Строение и функции оболочки ядра. Особенности строения ядра

Строение и функции ядра

Ядро — важнейший органоид клетки, характерный для эукариотов и являющийся признаком высокой организации организма. Ядро является центральным органоидом. Оно состоит из ядерной оболочки, кариоплазмы (ядерной плазмы), одного или нескольких ядрышек (у некоторых организмов ядрышки в ядре отсутствуют); в состоянии деления возникают особые органоиды ядра — хромосомы.

1. Ядерная оболочка.

Строение ядерной оболочки аналогично таковому для клеточной мембраны. Она содержит поры, осуществляющие контакт содержимого ядра и цитоплазмы.

Функции ядерной оболочки :

1) отделяет ядро от цитоплазмы;

2) осуществляет взаимосвязь ядра и остальных органоидов клетки.

2. Кариоплазма (ядерная плазма).

Кариоплазма представляет собой жидкий коллоидно-истинный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК. Строение кариоплазмы зависит от функционального состояния клетки. Функциональных состояний клетки эукариотов два: стационарное и состояние деления.

В стационарном состоянии (это или время между делениями, т. е. интерфаза, или время обычной жизнедеятельности специализированной клетки в организме) нуклеиновые кислоты равномерно распределены в кариоплазме, ДНК — деспирализованы и структурно не выделены. В ядре нет других органоидов, кроме ядрышек (если таковые характерны для данной клетки), ядерной оболочки и кариоплазмы.

В состоянии деления ядерные кислоты образуют особые органоиды — хромосомы, ядерное вещество становится хроматиновым (способным к окрашиванию). В процессе деления ядерная оболочка растворяется, ядрышки исчезают, а кариоплазма смешивается с цитоплазмой.

Хромосомы представляют собой особые образования определенной формы. По форме различают палочкообразные, разноплечные и равноплечные хромосомы, а также хромосомы с вторичными перетяжками. Тело хромосомы состоит из центромеры и двух плеч.

У палочкообразных хромосом одно плечо очень большое, а второе — маленькое, у разноплечных — оба плеча соизмеримы друг с другом, но видимо различаются по размерам, у равноплечных размеры плеч одинаковы.

Число хромосом для каждого вида строго одинаково и является систематическим признаком. Известно, что в многоклеточных организмах различают два типа клеток по количеству хромосом — соматические (клетки тела) и половые клетки, или гаметы. Число хромосом в соматических клетках (в норме, как правило) в два раза больше, чем в половых клетках. Поэтому число хромосом в соматических клетках называют диплоидным (двойным), а количество хромосом в гаметах — гаплоидным (одинарным). Например, в соматических клетках тела человека содержится 46 хромосом, т. е. 23 пары (это диплоидный набор); половые клетки человека (яйцеклетки и сперматозоиды) содержат 23 хромосомы (гаплоидный набор).

Парные хромосомы имеют одинаковую форму и выполняют одинаковые функции: они несут информацию об одинаковых типах признаков (например, половые хромосомы несут информацию о поле будущего организма).

Парные хромосомы, имеющие одинаковое строение и выполняющие одинаковые функции, называются аллельными (гомологичными).

Хромосомы, принадлежащие к разным парам гомологичных хромосом, называются неаллельными.

Диплоидный набор хромосом обозначается «2n», а гаплоидный — «n»; следовательно, в соматических клетках содержится 2n хромосом, а в гаметах — n хромосом.

Число хромосом в клетке не является показателем уровня организации организма (дрозофила, принадлежащая к насекомым — организмам высокого уровня организации, — содержит в соматических клетках четыре хромосомы).

Хромосомы состоят из генов.

Ген — участок молекулы ДНК, в котором закодирован определенный состав молекулы белка, за счет чего у организма проявляется тот или иной признак, или реализующийся у конкретного организма, или передающийся от родительского организма потомкам.

Итак, хромосомы — это органоиды, которые четко проявляются в клетках в момент деления последних. Они образованы нуклеопротеидами и выполняют в клетке следующие функции:

1) хромосомы содержат наследственную информацию о признаках, присущих данному организму;

2) через хромосомы осуществляется передача наследственной информации потомству.

3. Ядрышко.

Небольшое сферическое образование, содержащееся внутри кариоплазмы, называется ядрышком. В ядре может содержаться одно или несколько ядрышек, но ядрышко может и отсутствовать. В ядрышке более высокая концентрация матрикса, чем в кариоплазме. Оно содержит различные белки, в том числе и нуклеопротеиды, липопротеиды, фосфопротеиды.

