температура, укол, давление, свет, звук, электрические раздражители), физико-химические (изменения осмотического давления, активной реакции среды, электролитного состава, коллоидного состояния) и химические (химические пищи, химические соединения, образующиеся в организме,- гормоны, продукты обмена веществ и т. п.).

Рис. 17. Первый (I ) и второй (II) опыты

Естественными раздражителями клеток, вызывающими их деятельность, являются нервные импульсы.

Возбудимость

Клетки нервной и мышечной тканей приспособлены к осуществлению быстрых реакций на раздражение. Клетки этих тканей называют возбудимыми, а их способность отвечать на раздражение возбуждением называют возбудимостью.

Возбуждение способно перемещаться из одного места клетки в другое, из одной клетки в другую.


Рис. 18.
Последовательные этапы приготовления нервно-мышечного препарата.

Возбуждение характеризуется комплексом химических, функциональных, физико-химических, электрических явлений. Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны. Именно электрические явления обеспечивают проведение возбуждения в возбудимых тканях.

Биоэлектрические явления

Возникновение и распространение возбуждения связано с изменением электрического заряда живой ткани, с так называемыми биоэлектрическими явлениями.

Электрические явления у животных известны давно. Еще в 1776 г. они были описаны у электрического ската. Началом же экспериментального изучения электрических явлений в животных тканях следует считать опыты итальянского врача Луиджи (1791). В опытах он использовал препараты задних конечностей лягушки, соединенных с позвоночником. Подвешивая эти препараты на медном крючке к железным перилам балкона, он обратил внимание, что, когда конечности лягушки раскачивались ветром, их мышцы сокращались при каждом прикосновении к перилам. На основании этого пришел к выводу, что подергивания лапок были вызваны «животным электричеством», зарождающимся в спинном мозге лягушки и передаваемым по металлическим проводникам (крючку и перилам балкона) к мышцам препарата.


Рис. 19.
Схема вторичного сокращения.

Против этого положения Гальвани о «животном электричестве» выступил физик Александр . В 1792 г. повторил опыты Гальвани и установил, что описанные Гальвани явления нельзя считать «животным электричеством». В опыте Гальвани источником тока служил не спинной мозг лягушки, а цепь, образованная из разнородных металлов - меди и железа.

Был прав. Первый опыт Гальвани не доказывал наличия «животного электричества», но эти исследования привлекли внимание ученых к изучению электрических явлений в живых образованиях.

В ответ на возражение Вольта Гальвани произвел второй опыт, уже без участия металлов. При этом также наблюдалось сокращение лапки лягушки.

Опыт Гальвани. Для этого обездвижьте лягушку и перережьте ее поперек в области верхних грудных позвонков. Захватив остаток позвоночника салфеточкой, снимите с задних конечностей кожу, а затем пинцетом удалите остатки внутренностей. Становятся хорошо видны нервные стволики крестцового сплетения, расположенные с обеих сторон позвоночника пучками. Подведите под оба пучка нервных волокон одну пластинку пинцета Гальвани, а другой пластинкой пинцета прикоснитесь к нервам сверху. Мышцы лапок при этом сокращаются (рис. 17, I). Пинцет Гальвани состоит из цинковой и медной пластинок. Объясните, почему сокращаются мышцы лапок в опыте Гальвани.


Рис. 20.

А - одноканальный; Б - двухканальный; справа - кончик электрода около тела нейрона

А теперь приготовьте нервно-мышечный препарат лягушки.

Основные этапы приготовления нервно-мышечного препарата приведены на рисунке 18.

Лягушку обездвижьте. Возьмите ее левой рукой за бедра (в этом положении хорошо выделяется позвоночник) и перережьте позвоночник на 1-1,5 см выше места отхождения тазовых костей (рис. 18, 1 ). Свисающую переднюю часть туловища и внутренности удалите. Остаток позвоночника крепко держите пинцетом или левой рукой. Другим пинцетом захватите кожу около позвоночника и тяните ее вниз, чтобы, выворачивая, снять с конечностей (рис. 18, 2 ). Конечности положите на чистую тарелку и залейте раствором Рингера. Руки вымойте или тщательно вытрите от слизи, покрывающей кожу лягушки. Захватите пинцетом или рукой кусочек позвоночника и подогните его вниз так, чтобы конечности висели под углом к позвоночнику и хорошо выделялась копчиковая кость (рис. 18,3).

Осторожно вырежьте копчиковую кость. Ножницы при этом держите как можно ближе к кости, чтобы не повредить идущие параллельно с обеих сторон нервы. Вырезав копчик, положите препарат на тарелку и разделите его на две половины. Для этого перережьте вдоль сначала остаток позвоночника, а затем лобковое сочленение (рис. 18, 4).

Рис. 21. А с помощью микроэлектрода:

М - микроэлектрод; И - индифферентный электрод. Луч на экране осциллографа Б показывает, что до прокола микроэлектро дом мембраны разность потенциалов меж ду М и И была равна нулю. В момент прокола (показан стрелкой) обнаружена разность потенциалов, указывающая, что внутренняя сторона мембраны заряжена электроотрицательно по отношению к ее наружной поверхности.

Одну конечность оставьте как запасную, сохраняя ее в растворе Рингера; другую положите на спинную сторону и отделите ножницами подвздошную кость. Захватив пинцетом кусочек позвоночника, отведите в сторону седалищный нерв и удалите подвздошную кость. При помощи двух пинцетов раздвиньте мышцу на спинной поверхности бедра по средней линии (рис. 18, 5). Осторожно не касаясь ножницами и пинцетом нерва, отделите его от окружающих тканей, вдоль бедра до колен. (Лучше это делать стеклянным крючком.) Нерв отведите в сторону и освободите бедренную кость от мышц (рис. 18, б). На голени отделите от кости икроножную мышцу, подрезав ахиллово сухожилие, и привяжите к нему нитку. Голень и стопу отрежьте ниже колена (рис. 18, 7). Препарат положите в стакан с раствором Рингера.

Проделайте второй опыт Гальвани (сокращение без металла). Для этого нервно-мышечный препарат положите на дощечку. Отрежьте кусочек мышцы и стеклянным крючком быстро набросьте нерв препарата на пораненный участок мышцы так, чтобы он одновременно коснулся поврежденной и неповрежденной поверхности мышцы (рис. 17, II). Мышца при этом сокращается. Объясните, почему это происходит.

Гальвани все же оказался прав в своем утверждении о существовании «животного электричества», что позже было подтверждено исследованиями других ученых.

В этом отношении интересны опыты Маттеучю, получившие название вторичного сокращения.

На мышцу одного нервно-мышечного препарата набросьте нерв другого нервно-мышечного препарата (рис. 19) и раздражайте электрическим током нерв первого препарата. Вы наблюдаете сокращение мышцы и второго препарата. Это объясняется тем, что при возбуждении в мышце первого препарата возникают токи действия, которые вызывают возбуждение второго нервно-мышечного препарата.

В дальнейшем в изучение биоэлектрических явлений очень важный вклад внесли русские ученые, среди них И. М. Сеченов, обнаруживший с помощью гальванометра электрические явления в головном мозге, Н. Е. Введенский, А. Ф. Самойлов и др.

В настоящее время имеются весьма совершенные, высокочувствительные приборы (электронно-лучевые трубки с электронными усилителями), позволяющие регистрировать электрические явления в тканях и органах.

Потенциал покоя и потенциал действия мышц

Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 60-90 мВ, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

Рис. 22. Потенциал действия аксона кальмара, отводимый с помощью внутриклеточного электрода.

Микроэлектрод (рис. 20) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около микрона. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 21). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Наиболее полно происхождение потенциала покоя объясняет так называемая мембран но-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности клетки. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия.

Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают.

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия.

Потенциал действия можно зарегистрировать с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение) (рис. 22).

При введении микроэлектрода в нервное волокно сначала регистрируется потенциал величиной около 60 мВ. Это мембранный потенциал.

Потенциал действия представляет собой резкий скачок мембранного потенциала. При этом происходит не только изменение отрицательного потенциала покоя от величины - 60 мВ до нуля, но и переход за нулевую линию на несколько десятков милливольт, так что амплитуда потенциала действия превышает потенциал покоя и составляет приблизительно 90 мВ.

В потенциале действия различают его пик (спайк, по терминологии английских авторов) и следовые потенциалы. Во время пика мембранный потенциал меняет свой знак.

Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. стремится внутрь клетки, так как, во-первых, он заряжен положительно и его влекут внутрь электростатические силы, вовторых, концентрация его внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для этого иона. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превысил поток ионов калия из клетки наружу. В результате произошло извращение потенциала мембраны (фаза деполяризации). Внутренняя поверхность мембраны стала заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия - отрицательно. В этот момент и регистрируется пик потенциала действия.

Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки (фаза реполяризации).

Накопления натрия внутри клетки при многократном возбуждении ее не происходит, потому что эвакуируется из нее постоянно за счет действия специального биохимического механизма, называемого «натриевым насосом». Есть данные и об активном транспорте калия с помощью «натрий-калиевого насоса».

Таким образом, согласно мембранной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранной теории все еще дискуссионны и нуждаются в углубленной разработке.

Итак, биоэлектрические свойства клеток, обусловленные неравномерным распределением минеральных ионов, играют ведущую роль в процессах клеточного возбуждения. Возникновение потенциала действия является наиболее характерным показателем возбуждения в клетках, тканях и органах. Поэтому электрофизиологические исследования широко применяются в экспериментальных лабораториях и в клиниках.

Значение регистрации биоэлектрических явлений. Регистрация электрических потенциалов в живом организме дает возможность судить об изменениях многих физиологических функций. Так как электрическая активность многих органов человека в норме имеет типичные и постоянные характеристики, методы электрофизиологии широко используются для диагностики болезней в практической медицине. Большие успехи достигнуты в тонком распознавании болезней сердца, нервной системы, мышц. Электрофизиологические методы сыграли важную роль в решении многих проблем космической физиологии. С помощью методов телеметрии оказалось возможным передавать информацию о состоянии сердечной мышцы, деятельности мозга, скелетной мускулатуры и других органов в условиях невесомости, перегрузок.

Изучение электрической активности центральной нервной системы легло в основу конструирования сложных счетно-решающих электронных машин.

Под электроэнцефалографией понимают запись биоэлектрических явлений, протекающих в головном мозге, преимущественно в коре больших полушарий головного мозга.

Для отведения биотоков от различных структур головного мозга используют различные конструкции электродов. В эксперименте на животных электроды можно ввести через кости черепа прямо в нужный участок головного мозга. Такие «вживленные» электроды долго удерживаются в мозгу специальным креплением и позволяют изучать электрическую активность определенных участков головного мозга при различных состояниях животного.

Рис. 23.

В настоящее время возможна длительная регистрация электрических явлений даже в отдельных клетках мозга с помощью микроэлектродов.

При записи биотоков мозга человека - электроэнцефалограммы - пользуются обычно серебряными электродами, имеющими вид пластинки размером с двухкопеечную монету. Электроды на голове испытуемого человека укрепляются с помощью шлемов-сеток. Шлемы изготовляют из эластичных резиновых тяжей, натяжение которых регулируют. Шлемы, плотно прилегая к голове испытуемого, надежно удерживают электроды (рис. 23).

Запись биотоков мозга производится на приборах - электроэнцефалографах, имеющих разную конструкцию и включающих несколько усилителей биотоков, осциллографы и сложный пульт управления ими.

В настоящее время выпускают приборы, позволяющие регистрировать одновременно электрическую активность от 2 до 32 точек мозга и более.

Для точного анализа электрических явлений, возникающих в головном мозге и других органах, используют электронно-вычислительные машины.

Электрическая активность мозга человека носит ритмический характер. Электроды, расположенные на поверхности головы, дают возможность зарегистрировать биотоки сразу от многих клеток мозга, лежащих под ними. Поэтому общий характер энцефалограммы оказывается очень сложным. Вместе с тем удалось установить, что наиболее выраженных и часто встречающихся ритмов колебания электрической активности немного. Названия этих ритмов условно обозначены греческими буквами α, β, δ, ϑ (рис. 25, табл. 4).

Таблица 4

Ритмы электроэцефалограммы


Рис. 25.

1 -альфа-ритм- 2 - бета-ритм; 3 - дельта-ритм; 4- тета-ритм; 5 -веретена; вверх у - отметка времени

При ограниченном поступлении центростремительных импульсов в исследуемый участок мозга обычно наблюдаются медленные волны с большим размахом колебаний. Если в кору поступают многочисленные импульсы, то клетки в этом участке могут находиться в разных стадиях возбуждения и общая электрическая активность над этим участком характеризуется частыми колебаниями с небольшой амплитудой типа бета-ритма. На рисунке 26 приведена электроэнцефалограмма с затылочной области коры (там располагается зрительная зона коры больших полушарий). На ней отчетливо виден переход альфа-ритма в бета-ритм и обратно при открывании и закрывании глаз, т. е. при увеличении и снижении потока центростремительных импульсов к зрительной зоне коры.

Современная техника позволяет регистрировать энцефалограмму у человека на расстоянии и даже в условиях космического полета.

Получил достаточно широкое распространение и метод исследования электрической активности мышц - электромиография.


Для отведения биопотенциалов мышц человека используют накожные металлические электроды диаметром 10 мм. Электроды укрепляют на исследуемой мышце эластической манжетой; между ними и кожей находится обычно специальна я паста, улучшающая контакт с телом и электропроводность. Колебания биопотенциалов мышц имеют также ритмический характер, только частота их и амплитуда значительно больше, чем при записи электроэнцефалограммы. Усиление мышечной активности сопровождается увеличением амплитуды и колебаний электромиограммы. При утомлении мышц частота колебаний, как правило, падает.

Рис. 26. Изменения электроэнцефалограммы затылочной области коры, показывающие переход от альфа-ритма к бета-ритму при открывании глаз (стрелка вверх) и восстановление альфа-ритма при закрывании глаз (стрелка вниз).

На рисунке 27 представлены электромиограммы трехглавой и двуглавой мышц плеча при работе напильником. На них отчетливо видно усиление колебаний при возбуждении мышц. Электромиография позволяет установить степень участия тех или иных мышц в выполняемом движении. Особенно важен этот метод для установления наличия паралича мышц при некоторых заболеваниях. Так, с помощью электромиографии можно обнаружить паралич дыхательных мышц при полиомиелите до того, как остановится . А это очень важно для принятия необходимых мер (перевод на управляемое с помощью специальной аппаратуры) с целью спасения жизни человеку.


Рис. 27.
Электромиограммы трехглавой (1) и двуглавой (2) мышц плеча у рабочего при опиловке.

Данные электромиографии используются при создании активных протезов и управляемых манипуляторов.

«Искусственная рука» - одно из первых устройств, управляемых с помощью биотоков мышц. Это активный протез, воспроизводящий нормальные движения кисти. Такой активный протез имеет браслет для отведения биотоков мышц сохранившейся культи. На браслете укреплены металлические чашечки, заполненные токопроводящей пастой. Отводимые с помощью браслета мышечные токи усиливаются и поступают в специальный блок на протезе, где формируется управляющий сигнал. Сигнал приводит в действие миниатюрный двигатель, который обеспечивает движение протеза. Сам протез выполняется из пластических материалов, сходных по форме, размерам и цвету с нормальной рукой.

Передача возбуждения в синапсах

Возбуждение от одной нервной клетки к другой или от нервного волокна к мышечной или железистой клетке передается с помощью синап сов.

Аксоны большинства ней ронов, подходя к другим нервным клеткам, ветвятся и образуют многочисленные окончания на телах этих кле ток и их дендринах (рис. 28). Такие места контактов называют синапсами.


Рис. 28.
Расположение синапсов на теле нейрона и на его дендритах (по Хаачу и Барру)

Количество синапсов на теле одного нейрона достигает 100 и больше, а на дендритах одного нейрона - нескольких тысяч. Одно нервное волокно может образовать до 10 000 синапсов на многих нервных клетках.

Синапс имеет сложное строение (рис. 29). Он образован двумя мембранами - пресинаптической и постси наптической, между которыми есть синоптическая щель. Пресинаптическая мембрана находится на нервном окончании. Нервные окончания в центральной нервной системе имеют вид пуговок, колечек или бляшек. На теле пирамидной клетки насчитывается несколько тысяч нервных окончаний. Каждая синаптическая пуговка покрыта пресинаптической мембраной. Постсинаптическая мембрана находится на теле или дендритах нейрона, к которому передается нервный импульс. В пресинаптической области обычно наблюдаются большие скопления митохондрий.

Возбуждение через синапсы передается химическим путем с помощью особого — посредника, или медиатора, находящегося в синаптической бляшке. В синаптической бляшке медиатор находится в синаптических пузырьках, каждый из которых содержит до 2000 молекул медиатора. В разных синапсах вырабатываются разные медиаторы. Чаще всего в качестве медиатора служит ацетилхолин, адреналин или норадреналин в некоторых синапсах - глютаминовая кислота.

Каков же механизм передачи возбуждения в синапсах? Приход нервного импульса в пресинаптическое окончание сопровождается синхронным выбросом в синаптическую щель медиатора из синаптических пузырьков, расположенных в непосредственной близости от нее. Размеры этой щели очень малы (около 200 Å), и медиатор, быстро достигая постсинаптической мембраны, взаимодействует с ее веществом. В результате этого взаимодействия структура постсинаптической мембраны временно изменяется, проницаемость ее для ионов натрия повышается, что приводит к перемещению ионов и, как следствие, появлению возбуждающего постсинаптического потенциала. Когда этот потенциал достигает определенной величины, возникает распространяющее возбуждение - потенциал действия.


Рис. 29.

1 - пресинаптическая мембрана; 2 - постсинаптическая мембрана; 3 - синаптичес кая щель; 4 - синаптические пузырьки; 5 - нейропротофибриллы; 6 - митохондрии.

Через очень короткое время (несколько миллисекунд) медиаторы разрушаются специальными ферментами.

В настоящее время подавляющее большинство нейрофизиологов признает существование в спинном мозге и в различных отделах головного мозга двух качественно различных типов синапсов - возбуждающих и тормозящих. Полагают, что в специализированных тормозящих нейронах, в нервных окончаниях аксонов вырабатывается особый медиатор, оказывающий тормозящее воздействие на последующий нейрон. Природа этого медиатора еще окончательно не установлена. В коре больших полушарий таким медиатором некоторые авторы считают гамма-амино-масляную кислоту.

Под влиянием приходящего по аксону тормозящего нейрона импульса в синаптическую щель выделяется медиатор, который вызывает специфические изменения в постсинаптической мембране. Суть этих изменений состоит в том, что медиатор торможения, взаимодействуя с веществом постсинаптической мембраны, увеличивает ее проницаемость для ионов калия и хлора. Внутри клетки относительно увеличивается число анионов. В результате происходит не снижение величины внутреннего заряда мембраны (как это имеет место в возбуждающем синапсе), а повышение внутреннего заряда постсинаптической мембраны. Это ведет к возникновению Главная Анатомия человека

Токи покоя Наличие разности потенциалов можно обнаружить, если к поврежденной мышце приложить электроды осциллографа таким образом, чтобы один из них...

История изучения человека Анатомия физиология человека Место человека в природе Клетка Обмен веществ клетки Деление...

Обмен веществ Регуляция деятельности организма Нервная система Рефлекс и рефлекторная дуга Безусловные и условные рефлексы Кровь Плазма крови Реакция крови...

Физиология и свойства возбудимых тканей.

Клетка – это элементарная живая система, состоящая из ядра и цитоплазмы, лежащая в основе развития, строения и функции всех живых и растительных организмов.

В каждой клетке есть «органы»:

2. Цитоплазма и оболочка, которые образованы живым веществом клетки – протоплазмой.

Кроме «органов» в цитоплазме клетки имеются образования, выполняющие определенные функции - это органоиды илиорганеллы .

Некоторые органоиды есть во всех видах клеток, они называются органоидами общего порядка. К ним относятся:

Митохондрии

Аппарат Гольджи

Рибосомы

Клеточный центр

Эндоплазматическая сеть

Все эти образования выполняют определенную функцию.

Ядро – регулирует жизнедеятельность клетки, осуществляет передачу генетической информации, синтез белка и рецепцию биологически активных веществ.

Цитоплазма участвует в процессах метаболизма и поддержании постоянства внутренней среды клетки.

Эндоплазматическая сеть является главным депо ионов Са

Рибосомы синтезируют белки

Митохондрии участвуют в генерации и аккумуляции энергии

Аппарат Гольджи (пластинчатый комплекс) участвует в секреции биологически активных веществ.

Лизосомы осуществляют переваривание поглощенных клетками питательных веществ.

Кроме органоидов общего порядка есть органоиды, которые встречаются в клетках определенного вида. Такие органоиды называются специальными . К ним относятся:

    Миофибриллы (мышечная ткань)

    Нейрофибриллы (нервная ткань)

    Реснички и жгутики (как остатки органоидов движения одноклеточных, в эпителиальных тканях)

Ультраструктура биологических мембран.

Структурной основой биологической мембраны является двойной слой фосфолипидов, в который встроены мембранные белки.

Белки, пронизывающие насквозь фосфолипидный слой, называются внутренними мембранными белками, или белковыми каналами , или порами .

В функциональном отношении мембранные белки делятся на 4 класса : «насосы», каналы, рецепторы и ферменты.

«Насосы» расходуют метаболическую энергию АТФ для перемещения ионов и молекул против концентрационных и электрохимических градиентов и поддерживают необходимые концентрации этих молекул в клетке.

Ионоселективные каналы представляют собой пути переноса заряженных молекул и ионов. Через каналы в клетку проникают и лекарственные вещества.

Рецепторы мембран представлены белковыми молекулами, которые «узнают» то или иное биологически активное вещество, контактируют с ним и передают в клетку информацию о характере биохимических взаимодействий.