Главной функцией ядрышек является синтез зародышей рибосом, которые сначала попадают в кариоплазму, а затем через поры в ядерной оболочке — в цитоплазму на эндоплазматическую сеть.

4. Общие функции ядра:

1) в ядре сосредоточена практически вся информация о наследственных признаках данного организма (информативная функция);

2) ядро через гены, содержащиеся в хромосомах, передает признаки организма от родителей к потомкам (функция наследования);

3) ядро является центром, объединяющим все органоиды клетки в единое целое (функция объединения);

4) ядро согласует и регулирует физиологические процессы и биохимические реакции в клетках (функция регуляции).

Ядро есть в любой эукариотической клетке. Ядро может быть одно, или в клетке могут быть несколько ядер (в зависимости от ее активности и функции).

Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Ядерная оболочка состоит из двух мембран, разделенных перинуклеарным (околоядерным) пространством, между которыми находится жидкость. Основные функции ядерной оболочки: обособление генетического материала (хромосом) от цитоплазмы, а также регуляция двусторонних взаимоотношений между ядром и цитоплазмой.

Ядерная оболочка пронизана порами, которые имеют диаметр около 90 нм. Область поры (поровый комплекс) имеет сложное строение (это указывает на сложность механизма регуляции взаимоотношений между ядром и цитоплазмой). Количество пор зависит от функциональной активности клетки: чем она выше, тем больше пор (в незрелых клетках пор больше).

Основа ядерного сока (матрикса, нуклеоплазмы) – это белки. Сок образует внутреннюю среду ядра, играет важную роль в работе генетического материала клеток. Белки: нитчатые или фибриллярные (опорная функция), гетероядерные РНК (продукты первичной транскрипции генетической информации) и мРНК (результат процессинга).

Ядрышко – это структура, где происходят образование и созревание рибосомальных РНК (р-РНК). Гены р-РНК занимают определенные участки нескольких хромосом (у человека это 13–15 и 21–22 пары), где формируются ядрышковые организаторы, в области которых и образуются сами ядрышки. В метафазных хромосомах эти участки называются вторичными перетяжками и имеют вид сужений. Электронная микроскопия выявила нитчатый и зернистый компоненты ядрышек. Нитчатый (фибриллярный) – это комплекс белков и гигантских молекул-предшественниц р-РНК, которые дают в последующем более мелкие молекулы зрелых р-РНК. При созревании фибриллы превращаются в рибонуклеопротеиновые гранулы (зернистый компонент).

Хроматин получил свое название за способность хорошо прокрашиваться основными красителями; в виде глыбок он рассеян в нуклеоплазме ядра и является интерфазной формой существования хромосом.

Хроматин состоит в основном из нитей ДНК (40 % массы хромосомы) и белков (около 60 %), которые вместе образуют нуклеопротеидный комплекс. Выделяют гистоновые (пять классов) и негистоновые белки.

Гистонам (40 %) принадлежат регуляторная (прочно соединены с ДНК и препятствуют считыванию с нее информации) и структурная функции (организация пространственной структуры молекулы ДНК). Негистоновые белки (более 100 фракций, 20 % массы хромосомы): ферменты синтеза и процессинга РНК, репарации редупликации ДНК, структурная и регуляторная функции. Кроме этого, в составе хромосом обнаружены РНК, жиры, полисахариды, молекулы металлов.

В зависимости от состояния хроматина выделяют эухромати-новые и гетерохроматиновые участки хромосом. Эухроматин отличается меньшей плотностью, и с него можно производить считывание генетической информации. Гетерохроматин более компактен, и в его пределах информация не считывается. Выделяют конститутивный (структурный) и факультативный гетерохро-матин.

5. Строение и функции полуавтономных структур клетки: митохондрий и пластид

Митохондрии (от гр. mitos – «нить», chondrion – «зернышко, крупинка») – это постоянные мембранные органеллы округлой или палочковидной (нередко ветвящейся) формы. Толщин – 0,5 мкм, длина – 5–7 мкм. Количество митохондрий в большинстве животных клеток – 150-1500; в женских яйцеклетках – до нескольких сотен тысяч, в сперматозоидах – одна спиральная митохондрия, закрученная вокруг осевой части жгутика.