Белки-ферменты , обладающие высокой каталитической активностью, облегчают протекание биохимических реакций как внутри мембраны, так и у ее поверхности.

Функции биологических мембран.

- Пограничная функция. Мембрана отграничивает цитоплазму от межклеточной жидкости, а большинство внутриклеточных структур: митохондрии, ядро, эндоплазматическую сеть – от цитоплазмы.

- Биотрансформирующая функция. Любое вещество, проходя через мембрану, вступает с ней в сложное взаимодействие и претерпевает ряд биохимических превращений. В результате биотрансформации лекарственное вещество, как правило, переходит в форму, легко усвояемую клеткой.

- Транспортная функция. Перенос веществ через биологические мембраны связан с процессами метаболизма, поддержанием постоянства внутренней среды клетки, возбуждением и проведением нервного импульса. Существует два основных типа переноса:пассивный (фильтрация, диффузия, облегченная диффузия, осмос) и активный (работа мембранных белковых «насосов»)

Пассивный транспорт. Фильтрация осуществляется через мембранные белковые каналы – поры, зависит от разности давлений снаружи и внутри клетки и проницаемости мембраны для жидкости и низкомолекулярных веществ. Диаметр пор чрезвычайно мал, поэтому фильтруются только низкомолекулярные вещества, вода и некоторые ионы.

Диффузия - пассивное передвижение молекул или ионов по градиенту концентрации (из области высокой концентрации в область низкой). Осмос представляет собой частный случай диффузии растворителя через полупроницаемую мембрану, не пропускающую растворенные вещества.

Пассивный транспорт не требует затрат энергии.

Активный транспорт. Это универсальный для всех видов мембран перенос веществ против концентрационных или электрохимических градиентов (из области низкой концентрации в область высокой). При помощи активного транспорта переносятся гидрофильные полимерные молекулы, неорганические ионы (Na, Ca, K) , водород, сахара, аминокислоты, витамины, гормоны и лекарственные вещества. Активный транспорт осуществляется с обязательной затратой энергии, образующейся при расщеплении (окислительное фосфорилирование) аденозинтрифосфорной кислоты (АТФ).

Разновидностью активного транспорта, связанной с деятельностью самой клетки, является микровезикулярный транспорт (пиноцитоз, экзоцитоз и фагоцитоз). При пиноцитозе происходит активное поглощение клеткой жидкости из окружающей среды с формированием пузырьков и последующим переносом их через цитоплазму. Процесс слияния пузырьков с мембраной клетки и выделение клеткой вещества в виде секреторных гранул или вакуолей называется экзоцитозом . Явление фагоцитоза заключается в способности клеток активно захватывать и поглощать микроорганизмы, разрушенные клетки и инородные частицы.

- Рецепторная функция. Биологические мембраны имеют большое количество рецепторов – участков, молекулярная структура которых характеризуется избирательным сродством к определенным физиологически активным веществам: гормонам, медиаторам, антигенам.

- Образование межклеточных контактов.

- Генерация биоэлектрических потенциалов. В ходе эволюции у железистого эпителия, мышечной и нервной тканей появилось свойство возбудимости – способность реагировать на воздействие окружающей среды возбуждением. Внешним проявлением возбуждения является возникновение биоэлектрического потенциала.

Все ткани организма могут находиться в двух состояниях:

    состоянии относительного физиологического покоя;

    состоянии активности.

Наблюдается при раздражении ткани. Существует 2 вида активного состояния тканей: возбуждение и торможение.Возбуждение – это активный процесс, представляющий собой ответную реакцию ткани на раздражение и характеризующийся повышением функций ткани. Возбуждение характеризуется двумя группами признаков:неспецифическими и специфическими .

Неспецифические признаки возникают у всех возбудимых тканей вне зависимости от их строения:

    изменение проницаемости клеточных мембран

    изменение заряда клеточных мембран,

    повышение потребления кислорода

    повышение температуры

    усиление обменных процессов

Специфические признаки различаются у различных тканей:

    мышечная ткань – сокращение

    железистая ткань – выделение секрета

    нервная ткань – генерация нервного импульса.

Процесс возбуждения связан с наличием в мембране электрически (для ионов кальция и хлора) и химически (для ионов натрия и калия) управляемых каналов, которые могут открываться в ответ на соответствующее раздражение клетки.

Ионоселективные каналы. Для каждого из переносимых через мембрану вида ионов существуют самостоятельные транспортные системы – ионные каналы (натриевые, калиевые, кальциевые, каналы для хлора и т.д.). Ионный канал состоит из поры, воротного механизма, сенсора (индикатора) напряжения ионов в самой мембране и селективного фильтра.

Пора представляет собой молекулярное динамическое образование, которое может находиться в открытом и закрытом состоянии. Образована пора «транспортным» ферментом – белком с высокой каталитической активностью, который способен переносить ионы через мембрану со скоростью в 200 раз превышающей скорость простой диффузии.

Воротный механизм (ворота канала) расположен на внутренней стороне мембраны и представлен белковыми молекулами, способными к конформации (изменение пространственной конфигурации молекул). В тысячные доли секунды он открывает (активирует) и закрывает (инактивирует) канал и таким образом регулирует скорость передвижения ионов по нему и поступление их в цитоплазму.

Сенсор напряжения ионов в мембране представлен белковой молекулой, расположенной в самой мембране и способной реагировать на изменение мембранного потенциала.

Селективный фильтр находится в самом узком месте канала. Он определяет однонаправленное движение ионов через пору и ее избирательную проницаемость.

В развитии возбуждения выделяют 4 этапа:

1) предшествующее возбуждению состояние покоя (статическая поляризация);

2) деполяризацию;

3) реполяризацию

4) гиперполяризацию.

Статическая поляризация – наличие постоянной разности потенциалов между наружной и внутренней поверхностями клеточной мембраны. В состоянии покоя наружная поверхность клетки всегда электроположительна по отношению к внутренней, т.е. поляризована. Эта разность потенциалов, равная ~ 60 мВ, называется потенциалом покоя, илимембранным потенциалом (МП). В образовании потенциала принимают участие 4 вида ионов: катионы натрия (положительный заряд), катионы калия (положительный заряд), анионы хлора (отрицательный заряд), анионы органических соединений (отрицательный заряд). Во внеклеточной жидкости высока концентрация ионов натрия и хлора, во внутриклеточной жидкости – ионов калия и органических соединений. В состоянии относительного физиологического покоя клеточная мембрана хорошо проницаема для катионов калия, чуть хуже для анионов хлора, практически непроницаема для катионов натрия и совершенно непроницаема для анионов органических соединений.

В покое ионы калия без затрат энергии выходят в область меньшей концентрации (на наружную поверхность клеточной мембраны), неся с собой положительный заряд. Ионы хлора проникают внутрь клетки, неся отрицательный заряд. Ионы натрия продолжают оставаться на наружной поверхности мембраны, еще больше усиливая положительный заряд.

Деполяризация – сдвиг МП в сторону его уменьшения. Под действием раздражения открываются «быстрые» натриевые каналы, вследствие чего ионы Na лавинообразно поступают в клетку. Переход положительно заряженных ионов в клетку вызывает уменьшение положительного заряда на ее наружной поверхности и увеличение его в цитоплазме. В результате этого сокращается трансмембранная разность потенциалов, значение МП падает до 0, а затем по мере дальнейшего поступления Na в клетку происходят перезарядка мембраны и инверсия ее заряда (поверхность становится электроотрицательной по отношению к цитоплазме) – возникает потенциал действия (ПД). Электрографическим проявлением деполяризации является спайк , или пиковый потенциал .

Во время деполяризации, когда переносимый ионами Na положительный заряд достигает некоторого порогового значения, в сенсоре напряжения ионных каналов возникает ток смещения, который «захлопывает» ворота и «запирает» (инактивирует) канал, прекращая тем самым дальнейшее поступление Na в цитоплазму. Канал «закрыт» (инактивирован) вплоть до восстановления исходного уровня МП.

Реполяризация – восстановление исходного уровня МП. При этом ионы натрия перестают проникать в клетку, проницаемость мембраны для калия увеличивается, и он достаточно быстро выходит из нее. В результате заряд клеточной мембраны приближается к исходному. Электрографическим проявлением реполяризации является отрицательныйследовой потенциал .

Гиперполяризация – увеличение уровня МП. Вслед за восстановлением исходного значения МП (реполяризация) происходит его кратковременное увеличение по сравнению с уровнем покоя, обусловленное повышением проницаемости калиевых каналов и каналов для Cl . В связи с этим поверхность мембраны приобретает избыточный по сравнению с нормой положительный заряд, а уровень МП становится несколько выше исходного. Электрографическим проявлением гиперполяризации является положительный следовой потенциал . На этом заканчивается одиночный цикл возбуждения.

Изменение возбудимости в различные фазы одиночного цикла возбуждения.

Если принять уровень возбудимости в условиях физиологического покоя за норму, то в ходе развития одиночного цикла возбуждения можно наблюдать ее циклические колебания. Так, в период развития начальной деполяризации на очень короткое время возбудимость незначительно повышается по сравнению с исходной. Во время развития полной деполяризации и инверсии заряда возбудимость падает до 0. Время, в течение которого отсутствует возбудимость, называется периодом абсолютной рефрактерности . В это время даже очень сильный раздражитель не может вызвать возбуждение ткани.

В фазе восстановления МП возбудимость также начинает восстанавливаться, но она еще ниже исходного уровня. Время восстановления ее от 0 до исходной величины называется периодом первичной относительной рефрактерности. Ткань может ответить возбуждением только на сильные, надпороговые, раздражения.

Вслед за периодом относительной рефрактерности наступает короткий период экзальтации – повышенной (по сравнению с исходной) возбудимости. По времени он соответствует процессу реполяризации.

Заключительный этап одиночного цикла возбуждения – повторное снижение возбудимости ниже исходного уровня (но не до 0), называемое периодом вторичной относительной рефрактерности. Он совпадает с развитием гиперполяризации мембраны. Возбуждение может возникнуть только в том случае, если сила раздражения значительно превысит пороговую. После этого возбудимость восстанавливается, и клетка готова к осуществлению следующего цикла возбуждения.

Cвойства возбудимых тканей.

4 свойства: возбудимость, проводимость, рефрактерность, лабильность. Для мышечной ткани характерна также сократимость.

Возбудимость – способность ткани отвечать на раздражение изменением ряда своих свойств. Показатель возбудимости –порог раздражения . Это минимальное по силе раздражение, способное вызвать видимую ответную реакцию ткани.

Проводимость – способность ткани проводить возбуждение по всей своей длине. Показатель проводимости – скорость проведения возбуждения.

Рефрактерность – способность ткани терять или снижать возбудимость в процессе возбуждения. При этом в ходе ответной реакции ткань перестает воспринимать раздражитель.

Лабильность – способность ткани генерировать определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимого раздражения. Лабильность определяется продолжительностью рефрактерного периода (чем короче рефрактерный период, тем больше лабильность).

Сократимость – способность мышцы отвечать сокращением на раздражение.