Основные функции митохондрий:

1) играют роль энергетических станций клеткок. В них протекают процессы окислительного фосфорилирования (ферментативного окисления различных веществ с последующим накоплением энергии в виде молекул аденозинтрифосфата – АТФ);

2) хранят наследственный материал в виде митохондриаль-ной ДНК. Митохондрии для своей работы нуждаются в белках, закодированных в генах ядерной ДНК, так как собственная митохондриальная ДНК может обеспечить митохондрии лишь несколькими белками.

Побочные функции – участие в синтезе стероидных гормонов, некоторых аминокислот (например, глютаминовой). Строение митохондрий

Митохондрия имеет две мембраны: наружную (гладкую) и внутреннюю (образующую выросты – листовидные (кристы) и трубчатые (тубулы)). Мембраны различаются по химическому составу, набору ферментов и функциям.

У митохондрий внутренним содержимым является матрике – коллоидное вещество, в котором с помощью электронного микроскопа были обнаружены зерна диаметром 20–30 нм (они накапливают ионы кальция и магния, запасы питательных веществ, например, гликогена).

В матриксе размещается аппарат биосинтеза белка органеллы: 2–6 копий кольцевой ДНК, лишенной гистоновых белков (как у прокариот), рибосомы, набор т-РНК, ферменты редупликации, транскрипции, трансляции наследственной информации. Этот аппарат в целом очень похож на таковой у прокариот (по количеству, структуре и размерам рибосом, организации собственного наследственного аппарата и др.), что служит подтверждением симбиоти-ческой концепции происхождения эукариотической клетки.

В осуществлении энергетической функции митохондрий активно участвуют как матрикс, так и поверхность внутренней мембраны, на которой расположена цепь переноса электронов (цитохро-мы) и АТФ-синтаза, катализирующая сопряженное с окислением фосфорилирование АДФ, что превращает его в АТФ.

Митохондрии размножаются путем перешнуровки, поэтому при делении клеток они более или менее равномерно распределяются между дочерними клетками. Так, между митохондриями клеток последовательных генераций осуществляется преемственность.

Таким образом, митохондриям свойственна относительная автономность внутри клетки (в отличие от других органоидов). Они возникают при делении материнских митохондрий, обладают собственной ДНК, которая отличается от ядерной системой синтеза белка и аккумулирования энергии.

Пластиды

Это полуавтономные структуры (могут существовать относительно автономно от ядерной ДНК клетки), которые присутствуют в растительных клетках. Они образуются из пропластид, которые имеются у зародыша растения. Отграничены двумя мембранами.

Выделяют три группы пластид:

1) лейкопласты. Имеют округлую форму, не окрашены и содержат питательные вещества (крахмал);

2) хромопласты. Содержат молекулы красящих веществ и присутствуют в клетках окрашенных органов растений (плодах вишни, абрикоса, помидоров);

3) хлоропласты. Это пластиды зеленых частей растения (листьев, стеблей). По строению они во многом схожи с митохондриями животных клеток. Наружная мембрана гладкая, внутренняя имеет выросты – ламелосомы, которые заканчиваются утолщениями – тилакоидами, содержащие хлорофилл. В строме (жидкой части хлоропласта) содержатся кольцевая молекула ДНК, рибосомы, запасные питательные вещества (зерна крахмала, капли жира).







































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Урок изучения и первичного закрепления новых знаний.

План урока:

I. Организационный момент

II. Актуализация опорных знаний

III. Изучение новой темы

IV. Закрепление изученного материала

V. Домашнее задание

Ход урока

I. Организационный момент. (Вступительное слово учителя).

II. Актуализация опорных знаний.

Т.о. тема нашего урока “Строение и функции ядра”.

Цели и задачи урока:

1. Обобщить и изучить материал о строение и функции ядра как важнейшего компонента эукариотической клетки.

2. Особенности клеток эукариот. Доказывать, что ядро – центр управления жизнедеятельностью клетки. Строение ядерных пор. Содержимое ядра клетки.

3.Активизировать познавательную деятельность с использованием технологии “ключевых слов”: кариоплазма, хроматин, хромосомы, ядрышко (нуклеола). Развивать умения работать с тестами.

4. Анализировать и устанавливать связи и отношения между органоидами клетки, проводить сравнения, развивать способность к аналитическому мышлению.

5. Продолжить развитие познавательного интереса у старшеклассников к изучению строения клетки, как единице строения и функции организмов.

6.Способствовать развитию ценностно-смысловых, общекультурных, учебно-познавательных, информационных компетенции. Компетенций личностного самосовершенствования.

III. Объяснение нового материала.

Вводное слово.

Какие органеллы изображены на слайде №4? (Митохондрии, хлоропласты).

Почему их считают полуавтономными структурами клетки? (Содержат собственную ДНК, рибосомы, могут синтезировать собственные белки).

Где ещё содержится ДНК? (В ядре).

Т.о. процессы жизнедеятельности клетки будут зависеть от ядра. Давайте попробуем это доказать.

Посмотреть фрагмент фильма “Клеточное ядро”. (Слайд № 5).

Ядро обнаружил в клетке английский ботаник Р.Броун в 1831 году.

Сделать вывод. Ядро наиболее важный компонент эукариотической клетки.

Ядро чаще всего расположено в центре клетки, и только у растительных клеток с центральной вакуолью - в пристеночной протоплазме. Оно может быть различной формы:

  • сферическим;
  • яйцевидным;
  • чечевицеобразным;
  • сегментированным (редко);
  • вытянутым в длину;
  • веретеновидным, а также иной формы.

Диаметр ядра варьирует в пределах от 0,5 мкм (у грибов) до 500 мкм (в некоторых яйцеклетках), в большинстве случаев он меньше 5 мкм.

Большинство клеток имеют одно ядро, но есть клетки и организмы, содержащие 2 и более ядер.

Давайте вспомним. (Клетки печени, клетки поперечно – полосатой мышечной ткани). Слайд № 6.

Из организмов: гриб - мукор – несколько сотен, инфузория - туфелька имеет два ядра. Слайд №7.

Клетки, не имеющие ядер: ситовидные трубки флоэмы высших растений и зрелых эритроцитов млекопитающих. (Слайд №8).

Посмотреть фрагмент фильма “Строение ядра” (слайд №9, 58 сек.)

  1. Сформулировать функции ядра.
  2. Рассмотреть строение ядерной мембраны и её функции.
  3. Взаимосвязь ядра и цитоплазмы.
  4. Содержимое ядра.

Ядро в клетке различимо только в интерфазе (интерфазное ядро) - период между ее делениями.

Функции: (слайд № 10)

1. Хранит генетическую информацию, заключенную в ДНК, и передает ее дочерним клеткам в процессе клеточного деления.

2. Контролирует жизнедеятельность клетки. Регулирует процессы обмена веществ, протекающих в клетке.

Рассматриваем рис. “Строение ядра” (слайд 11)

Составляем схему: учащиеся составляют самостоятельно, проверка слайд 12.

Рассмотрим ядерную оболочку (слайд 13)

Ядерная оболочка состоит из наружной ивнутренней мембран. Оболочка пронизана ядерными порами. Делаем вывод, что ядро двухмембранная структура клетки.

Работая с рис. 93. стр. 211. (Учебник И.Н. Пономарёва, О.А. Корнилова, Л.В. Симонова, (слайд 14), разбираем строение и функции ядерной мембраны.

Отделяет ядро от цитоплазмы клетки;

Наружная оболочка переходит в ЭПС и несет рибосомы, может образовывать выпячивания.

Ядерная пластинка (ламина) подстилает внутреннюю мембрану, принимает участие в фиксации хроматина – к ней могут прикрепляться концевые и другие участки хромосом.

Перинуклеарное пространство – пространство между мембранами.

Поры осуществляют избирательный транспорт веществ из ядра в цитоплазму и из цитоплазмы в ядро. Число пор непостоянно и зависит от размеров ядер и их функциональной активности.

Транспорт веществ через поры (слайд 15).

Пассивный транспорт: молекулы сахаров, ионы солей.

Активный и избирательный транспорт: белки, субъединицы рибосом, РНК.

Знакомимся с поровым комплексом, стр. 212. рис.94 (слайды 16,17).

Делаем вывод: функция ядерной оболочки регуляция транспорта веществ из ядра в цитоплазму и из цитоплазмы в ядро.

Содержимое ядра (слайд18,19,20).

Ядерный сок (нуклеоплазма, или кариоплазма, кариолимфа) - это бесструктурная масса, окружающая хроматин (хромосомы) и ядрышки. Похожа на цитозоль (гиалоплазму) цитоплазмы. Содержит различные РНК и белки-ферменты, в отличие от гиалоплазмы содержит большую концентрацию ионов Na, + K + , Cl - ; меньшим содержанием SO 4 2- .