Раздражитель – фактор, способный вызвать ответную реакцию возбудимых тканей. В условиях физиологического эксперимента в качестве раздражителя чаще всего используют электрический ток. Хронаксия – наименьший промежуток времени, в течение которого ток силой в 2 реобазы (пороговая сила раздражителя для электрического тока) вызывает в ткани возбуждение.

Механизм проведения возбуждения по нервному волокну.

Основная функция нервных волокон – передача нервного импульса. Нервные волокна представляют собой отростки нейронов. Существует 2 основных вида волокон: миелиновые и безмиелиновые.

Миелиновые нервные волокна, в отличие от безмиелиновых, покрыты одним или несколькими слоями клеток. Эта оболочка защищает волокно от повреждения, способствует его питанию, а также намного увеличивает скорость передачи нервного импульса. Через равные промежутки (в среднем через 1 мм) миелиновая оболочка прерывается, оставляя небольшие участки отростка нервной клетки – перехваты Ранвье.

Нервные волокна подразделяют на группы:

А – нервные волокна с самой толстой миелиновой оболочкой. Наиболее высокая скорость передачи нервного импульса.

В – миелиновая оболочка тоньше, скорость проведения возбуждения ниже

С – безмиелиновые волокна с относительно низкой скоростью передачи импульса.

При раздражении нервного волокна в его участке непосредственно соприкасающемся с раздражителем, возникает потенциал действия. Изменение заряда клеточной мембраны ведет к возникновению разности потенциалов между возбужденным и невозбужденным участками нервного волокна и следовательно к появлению электрического тока, направленного от возбужденного участка к невозбужденному.

В миелиновых волокнах импульс возникает только в перехватах Ранвье. При возбуждении каждый следующий перехват усиливает нервный импульс, а потому он не только не затухает в процессе передачи, но может «перепрыгивать через один или несколько перехватов. Это ведет к очень быстрому движению импульса по нервному волокну.

В безмиелиновых волокнах нервный импульс распространяется волнообразно, последовательно возбуждаются небольшие участки размером в несколько микрометров. Возбуждение распространяется гораздо медленнее, чем по миелиновым волокнам.




1. Понятия и общие свойства возбудимых тканей Возбудимые ткани: Возбудимые ткани: мышечная, нервная, железистая. Все клетки и ткани живых систем в процессе эволюции приобрели способность отвечать на действие раздражителя специфической и неспецифической реакцией. Раздражимость Раздражимость – это способность органов, тканей, клеток активно отвечать на воздействие какой-либо формой деятельности – обменом, ускорением деления, выбросом секрета, движением, электрическим импульсом. Возбудимость Возбудимость – процесс временной деполяризации мембраны клеток со специфической ответной реакцией при котором мышечная ткань сокращается, железистая – выделяет секрет, нервная – проводит нервный импульс.




Классификация раздражителей. 1. По энергетической природе:физические,химические,биологические. эндогенные (внутренние) 2. По месту нахождения раздражителя: эндогенные (внутренние); экзогенные (внешние) экзогенные (внешние). 3. По силе раздражителя: подпороговой силы; пороговой силы пороговой силы – раздражитель минимальной величины, вызывает ответную реакцию у возбудимой ткани; сверхпороговой сверхпороговой. 4. По биологическому значению:адекватные неадекватные


Условия возникновения возбуждения. Возбуждение Возбуждение – это сложный физиологический процесс перехода клетки или ткани от состояния покоя к выполнению специализированных функций. –Наличие реактивной ткани. –Присутствие раздражителя пороговой силы. –Градиент раздражения (закон градиента) – скорость нарастания силы раздражителя, она должна быть очень высокой (мгновенной). –Аккомодация – это приспособление возбудимой ткани к медленному нарастанию силы раздражителя. При этом возбуждение может и не наступить. –Время действия раздражителя. Чем больше сила раздражителя (не превышая порог), тем меньше времени он должен действовать, чтобы вызвать возбуждение.


Показатели измерения возбудимости –Реобаза –Реобаза – пороговая сила раздражителя – электрического тока –Полезное время –Полезное время – это минимальное время действия раздражителя пороговой силы. –Хронаксия –Хронаксия – это минимальное время действия раздражителя удвоенной реобазы (мс), способного вызвать ответную реакцию. Чем выше возбудимость ткани, тем меньше хронаксия.


Мембранный потенциал (потенциал покоя) Мембранный потенциал (потенциал покоя) – это разница зарядов между наружной и внутренней сторонами плазматической мембраны. двумя факторами: Согласно мембранно-ионной теории, мембранный потенциал обусловлен двумя факторами: 1. Ассиметричным расположением ионов 1. Ассиметричным расположением ионов между внутренним содержимым клетки и внеклеточной жидкостью. 2. Избирательной проницаемостью мембраны клетки 2. Избирательной проницаемостью мембраны клетки – это обеспечивают специальные отверстия в ней – поры или «каналы» (до 500 шт. на мм 2 поверхности). Na + Главным катионом межклеточной жидкости является Na +,которого в 15 раз больше, чем в цитоплазме клетки – это создаёт положительный заряд наружной части мембраны. 2. Биоэлектрические потенциалы в возбудимых тканях


Мембранный потенциал Главными катионами внутриклеточной жидкости (цитоплазмы) ионы К + Главными катионами внутриклеточной жидкости (цитоплазмы) являются ионы К +, которого в 40 раз больше, чем в межтканевой жидкости. Согласно законам осмоса и диффузии, ионы К + по градиенту концентрации выходят через поры мембраны в межтканевую жидкость, увеличивая тем самым положительный заряд наружной стороны мембраны. Отрицательный заряд внутренней стороны мембраны создаётся за счёт анионов: НСО 3 -, NaHCO 3 -, органических кислот: уксусная, пропионовая, аминокислоты.





Потенциал действия Na + в 500 раз В результате действия раздражителя открываются натриевые каналы и увеличивается пропускная способность мембраны клетки для ионов Na + в 500 раз. Наблюдается лавинообразный поток движения катионов Na + внутрь клетки. Всё это приводит к деполяризации мембраны с последующей фазой смены полярности. Внешняя сторона мембраны становится электроотрицательной. В результате этого возникают биотоки и совершается действие.








Фазовые изменения возбудимости или развитие процесса возбуждения развитие процесса возбуждения –Латентный период (скрытый) –Латентный период (скрытый) – предшествующий видимому проявлению возбуждения ткани (сокращение, проведение нервного импульса, выделение секрета). Продолжительность – 0,01 с. –Фаза абсолютной рефрактерности- –Фаза абсолютной рефрактерности- полная невосприимчивость к повторным раздражениям – совпадает с восходящей частью пика потенциала действия. –Фаза относительной рефрактерности (пониженная возбудимость) –Фаза относительной рефрактерности (пониженная возбудимость) – возбудимость ткани постепенно восстанавливается до исходного уровня. –Фаза экзальтации (гиперполяризации) –Фаза экзальтации (гиперполяризации) – повышенной возбудимости.


Фазовые изменения возбудимости на примере одиночного сокращения мышечной ткани. 1. Латентный период. 2. Фаза укорочения 2. Фаза укорочения (абсолютной рефрактерности). 3. Фаза расслабления 3. Фаза расслабления (относительной рефрактерности) 4. Фаза экзальтации 4. Фаза экзальтации (гиперполяризации) – повышенной возбудимости


3. Строение, свойства и функции мышечной ткани. различают три вида мышечной ткани: У позвоночных животных различают три вида мышечной ткани: 1. скелетная поперечнополосатая мышечная ткань 1. скелетная поперечнополосатая мышечная ткань (произвольная). 2. поперечнополосатая сердечная ткань 2. поперечнополосатая сердечная ткань (непроизвольная). 3. гладкая мышечная ткань 3. гладкая мышечная ткань внутренних органов, кровеносных сосудов, кожи (непроизвольная). Скелетные мышцы сарколеммойсаркоплазма (протоплазма- ээтическое вещество) миофибриллы митохондрий Скелетные мышцы состоят из мышечных волокон (клетки) диаметром от 20 до 100 мкм длинной см. Каждое волокно покрыто оболочкой – сарколеммой, внутри – саркоплазма (протоплазма- ээтическое вещество) и многочисленные тонкие нити – миофибриллы, количество которых достигает шт. диаметром 0,5-2 мкм. Между миофибриллами большое количество митохондрий для снабжения мышц энергией.



Миофибриллы Миофибриллы имеют исчерченность – это чередование тёмных и светлых сегментов. протофибрилл анизотропные изотропные В структуру миофибрилл входят протофибрилл (филаменты) в которых идет чередование молекул белка миозина –анизотропные, темные диски и молекул белка актина – изотропные, светлые диски. саркомер. теории «скольжение нитей» Х. Хаксли и А. Хаксли тропомиозина, тропинина и ионов кальция. Функциональной и структурной единицей является саркомер. Это повторяющиеся в миофибриллах блоки светлых и тёмных дисков отделённых друг от друга £-пластинками. Механизм сокращения мышц согласно теории «скольжение нитей» Х. Хаксли и А. Хаксли – есть перемещение актиновых нитей вдоль миозиновых к центру саркомера, при активном участии белков тропомиозина, тропинина и ионов кальция.




Схема строения поперечнополосатой мышечной ткани: 1 - эндомизий; 2 - мышечные волокна; 3 - сарколемма; 4 - пучки миофибрилл; 5 - миофибрилла; 6 - анизотропный диск; 7 - изотропный диск; 8 - ядра; 9 - кровеносные капилляры; 10 - соединительнотканные клетки эндомизия; 11 - моторное нервное волокно; 12 - моторное нервное окончание.




А. Актиновая и миозиновая нити на продольном сечении волокна. Б. Они же на его поперечном сечении. Когда Са 2+ связывается с тропонином, тропомиозин попадает в желобок между двумя мономерами актина, обнажая участки прикрепления поперечных мостиков Механизм мышечного сокращения. Действие Ca 2+ во время активации миофибриллы.




Свойства мышечной ткани 1. Возбудимость 1. Возбудимость - свойство мышечной ткани отвечать на действие раздражителя специфическим изменением проницаемости мембраны, возникновением разности потенциалов и электродвижущей силы (ЭДС). 2. Проводимость 2. Проводимость – возбуждение распространяется по всему мышечному волокну и не переходит на рядом лежащие, т. к. сарколемма служит изолятором.


3. Сократимость 3. Сократимость – основная функция мышечной ткани. При этом она укорачивается, утолщается, изменяя свои линейные размеры. изотоническое сокращение изотоническое сокращение – без изменения тонуса; изометрическое сокращение изометрическое сокращение – без изменения линейных размеров мышцы; ауксотоническое сокращениеауксотоническое сокращение – смешенное сокращение при котором изменяется и длинна и тонус мышц. 4. Эластичность 4. Эластичность – когда после прекращения действия деформирующей силы – мышечная ткань принимает первоначальные размеры.


Виды сокращения мышц 1. Одиночное сокращение 1. Одиночное сокращение – возникает как ответ на одиночное кратковременное действие раздражителя. 2. Тоническое сокращение 2. Тоническое сокращение - это сильное длительное сокращение мышцы при действии раздражителя высокой частоты: зубчатый тетанус зубчатый тетанус – возникает при частоте подачи раздражителя 5-15 Гц в секунду. гладкий тетанус гладкий тетанус – возникает при частоте подачи раздражителя более 20 Гц в секунду.




Работа, сила и утомление мышц Работа Работа – это произведение величины поднятого груза на высоту его поднятия. A=P*h Динамическая работа Динамическая работа - при которой происходит перемещение груза и движение костей в суставах. Статическая работа Статическая работа – происходит при изометрическом сокращении мышц. В этом случае внешняя работа не совершается.


Сила мышц физиологическая площадь поперечного сечения Сила мышц – величина максимально поднятого груза и зависит от количества и толщины мышечных волокон, т. е. решающее значение имеет физиологическая площадь поперечного сечения мышечных волокон. Физиологическое поперечное сечение (поперечник) совпадает с анатомическим только в мышцах с продольно расположенными волокнами. У мышц с косым направлением мышечных волокон физиологический поперечник больше анатомического. Поэтому и сила мышц с косыми волокнами всегда больше. абсолютная сила мышц Сравнительным показателем силы различных мышц является абсолютная сила мышц – это величина максимально поднятого груза делённая на квадрат поперечного сечения мышцы.




Слева: мышца веретенообразной формы, её анатомический и физиологический поперечники совпадают. То же характерно для мышц лентовидной формы. Справа: мышца двоякоперистой формы, её физиологический поперечник значительно больше анатомического (анатомический поперечник не показан).


Утомление мышц Утомление мышц – это временное снижение или полная потеря работоспособности после длительных нагрузок. Причиной утомляемости является: истощение запасов медиатораистощение запасов медиатора в синапсах и АТФ, креотинфосфата (КФ), гликогена в мышцах (энергетический материал); отравление мышц продуктами метаболизмаотравление мышц продуктами метаболизма – накопление в мышцах молочной, угольной и фосфорной кислот и др., что вызывает обратимые изменения сократительных белков мышечной ткани


Энергия (химизм) мышечного Сокращения две фазы: Энергия, необходимая для работы мышц образуется в результате сложных химических процессов, протекающих в две фазы:анаэробная АТФ=АДФ+Н 3 РО 4 +Q Р+(С 6 Н 12 О 6)n Гексозофосфат (ГФ) гликоген ГФМолочная кислота+Н 3 РО 4 +Q Креатин+Н 3 РО 4 Креатинфосфат (КФ) аэробная фаза аэробная фаза – идёт окисление молочной кислоты до СО 2 и Н 2 О около 20%, а 80% идёт на ресинтез гликогена. Креатинфосфат (КФ)Креатин+Н 3 РО 4 +Q АДФ+Н 3 РО 4 =АТФ


Свойства гладкой мышечной ткани Гладкая мышечная ткань находится во внутренних органах, в кровеносных сосудах и коже. миоциты Структурными и функциональными элементами являются одноядерные мышечные клетки миоциты веретенообразной формы, соединенные между собой дисками (нексусы). Миофибриллы мышечной клетки Миофибриллы мышечной клетки размещаются параллельно друг другу. Актиновые и миозиновые нити распределены неравномерно – поэтому нет исчерченности.


Свойства гладкой мышечной ткани 1. Возбудимость и проводимость 1. Возбудимость и проводимость ниже, чем у скелетных мышц; 2.2. Удлинен латентный (скрытый) период 2.2. Удлинен латентный (скрытый) период до 1 сек.; 3. Сократимость миофибрил 3. Сократимость миофибрил осуществляется с участием белков тропомиозина, тропинина и ионов Са ++. Продолжительность до 100 сек.; 4. Пластический тонус 4. Пластический тонус – гладкие мышцы способны изменять линейные размеры (растягиваться) не изменяя своего тонуса. 5. Автоматизм 5. Автоматизм – способность гладкой мышечной ткани сокращаться под воздействием импульсов, которые зарождаются в ней самой (собственная интрамуральная нервная система – нервные ганглии, которые самостоятельно генерируют потенциал действия).


3. Физиология нервной ткани. Эволюция нервной системы тесно связанна с развитием двигательной функции живых организмов и развивалась путём усовершенствования способов передачи возбуждения, дифференцировки и концентрации клеточных структур. различают три типа нервной системы: По этим признакам различают три типа нервной системы: диффузную, ганглиозную и трубчатую. 1. Диффузная нервная система 1. Диффузная нервная система имеется у простейших многоклеточных животных (гидра пресноводная). Она состоит из малодифференцированных нервных клеток, отвечающих на действие раздражителя общей однотипной реакцией.


2. Ганглиозная нервная система. 2. Ганглиозная нервная система. Нейроны концентрируются в определённых местах тела животного, образуя узлы-ганглии. Одновременно происходит специализация нервных клеток: сенсорные, ассоциативные и эффекторные. Эта нервная система появляется у червей и достигает совершенства у представителей типа членистоногих. 3. Трубчатая нервная система. 3. Трубчатая нервная система. У позвоночных животных нейроны образуют трубку, расширенную в передней части в виде пузыря из которого формируется головной мозг.


Нервная система Нервная система осуществляет связь с внешней средой, регулирует работу всех органов и систем живого организма, адаптируя их функцию к изменяющимся условиям внешней среды. Материалом для построения нервной системы служит Материалом для построения нервной системы служит нервная ткань, которая состоит из двух компонентов: нейронов и клеток нейроглии. Основными функциональными элементами ЦНС Основными функциональными элементами ЦНС являются нейроны, их примерно 50 млрд и это составляет 10-15% от общего количества клеточных элементов нервной системы.


Нервная клетка состоит дендритов (лат. dendron - дерево) аксона (нейрит) аксональные терминали Нервная клетка состоит из тела сомы, (перикарион) и отростков разного типа: дендритов (лат. dendron - дерево) - многочисленные короткие отростки (чувствительные) через катрые сигналы поступают в нервную клетку; аксона (нейрит)– длинный отросток, всегда один, выполняет эфферентную функцию. Окончанием у этих отростков служат аксональные терминали. Функции нейрона: восприятие сигналов, хранение и переработка информации, передачи нервных импульсов к эффекторам.




Классификация нейронов 1. По форме: 1. По форме: пирамидные, круглые, звёздчатые, овальные. Размеры от 5 до 150 мкм. 2. По количеству отростков: униполярныеуниполярные - одноотростковые нейроны, псевдоуниполярныепсевдоуниполярные - сенсорные нейроны спинного мозга, биполярныебиполярные - двухотростковые нейроны, мультиполярныемультиполярные -многоотростковые нейроны. 3. По выполняемой функции: сенсорные нейронысенсорные нейроны - чувствительные (афферентные), ассоциативныеассоциативные – вставочные, промежуточные более мелкие различной формы. эффекторныеэффекторные – двигательные, секреторные и т. д.


Клетки нейроглии функции Клетки нейроглии составляют основную массу нервной ткани (85-90%) – это эпиндимоциты, астроциты (протоплазматические, волокнистые), олигодендроциты, микроглия. Они заполняют всё пространство между нейронами и выполняют следующие функции: опорно-структурная, обмен веществ, трофическая, буферная (постоянная концентрация ионов К +), защитная (фагоцитоз).






Нервные волокна Нервные волокна – это отростки нейронов различной длинны, часто соединяющихся между собой, образуя нервные стволы. Мякотные (миелиновые) нервные волокна Мякотные (миелиновые) нервные волокна выполняют чувствительную и двигательную функции. Иннервируют в основном скелетную мускулатуру. Скорость проведения возбуждения м/сек. Безмякотные (безмиелиновые) нервные волокна Безмякотные (безмиелиновые) нервные волокна входят в состав вегетативной нервной системы (ВНС) и иннервируют внутренние органы. Скорость проведения возбуждения 0,5-3,0 м/сек.


Функциональная значимость структурных элементов нервного волокна: мембрана осевого цилиндрамембрана осевого цилиндра, толщина А 0, обеспечивает возникновение возбуждения и передачу его по нерву; миелиновая оболочкамиелиновая оболочка имеет липидную природу(фосфолипид-диэлектрик). Является изолятором и выполняет трофическую функцию, обеспечивает высокую скорость передачи нервного импульса и формирует канал роста аксона при его повреждении (регенерация); перехват Ранвьеперехват Ранвье – место, где возникает возбуждение; швановская клеткашвановская клетка – продуцирует миелин; нейрофибриллынейрофибриллы обеспечивают рост нервного волокна.


Строение миелинового нервного волокна 1 осевой цилиндр 1 осевой цилиндр (отросток нервной клетки). В миелиновом волокне он всего один, располагается в центре и значительно больше по диаметру, чем в безмиелиновом волокне. 2 миелиновый слой оболочки волокна. 2 миелиновый слой оболочки волокна. Это несколько слоев мембраны шваннов-ских клеток (леммоцитов), концентрически закрученных вокруг осевого цилиндра. Фактически это сильно удлиненный мезаксон. 3 цитоплазма леммоцита 3 цитоплазма леммоцита. 4 ядро леммоцита 4 ядро леммоцита: вместе с цитоплазмой оттеснено к периферии волокна и образует нейролемму наружный слой оболочки миелинового волокна. 5 базальная мембрана 5 базальная мембрана, окружающая волокно. Схема по Т.Н. Радостиной, Ю.И.Афанасьеву, Т. С. Румянцевой


Схема строения миелинового нервного волокна 1 – 1 – осевой цилиндр, 2 – 2 – миелиновый слой оболочки волокна, 3 – 3 – перехват Ранвье, 4 – 4 – клетка Швана (леммоцита), 5 – 5 – метахондрии, 6 – 6 – нейроплазма, 7 – 7 – ядро клетки Швана, 8 – 8 – нейрофибрилы.


Закономерности проведения возбуждения по нервному волокну 1. Проведение импульсов по нервному волокну 1. Проведение импульсов по нервному волокну возможно только в условиях анатомической и физиологической непрерывности. 2. Возбуждение по нервному волокну 2. Возбуждение по нервному волокну распространяется в обе стороны с одинаковой силой и скоростью. 3. По нервному волокну импульсы изолированно 3. По нервному волокну импульсы распространяются изолированно, не переходят с одного нерва на другой. 4. Нервное волокно в качестве энергии 4. Нервное волокно в качестве энергии использует АТФ и КФ. Однако интенсивность обмена веществ ничтожно мала. Это подтверждает небольшое количество образованного тепла. 5. Относительная не утомляемость нервного волокна 5. Относительная не утомляемость нервного волокна объясняется тем, что при возбуждении тратится небольшое количество энергии.


6. Проведение потенциала действия по нервному волокну 6. Проведение потенциала действия по нервному волокну осуществляется последовательно с определённой скоростью без затухания. В основе объяснения этого механизма лежит теория местных токов А. Ходжкина. Согласно этой теории, в результате раздражения изменяется ионная проницаемость мембраны нервного волокна и появляются разнозаряженные участки (+-) между которыми возникают местные круговые токи. Эти токи движутся вдоль нервного волокна от участка к участку.