Функции нуклеоплазмы:

  • заполняет пространство между ядерными структурами;
  • участвует в транспорте веществ из ядра в цитоплазму и из цитоплазмы в ядро;
  • регулирует синтез ДНК при репликации, синтез иРНК при транскрипции

Хроматин имеет вид глыбок, гранул и нитей (слайд 20,21).

Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП).

Хроматин - форма существования генетического материала в интерфазных клетках. В делящейся клетке нити ДНК спирализуются (конденсация хроматина), образуя хромосомы.

Хромосомы ядра составляют его хромосомный набор - кариотип.

Функции хроматина:

  • Содержит генетический материал - ДНК, состоящую из генов, несущих наследственную информацию;
  • Осуществляет синтез ДНК (при удвоении хромосом в S-период клеточного цикла), иРНК (транскрипция при биосинтезе белка);
  • Регулирует синтез, белков и контролирует жизнедеятельность клетки;
  • Гистоновые белки обеспечивают конденсацию хроматина.

Ядрышко. В ядре одно или несколько ядрышек. У них округлая структура (слайд 22, 23)

Оно содержит: белок - 70-80% (определяет высокую плотность), РНК - 5-14%, ДНК – 2-12%.

Ядрышко - несамостоятельная структура ядра. Оно образуется на участке хромосомы, несущем гены рРНК. Такие участки хромосом называются ядрышковыми организаторами. В образовании ядрышка клетки человека участвуют петли десяти отдельных хромосом, содержащие гены рРНК (ядрышковые организаторы). В ядрышках синтезируется рРНК, которая вместе с поступившим из цитоплазмы белком образует субъединицы рибосом.

Вторичная перетяжка – ядрышковый организатор, содержит гены рРНК, имеется у одной – двух хромосом в геноме.

Завершается сборка рибосом в цитоплазме. Во время деления клетки ядрышко распадается, а в телофазе вновь формируется.

Функции ядрышка:

Синтез рРНК и сборка субъединиц рибосом (завершается сборка рибосом из субъединиц в цитоплазме после их выхода из ядра);

Подводим итог:

Клеточное ядро - центр управления жизнедеятельностью клетки.

  1. Ядро -> хроматин (ДНП) -> хромосомы -> молекула ДНК -> участок ДНК – ген хранит и передаёт наследственную информацию.
  2. Ядро находится в постоянном и тесном взаимодействии с цитоплазмой, в нём синтезируются молекулы иРНК, которые переносят информацию от ДНК к месту синтеза белка в цитоплазме на рибосомах. Однако само ядро также испытывает влияние цитоплазмы, т. к. синтезируемые в ней ферменты поступают в ядро и необходимы для его нормального функционирования.
  3. Ядро контролирует синтез всех белков в клетке и через них – все физиологические процессы в клетке

Еще в конце прошлого века было доказано, что лишенные ядра фрагменты, отрезанные от амебы или инфузории, через более или менее короткое время погибают.

Для того чтобы выяснить роль ядра, можно удалить его из клетки и наблюдать последствия такой операции. Если с помощью микроиглы удалить ядро у одноклеточного животного - амебы, то клетка продолжает жить и двигаться, но не может расти и через несколько дней погибает. Следовательно, ядро необходимо для метаболических процессов (в первую очередь - для синтеза нуклеиновых кислот и белков), обеспечивающих рост и размножение клеток.

Можно возразить, что к гибели приводит не утрата ядра, а сама операция. Для того чтобы выяснить это, необходимо поставить опыт с контролем, т. е. подвергнуть две группы амеб одной и той же операции, с той разницей, что в одном случае ядро действительно удаляют, а в другом в амебу вводят микроиглу, передвигают ее в клетке подобно тому, как это делается при удалении ядра, и выводят, оставив ядро в клетке; это называется “мнимой” операцией. После такой процедуры амебы оправляются, растут и делятся; это показывает, что гибель амеб первой группы вызывалась не операцией как таковой, а именно удалением ядра.

Ацетабулярия представляет собой одноклеточный организм, гигантскую одноядерную клетку, имеющую сложное строение (слайд 26).

Состоит из ризоида с ядром, стебелька и зонтика (шапочки).