Синапс Синапс (греч. sinapsis – соединение, связь) – место контакта нервного волокна с эффектором. Классификация синапсов. 1. В зависимости от локализации 1. В зависимости от локализации – центральные и периферические синапсы; 2. По способу передачи возбуждения 2. По способу передачи возбуждения – химические, электрические, смешанные синапсы; 3. По типу контакта: 3. По типу контакта: межнейронные (аксодендритический, аксосоматический и аксо-аксональный синапсы), нервно- мышечные, рецепторно-нейронные и нервно-железистые синапсы. 4. Возбуждающие синапсы 4. Возбуждающие синапсы - для передачи нервного импульса в них используются медиаторы: ацетилхолин, норадреналин, дофамин, аспарагиновая, глютаминовая кислоты, серотонин; 5. Тормозные синапсы 5. Тормозные синапсы – где генерируется тормозной постсинаптический потенциал (ТПСП) и используются медиаторы: гамма-аминомасляная кислота и аминокислота глицин.


Механизм синаптической передачи возбуждения Под действием нервного импульса из синаптических пузырьков конца аксона освобождается медиатор и впрыскивается (экзоцитоз) в синаптическую щель. В результате этого происходит перемещение ионов (поток Nа + внутрь превышает поток К + наружу, в клетку поступают ионы Са ++) и возникает возбуждающий постсинаптический потенциал (ВПСП).


В основе межнейронных связей лежит взаимодействие процессов возбуждения и торможения. Постсинапээтическое торможение возникает вследствие снижения возбудимости сомы и дендритов нейрона. В основе этого торможения лежит возникновение гиперполяризующего тормозного постсинаптического потенциала (ТПСП) в синаптических бляшках. Пресинапээтическое торможение возникает при уменьшении или прекращении высвобождения медиатора из пресинаптических нервных окончаний.

Все живые организмы и любая их клетка обладают раздражимостью, т. е. способностью отвечать на внешнее раздражение изменением обмена веществ.

Наряду с раздражимостью три вида ткани: нервная, мышечная и железистая - обладают возбудимостью. В ответ на раздражение в возбудимых тканях возникает процесс возбуждения.

Возбуждение представляет собой сложную биологическую реакцию. Обязательными признаками возбуждения являются изменение мембранного потенциала, усиление обмена веществ (повышение потребления О 2 , выделение СО 2 и тепла) и возникновение деятельности, присущей данной ткани: мышца сокращается, железа выделяет секрет, нервная клетка генерирует электрические импульсы. В момент возбуждения ткань из состояния физиологического покоя переходит к присущей ей деятельности.

Следовательно, возбудимостью называют способность ткани отвечать на раздражение возбуждением. Возбудимость - это свойство ткани, тогда как возбуждение - это процесс, ответная реакция на раздражение.

Важнейшим признаком распространяющегося возбуждения является возникновение нервного импульса, или потенциала действия, благодаря которому возбуждение не остается на месте, а проводится по возбудимым тканям. Раздражителем, вызывающим возбуждение, может быть любой агент внешней или внутренней среды (электрический, химический, механический, термический и др.) при условии, что он является достаточно сильным, действует достаточно долго и нарастание его силы происходит достаточно быстро.

Биоэлектрические явления

Биоэлектрические явления - "животное электричество" было открыто в 1791 г. итальянским ученым Гальвани. Данные современной мембранной теории происхождения биоэлектрических явлений получены Ходжкиным, Кацом и Хаксли в исследованиях, проведенных с гигантским нервным волокном кальмара (диаметром 1 мм) в 1952 г.

Плазматическая мембрана клетки (плазмолемма), ограничивающая снаружи цитоплазму клетки, имеет

толщину около 10 нм и состоит из двойного слоя липидов, в который погружены глобулы белков (молекулы, свернутые в клубки или спирали). Белки выполняют функции ферментов, рецепторов, транспортных систем, ионных каналов. Они либо частично, либо целиком погружены в липидный слой мембраны (рис. 13). В состав мембраны входит также небольшое количество углеводов.


Рис. 13. Модель клеточной мембраны как жидкой мозаики из липидов и белков - поперечный разрез (Стерки П., 1984). а - липиды; в - белки

Сквозь мембрану движутся различные вещества в клетку и из клетки. Регуляция этого процесса - одна из основных функций мембраны. Основными ее свойствами являются избирательная и изменчивая проницаемость. Для одних веществ она служит барьером, для других - входными воротами. Вещества могут проходить через мембрану по закону концентрационного градиента (диффузия от большей концентрации к меньшей), по электрохимическому градиенту (разная концентрация заряженных ионов), путем активного транспорта - работа натрий-калиевых насосов.

Мембранный потенциал, или потенциал покоя. Между наружной поверхностью клетки и ее цитоплазмой существует разность потенциалов порядка 60 - 90 мВ (милливольт) , называемая мембранным потенциалом, или потенциалом покоя. Его можно обнаружить при помощи микроэлектродной методики. Микроэлектрод представляет собой тончайший стеклянный капилляр с диаметром кончика 0,2 - 0,5 мкм. Его заполняют раствором электролита (КС1). Второй электрод обычных размеров погружают в раствор Рингера, в котором находится исследуемый объект. Через усилитель биопотенциалов электроды подводят к осциллографу. Если под микроскопом с помощью микроманипулятора микроэлектрод ввести внутрь нервной клетки, нервного или мышечного волокна, то в момент прокола осциллограф покажет разность потенциалов - потенциал покоя (рис. 14). Микроэлектрод настолько тонок, что он практически не повреждает мембраны.


Рис. 14. Измерение потенциала покоя мышечного волокна (А) при помощи внутриклеточного микроэлектрода (схема). М - микроэлектрод; И - индифферентный электрод. Луч на экране осциллографа показан стрелкой

Мембрайно-ионная теория объясняет происхождение потенциала покоя неодинаковой концентрацией несущих электрические заряды К + , Na + и Сl - внутри и вне клетки и различной проницаемостью для них мембраны.

В клетке в 30 - 50 раз больше К + и в 8 - 10 раз меньше Na + , чем в тканевой жидкости. Следовательно, внутри клетки преобладают К + , снаружи - Na + . Основным анионом тканевой жидкости является Сl - . В клетке преобладают крупные органические анионы, которые не могут диффундировать сквозь мембрану. (Как известно, катионы имеют положительный заряд, а анионы - отрицательный.) Состояние неодинаковой ионной концентрации по обе стороны плазматической мембраны называют ионной асимметрией. Она поддерживается работой натрий-калиевых насосов, которые непрерывно перекачивают Na + из клетки и К + в клетку. Работа эта осуществляется с затратой энергии, освобождающейся при расщеплении аденозинтрифосфорной кислоты. Ионная асимметрия - физиологическое явление, сохраняющееся пока клетка жива.

В покое проницаемость мембраны значительно выше для К + , чем для Na + . В силу высокой концентрации ионы К + стремятся выйти из клетки наружу. Сквозь мембрану они проникают на наружную поверхность клетки, но дальше уйти не могут. Крупные анионы клетки, для которых мембрана непроницаема, не могут последовать за калием, и скапливаются на внутренней поверхности мембраны, создавая здесь отрицательный заряд, который удерживает электростатической связью проскочившие через мембрану положительно заряженные ионы калия. Таким образом возникает поляризация мембраны, потенциал покоя; по обе ее стороны образуется двойной электрический слой: снаружи из положительно заряженных ионов К + , а внутри из отрицательно заряженных различных крупных анионов.

Потенциал действия. Потенциал покоя сохраняется до тех пор, пока не возникло возбуждение. Под действием раздражителя проницаемость мембраны для Na + повышается. Концентрация Na + снаружи клетки в 10 раз больше, чем внутри нее. Поэтому Na + сначала медленно, а затем лавинообразно устремляются внутрь. Ионы натрия заряжены положительно, поэтому происходит перезарядка мембраны и ее внутренняя поверхность приобретает положительный заряд, а наружная - отрицательный. Таким образом происходит реверсия потенциала, изменение его на обратный знак. Он становится отрицательным снаружи и положительным внутри клетки. Этим объясняется давно известный факт, что возбужденный участок становится электроотрицательным по отношению к находящемуся в покое. Однако повышение проницаемости мембраны для Na + длится недолго; она быстро снижается и повышается для К + . Это вызывает усиление потока положительно заряженных ионов из клетки во внешний раствор. В итоге происходит реполяризация мембраны, ее наружная поверхность приобретает снова положительный заряд, а внутренняя - отрицательный.

Электрические изменения мембраны в процессе возбуждения получили название потенциала действия. Длительность его измеряется тысячными долями секунды (миллисекундами), амплитуда равна 90 - 120 мВ.

Во время возбуждения Na + входят в клетку, а К + выходят наружу. Казалось бы, что концентрация ионов в клетке должна меняться. Как показали опыты, даже многочасовое раздражение нерва и возникновение в нем десятков тысяч импульсов не изменяют содержания в нем Na + и К + . Это объясняется работой натрий-калиевого насоса, который после каждого цикла возбуждения разводит ионы по местам: накачивает К + обратно в клетку и выводит из нее Na + . Насос работает на энергии внутриклеточного обмена веществ. Это доказывается тем, что яды, прекращающие обмен веществ, прекращают работу насоса.

Потенциал действия, возникая в возбужденном участке, становится раздражителем для соседнего невозбужденного участка мышечного или нервного волокна и обеспечивает проведение возбуждения вдоль мышцы или нерва.

Возбудимость различных тканей неодинакова. Наиболее высокой возбудимостью отличаются рецепторы, специализированные структуры, приспособленные к улавливанию изменений во внешней среде и внутренней среде организма. Затем следует нервная, мышечная и железистая ткани.

Мерой возбудимости является порог раздражения, т. е. та наименьшая сила раздражителя, которая способна вызвать возбуждение. Порог раздражения иначе называют реобазой. Чем выше возбудимость ткани, тем меньшей силы раздражитель способен вызвать возбуждение.

Кроме того, возбудимость можно характеризовать тем временем, в течение которого должен действовать раздражитель, чтобы вызвать возбуждение, иначе говоря, порогом времени. Наименьшее время, в течение которого должен действовать электрический ток пороговой силы, чтобы вызвать возбуждение, называется полезным временем. Полезное время характеризует скорость течения процесса возбуждения.

Возбудимость тканей увеличивается в процессе умеренной деятельности и снижается при утомлении. Возбудимость претерпевает фазовые изменения во время возбуждения. Как только в возбудимой ткани возникает процесс возбуждения, она утрачивает способность отвечать на новое, даже сильное раздражение. Это состояние называется абсолютной невозбудимостью, или абсолютной рефрактерной фазой. Через некоторое время возбудимость начинает восстанавливаться. На пороговое раздражение ткань еще не отвечает, но на сильное раздражение отвечает возбуждением, хотя амплитуда возникающего потенциала действия в это время значительно снижена, т. е. процесс возбуждения слаб. Это фаза относительной рефрактерности. После нее возникает фаза повышенной возбудимости или супернормальности. В это время можно вызвать возбуждение очень слабым раздражителем, ниже пороговой силы. Только после этого возбудимость приходит в норму.

Для исследования состояния возбудимости мышечной или нервной ткани наносят два раздражения друг за другом через определенные интервалы. Первое вызывает возбуждение, а второе - тестирующее - испытывает возбудимость. Если на второе раздражение реакции нет, значит, ткань невозбудима; реакция слабая - возбудимость понижена; реакция усилена - возбудимость повышена. Так, если на сердце наносить раздражение во время систолы, то возбуждения не последует, к концу диастолы раздражение вызывает внеочередное сокращение - экстрасистолу, что свидетельствует о восстановлении возбудимости.

На рис. 15 сопоставлены во времени процесс возбуждения, выражением которого служит потенциал действия, и фазовые изменения возбудимости. Видно, что абсолютная рефрактерная фаза соответствует восходящей части пика - деполяризации, фаза относительной рефрактерности - нисходящей части пика - реполяризации мембраны и фаза повышенной возбудимости - отрицательному следовому потенциалу.


Рис. 15. Схемы изменений потенциала действия (а) и возбудимости нервного волокна (б) в различные фазы потенциала действия. 1 - местный процесс; 2 - фаза деполяризации; 3 - фаза реполяризации. Пунктиром на рисунке обозначены потенциал покоя и исходный уровень возбудимости


Похожая информация.


Элементарной биологической единицей является клетка. Клетка - это структурно-функциональная единица органа (ткани), способная самостоятельно существовать, расти, размножаться, активно реагировать на раздражение.

В каждой клетке есть «органы»:

1. Ядро

2. Цитоплазма

3. Оболочка.

Кроме «органов» в цитоплазме клетки имеются образования, выполняющие определенные функции - это органоиды или органеллы.

Некоторые органоиды есть во всех видах клеток, они называются органоидами общего порядка. К ним относятся:

Митохондрии

Аппарат Гольджи

Рибосомы

Клеточный центр

Эндоплазматическая сеть

Все эти образования выполняют определенную функцию.

Ядро - регулирует жизнедеятельность клетки, осуществляет передачу генетической информации, синтез белка и рецепцию биологически активных веществ.

Цитоплазма участвует в процессах метаболизма и поддержании постоянства внутренней среды клетки.

Эндоплазматическая сеть является главным депо ионов Са

Рибосомы синтезируют белки

Митохондрии участвуют в генерации и аккумуляции энергии

Аппарат Гольджи (пластинчатый комплекс) участвует в секреции биологически активных веществ.

Лизосомы осуществляют переваривание поглощенных клетками питательных веществ.

Все ткани человеческого организма являются возбудимыми. Для них характерны 4 свойства:

  • в о з б у д и м о с т ь
  • п р о в о д и м о с т ь
  • р е ф р а к т е р н о с т ь
  • л а б и л ь н о с т ь

Для мышечной ткани характерна также сократимость .

Возбудимость - способность ткани отвечать на раздражение изменением ряда своих свойств. Показатель возбудимости - порог раздражения . Это минимальное по силе раздражение, способное вызвать видимую ответную реакцию ткани.

Проводимость - способность ткани проводить возбуждение по всей своей длине. Показатель проводимости - скорость проведения возбуждения. Проводимость напрямую зависит от возбудимости ткани: чем выше возбудимость, тем выше проводимость, так как быстрее возбуждается расположенный рядом участок ткани.

Рефрактерность - способность ткани терять или снижать возбудимость в процессе возбуждения. При этом в ходе ответной реакции ткань перестает воспринимать раздражитель. Показатель рефрактерности (рефрактерный период ) - время, в течение которого возбудимость ткани снижена. Рефрактерный период тем короче, чем выше возбудимость ткани

Лабильность - способность ткани генерировать определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимого раздражения. Лабильность определяется продолжительностью рефрактерного периода (чем короче рефрактерный период, тем больше лабильность).

Сократимость - способность мышцы отвечать сокращением на раздражение.

Раздражитель - фактор, способный вызвать ответную реакцию возбудимых тканей. В условиях физиологического эксперимента в качестве раздражителя чаще всего используют электрический ток. Он легко дозируется, мало травмирует ткань и близок к раздражителям, имеющим место в живых организмах.

Хронаксия - наименьший промежуток времени, в течение которого ток силой в 2 реобазы (пороговая сила раздражителя для электрического тока) вызывает в ткани возбуждение.

Процесс возбуждения связан с наличием в мембране электрически (для ионов кальция и хлора) и химически (для ионов натрия и калия) управляемых каналов, которые могут открываться в ответ на соответствующее раздражение клетки.

Структурной основой биологической мембраны является двойной слой фосфолипидов, в который встроены мембранные белки.

Мембранные белки в функциональном отношении делятся на 4 класса : «насосы», каналы, рецепторы и ферменты. Ионоселективные каналы представляют собой пути переноса заряженных молекул и ионов. Через каналы в клетку проникают и лекарственные вещества. Для каждого катиона и аниона существует свой собственный канал. Рецепторы мембран представлены белковыми молекулами, которые «узнают» то или иное биологически активное вещество, контактируют с ним и передают в клетку информацию о характере биохимических взаимодействий.

Существует два основных вида транспорта через мембрану клетки: пассивный (фильтрация, диффузия, осмос) и активный (работа мембранных белковых «насосов»)

Пассивный транспорт. Фильтрация осуществляется через мембранные белковые каналы - поры, зависит от разности давлений снаружи и внутри клетки и проницаемости мембраны для жидкости и низкомолекулярных веществ. Диффузия - пассивное передвижение молекул или ионов по градиенту концентрации (из области высокой концентрации в область низкой). Осмос представляет собой частный случай диффузии растворителя через полупроницаемую мембрану, не пропускающую растворенные вещества.

Пассивный транспорт не требует затрат энергии.

Активный транспорт. Это универсальный для всех видов мембран перенос веществ против концентрационных или электрохимических градиентов (из области низкой концентрации в область высокой). Активный транспорт осуществляется с обязательной затратой энергии , образующейся при расщеплении (окислительное фосфорилирование) аденозинтрифосфорной кислоты (АТФ).

Разновидностью активного транспорта, связанной с деятельностью самой клетки, является микровезикулярный транспорт (пиноцитоз, экзоцитоз и фагоцитоз). При пиноцитозе происходит активное поглощение клеткой жидкости из окружающей среды с формированием пузырьков и последующим переносом их через цитоплазму. Процесс слияния пузырьков с мембраной клетки и выделение клеткой вещества в виде секреторных гранул или вакуолей называется экзоцитозом . Явление фагоцитоза заключается в способности клеток активно захватывать и поглощать микроорганизмы, разрушенные клетки и инородные частицы.

Все ткани организма могут находиться в двух состояниях :

  1. с о с т о я н и и о т н о с и т е л ь н о г о ф и з и о л о г и ч е с к о г о п о к о я
  2. с о с т о я н и и а к т и в н о с т и .

Состояние активности наблюдается при раздражении ткани. Существует 2 вида активного состояния тканей: возбуждение и торможение. Возбуждение - ответная реакция ткани на раздражение, характеризующаяся повышением функций ткани. Торможение - ответная реакция ткани на раздражение, характеризующаяся снижением функций ткани.

Биологический потенциал - это электрический процесс, возникающий в возбудимых тканях в процессе их жизнедеятельности. В состоянии относительного физиологического покоя регистрируется потенциал покоя. В образовании потенциала принимают участие 4 вида ионов:

  1. к а т и о н ы н а т р и я (п о л о ж и т е л ь н ы й з а р я д )
  2. к а т и о н ы к а л и я (п о л о ж и т е л ь н ы й з а р я д )
  3. а н и о н ы х л о р а (о т р и ц а т е л ь н ы й з а р я д )
  4. а н и о н ы о р г а н и ч е с к и х с о е д и н е н и й (о т р и ц а т е л ь н ы й з а р я д ).

Эти ионы в свободном состоянии находятся во вне-и внутриклеточной жидкости, однако их концентрация по обе стороны клеточной мембраны различна. Во внеклеточной жидкости высока концентрация ионов натрия и хлора, во внутриклеточной жидкости - ионов калия и органических соединений.

В развитии возбуждения выделяют 4 этапа:

1) предшествующее возбуждению состояние покоя (статическая поляризация);

2) деполяризация;

3) реполяризация

4) гиперполяризация.

Статическая поляризация. В состоянии относительного покоя наружная поверхность клетки всегда электроположительна по отношению к внутренней, т.е. поляризована. Эта разность потенциалов, равная ~ 60мВ, называется потенциалом покоя , или мембранным потенциалом (МП). Его величину можно измерить, введя внутрь клетки микроэлектрод (стеклянный капилляр, заполненный проводящим ток раствором).Второй электрод помещается снаружи. Луч на экране осциллографа показывает, что до прокола микроэлектродом мембраны разность потенциалов между электродами была равна нулю.В момент прокола обнаружена разность потенциалов, указывающая, что внутренняя сторона мембраны заряжена электроотрицательно по отношению к ее наружной поверхности. В разных тканях МП равен от 30 до 90 мВ. В состоянии относительного физиологического покоя клеточная мембрана хорошо проницаема для катионов калия, чуть хуже для анионов хлора, практически непроницаема для катионов натрия и совершенно непроницаема для анионов органических соединений.

В покое ионы калия без затрат энергии выходят в область меньшей концентрации (на наружную поверхность клеточной мембраны), неся с собой положительный заряд. Ионы хлора проникают внутрь клетки, неся отрицательный заряд. Ионы натрия продолжают оставаться на наружной поверхности мембраны, еще больше усиливая положительный заряд.

Деполяризация - сдвиг МП в сторону его уменьшения. Под действием раздражения открываются «быстрые» натриевые каналы, вследствие чего ионы Na лавинообразно поступают в клетку. Переход положительно заряженных ионов в клетку вызывает уменьшение положительного заряда на ее наружной поверхности и увеличение его в цитоплазме. В результате этого сокращается трансмембранная разность потенциалов, значение МП падает до 0, а затем по мере дальнейшего поступления Na в клетку происходят перезарядка мембраны и инверсия ее заряда (поверхность становится электроотрицательной по отношению к цитоплазме) - возникает потенциал действия (ПД). Потенциал действия - это сдвиг мембранного потенциала, возникающий при действии раздражителя, по силе превышающего порог возбудимости данной ткани. Электрографическим проявлением деполяризации является спайк , илипиковый потенциал .

При изучении возникновения потенциала действия в качестве раздражителя используют электрический ток. В зависимости от силы различают подпороговый (недостаточный для возникновения возбуждения), пороговый (достаточный) и надпороговый (чрезмерный) ток. Несмотря на то, что подпороговый ток не вызывает возбуждения, он все-таки деполяризует мембрану. Эта деполяризация называется локальным ответом (она не распространяется). Если сила раздражения достаточная (пороговая), то деполяризация достигает определенной величины, которая называется критическим уровнем деполяризации .

Реполяризация - восстановление исходного уровня МП. При этом ионы натрия перестают проникать в клетку, проницаемость мембраны для калия увеличивается, и он достаточно быстро выходит из нее. В результате заряд клеточной мембраны приближается к исходному. Электрографическим проявлением реполяризации является отрицательный следовой потенциал .

Гиперполяризация - увеличение уровня МП. Вслед за восстановлением исходного значения МП (реполяризация) происходит его кратковременное увеличение по сравнению с уровнем покоя, обусловленное повышением проницаемости калиевых каналов и каналов для Cl . В связи с этим поверхность мембраны приобретает избыточный по сравнению с нормой положительный заряд, а уровень МП становится несколько выше исходного. Электрографическим проявлением гиперполяризации является положительный следовой потенциал . На этом заканчивается одиночный цикл возбуждения.

Изменение возбудимости в различные фазы одиночного цикла возбуждения.

Если принять уровень возбудимости в условиях физиологического покоя за норму, то в ходе развития одиночного цикла возбуждения можно наблюдать ее циклические колебания. Так, в период развития начальной деполяризации на очень короткое время возбудимость незначительно повышается по сравнению с исходной. Во время развития полной деполяризации и инверсии заряда возбудимость падает до 0. Время, в течение которого отсутствует возбудимость, называется периодом абсолютной рефрактерности . В это время даже очень сильный раздражитель не может вызвать возбуждение ткани.

В фазе восстановления МП возбудимость также начинает восстанавливаться, но она еще ниже исходного уровня. Время восстановления ее от 0 до исходной величины называется периодом первичной относительной рефрактерности. Ткань может ответить возбуждением только на сильные, надпороговые, раздражения.

Вслед за периодом относительной рефрактерности наступает короткий период экзальтации - повышенной (по сравнению с исходной) возбудимости. По времени он соответствует процессу реполяризации.

Заключительный этап одиночного цикла возбуждения - повторное снижение возбудимости ниже исходного уровня (но не до 0), называемое периодом вторичной относительной рефрактерности. Он совпадает с развитием гиперполяризации мембраны. Возбуждение может возникнуть только в том случае, если сила раздражения значительно превысит пороговую. После этого возбудимость восстанавливается, и клетка готова к осуществлению следующего цикла возбуждения.

Механизм проведения возбуждения по нервному волокну.

Основная функция нервных волокон - передача нервного импульса. Скорость проведения импульса по нервному волокну высокая и зависит от наличия миелиновой оболочки и диаметра волокна. Чем больше диаметр, тем выше скорость.

Нервные волокна проводят возбуждение в обоих направлениях. Проведение импульсов по нервному волокну изолированное. Нервные волокна практически не утомляются. Возбуждение по нервным волокнам проводится без затухания.

Нервные волокна представляют собой отростки нейронов. Существует 2 основных вида волокон : миелиновые и безмиелиновые.

Миелиновые нервные волокна, в отличие от безмиелиновых, покрыты одним или несколькими слоями клеток. Эта оболочка защищает волокно от повреждения, способствует его питанию, а также намного увеличивает скорость передачи нервного импульса. Через равные промежутки (в среднем через 1 мм) миелиновая оболочка прерывается, оставляя небольшие участки отростка нервной клетки - перехваты Ранвье.

Нервные волокна подразделяют на группы :

А - нервные волокна с самой толстой миелиновой оболочкой. Наиболее высокая скорость передачи нервного импульса.

В - миелиновая оболочка тоньше, скорость проведения возбуждения ниже

С - безмиелиновые волокна с относительно низкой скоростью передачи импульса.

При раздражении нервного волокна в его участке, непосредственно соприкасающемся с раздражителем, возникает потенциал действия. Изменение заряда клеточной мембраны ведет к возникновению разности потенциалов между возбужденным и невозбужденным участками нервного волокна и следовательно к появлению электрического тока, направленного от возбужденного участка к невозбужденному.

В миелиновых волокнах импульс возникает только в перехватах Ранвье. При возбуждении каждый следующий перехват усиливает нервный импульс, а потому он не только не затухает в процессе передачи, но может «перепрыгивать через один или несколько перехватов. Это ведет к очень быстрому движению импульса по нервному волокну.

В безмиелиновых волокнах нервный импульс распространяется волнообразно, последовательно возбуждаются небольшие участки размером в несколько микрометров. Возбуждение распространяется гораздо медленнее, чем по миелиновым волокнам.

Физиология мышц .

У позвоночных и человека три вида мышц : 1) поперечнополосатые мышцы скелета, 2) поперечнополосатая мышца сердца - миокард и 3) гладкие мышцы, образующие стенки полых внутренних органов и сосудов.

Анатомической и функциональной единицей скелетных мышц является нейромоторная единица - двигательный нейрон и иннервируемая им группа мышечных волокон.

Основные функции мышечной ткани:

  1. д в и г а т е л ь н а я - о б е с п е ч е н и е д в и ж е н и я
  2. с т а т и ч е с к а я - о б е с п е ч е н и е ф и к с а ц и и , в т о м ч и с л е и в о п р е д е л е н н о й п о з е
  3. р е ц е п т о р н а я - в м ы ш ц а х и м е ю т с я р е ц е п т о р ы , п о з в о л я ю щ и е в о с п р и н и м а т ь с о б с т в е н н ы е д в и ж е н и я
  4. д е п о н и р у ю щ а я - в м ы ш ц а х з а п а с а ю т с я в о д а и н е к о т о р ы е п и т а т е л ь н ы е в е щ е с т в а.

Физиологические свойства скелетных мышц:

  • В о з б у д и м о с т ь .
  • П р о в о д и м о с т ь
  • Р е ф р а к т е р н о с т ь
  • Л а б и л ь н о с т ь
  • С о к р а т и м о с т ь - с п о с о б н о с т ь м ы ш е ч н о г о в о л о к н а и з м е н я т ь с в о ю д л и н у и с т е п е н ь н а п р я ж е н и я в о т в е т н а р а з д р а ж е н и е п о р о г о в о й с и л ы.

Механизмы мышечного сокращения и расслабления.

Поперечно-полосатая скелетная мышца состоит из длинных волокон - миофибрилл, внутри которых располагаются нити сократительных белков - а ктина и миозина . Нити миозина толстые и не смещаются, из актина образуются тонкие нити, способные к смещению. Нити актина покрыты слоем белка тропонина , препятствующего их взаимодействию с миозином. Нити сократительных белков окружены цитоплазмой (саркоплазмой).

При возбуждении мышцы открываются многочисленные каналы в мембране саркоплазматической сети, через которые в саркоплазму выходят ионы кальция . Они взаимодействуют с белком тропонином, освобождая от него нити актина. Кроме того, кальций стимулирует распад молекул АТФ, высвобождая большое количество энергии, за счет которой актин взаимодействует с миозином - нити актина как бы вдвигаются в промежутки между нитями миозина, и все мышечное волокно сокращается.

Для расслабления мышцы тоже требуется энергия в виде молекул АТФ. За счет этой энергии идет работа кальциевого насоса, удаляющего ионы кальция из саркоплазмы. В результате освободившиеся молекулы тропонина блокируют актин, препятствуя его взаимодействию с миозином. Нити снова расходятся, мышечное волокно расслабляется.

При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. Такое сокращение происходит в том случае, когда мышца не перемещает груз. При изометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины. Такое сокращение мышцы можно получить при попытке поднять непосильный груз. В целом организме сокращения мышц всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять.

Работа мышцы определяется произведением величины поднятого груза на высоту подъема.

В зависимости от частоты наносимого раздражения может возникнуть одиночное или слитное (тетаническое) сокращение.

Одиночное мышечное сокращение. При раздражении мышцы одиночным импульсом возникает одиночное мышечное сокращение, в котором выделяют три фазы:

  • л а т е н т н ы й п е р и о д - в р е м я о т м о м е н т а р а з д р а ж е н и я д о н а ч а л а с о к р а щ е н и я ; в э т о в р е м я в м ы ш ц е п р о и с х о д я т б и о х и м и ч е с к и е и б и о ф и з и ч е с к и е п р о ц е с с ы , о д н и м и з п р о я в л е н и й к о т о р ы х я в л я е т с я П Д .
  • ф а з а с о к р а щ е н и я (ф а з а у к о р о ч е н и я )
  • ф а з а р а с с л а б л е н и я.

Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.

Тетаническое сокращение. В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом. К тетаническому сокращению способны только скелетные мышцы.

Различают два вида тетануса: зубчатый и гладкий. Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе сокращения, то возникает гладкий тетанус , а если в фазу расслабления - зубчатый тетанус.

Гладкий тетанус - нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.

Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса , т.е. умеренной степени напряжения.

При сокращении мышцы химическая энергия АТФ превращается в тепловую и механическую. При сокращении мышцы выделяется тепло. Различают две фазы теплопродукции - начальную (во время сокращения) и отсроченную. Начальная фаза зависит от химических процессов, которые переводят мышцу из покоя в активное состояние. Происходит она в анаэробных условиях. Вторая фаза связана с процессами, которые обеспечивают ресинтез АТФ (преимущественно гликолиз и окислительное фосфорилирование). Длительная (на протяжении нескольких часов) мышечная работа обеспечивается за счет окисления липидов.

Утомление мышц . При длительной или интенсивной мышечной работе развивается утомление . Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.

Нарушение возбудимости и сократимости мышечного волокна в первую очередь обусловлено нехваткой энергии, вследствие того, что молекулы АТФ не успевают восстанавливаться. Утомление быстрее развивается при интенсивной мышечной работе и медленнее при длительной относительно малоинтенсивной работе.

Гладкие мышцы. Гладкие мышцы образуют стенки (мышечный слой) внутренних органов и кровеносных сосудов. Гладкие мышцы менее возбудимы , чем поперечнополосатые. Возбуждение по ним распространяется с небольшой скоростью - 2-15 см/с. В отличие от нервных волокон и волокон поперечнополосатых мышц, возбуждение в гладких мышцах может передаваться с одного волокна на другое.

Особенностью гладких мышц является их способность осуществлять относительно медленные движения и длительные тонические сокращения . Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов. Благодаря малой скорости сокращения, гладкие мышцы хорошо приспособлены к длительным сокращениям с небольшой затратой энергии и без утомления.

Важным свойством гладких мышц является их пластичност ь, т. е. способность сохранять приданную им при растяжении длину. Это свойство имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его .

Характерной особенностью гладких мышц является ихспособность к автоматическойдеятельности , которая имеет миогенное происхождение и возникает в мышечных клетках, которые выполняют функцию водителя ритма. Автоматизм гладких мышечных волокон желудка, кишечника, матки, мочеточников проявляется их способностью ритмично сокращаться при отсутствии внешних раздражений, без воздействия нервных импульсов.

Адекватным раздражителем для гладких мышц является их быстрое и сильное растяжение, что имеет большое значение для функционирования многих гладкомышечных органов (мочеточник, кишечник и другие полые органы).

Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, которые, как правило, оказывают противоположное влияние на их функциональное состояние.

Філімонов В.І. «Фізіологія людини» стор. 19-61


Похожие публикации