Ампутация ножки (ризоида), которая содержит единственное клеточное ядро растения. Образуется новый ризоид, который, однако, не имеет ядра. Клетка может выжить в благоприятных условиях несколько месяцев, но уже не способна к размножению.

Энуклеированное (лишённое ядра) растение способно восстановить утраченные части: зонтик, ризоид: всё, за исключением ядра. Такие растения погибают через несколько месяцев. Напротив, части этого одноклеточного растения с ядром способны неоднократно восстанавливаться после повреждения.

Выполнить тест (комментировать ответ, слайды 27-37).

1. Какие клетки человека в процессе развития теряют ядро, но в течение длительного времени продолжают выполнять свои функции?

а) нервные клетки

б) клетки внутреннего слоя кожи

в) эритроциты +

г) поперечно-полосатые мышечные волокна

(Клетки эритроцитов. Молодые имеют ядро, зрелые его теряют, продолжают функционировать 120 дней).

2. Главная генетическая информация организма хранится в:

3. Функцией ядрышка является образование:

(В ядрышке синтезируется рРНК, которая вместе с белком, поступающим из цитоплазмы, формирует рибосомы).

4. Белки, входящие в состав хромосом, называются:

(Гистоновые белки обеспечивают конденсацию хроматина).

5. Поры в оболочке ядра:

(Поры образованы белковыми структурами, через них пассивно и избирательно происходит связь ядра и цитоплазмы).

6. Что правильно?

а) в процессе деления клетки ядрышки в ядре исчезают +

б) хромосомы состоят только из ДНК

в) в клетках растений ядро оттесняет вакуоль к стенке

г) белки гистоны устраняют нарушения в ДНК

(Ядрышко - несамостоятельная структура ядра. Оно образуется на участке хромосомы, несущем гены рРНК. Такие участки хромосом называются ядрышковыми организаторами. Перед делением ядрышко исчезает, а затем образуется вновь).

7. Главная функция ядра: (2 ответа)

а) управление внутриклеточным обменом веществ +

б) изоляции ДНК от цитоплазмы

в) хранении генетической информации +

г) объединении хромосом перед спирализацией

(В ядре находится ДНК, которая хранит и передаёт генетическую информацию, через иРНК, на рибосомах происходит синтез белка, осуществляется обмен веществ между ядром и цитоплазмой)

Выбрать три ответа.

8. Укажите структуры клетки эукариот, в которых локализованы молекулы ДНК.

(Полуавтономные органоиды клетки митохондрии и хлоропласты. Ядро, которое контролирует все процессы жизнедеятельности в клетке).

9. Ядрышки состоят из:

(белок - 70-80% (определяет высокую плотность), РНК - 5-14%, ДНК – 2-12%).

10. Что правильно?

а) ядрышки - это “мастерские” по производству лизосом

б) внешняя мембрана покрыта множеством рибосом +

в) репликацией называют процесс самокопирования ДНК +

г) рибосомная РНК образуется в ядрышках +

Дать ответ на вопрос.

  • Каково строение и функции оболочки ядра?

Элементы ответа.

1) 1. Ограничивает содержимое ядра от цитоплазмы

2) 2. Состоит из наружной и внутренней мембран, сходных по строению с плазматической мембраной. На внешней мембране - рибосомы, переходит в ЭПС.

3) 3. Имеет многочисленные поры, через которые происходит обмен веществами между ядром и цитоплазмой.

Домашнее задание. Параграф 46. Вопросы 2,4 стр. 215.

Основная литература.

  1. И.Н. Пономарёва, О.А. Корнилова, Л.В. Симонова, Москва Издательский центр “Вентана – Граф” 2013г.
  2. В.В. Захаров, С.Г. Мамонтов, И.И.Сонин Общая биология.10 класс. Изд. “Дрофа”, Москва 2007г.
  3. А.А. Каменский, Е.А. Криксунов, В.В.Пасечник Общая биология 10-11 класс Изд. “Дрофа” 2010г.
  4. Краснодембский Е.Г., 2008."Общая биология: Пособие для старшеклассников и поступающих в вузы"
  5. Ресурсы Интернета. Единая коллекция образовательных ресурсов. Материал из Википедии - свободной энциклопедии.

1. Перечислите царства живых организмов, клетки которых имеют ядро.

Ответ. Это царства грибов, растений, животных, то есть эукариоты.

2. Трудами каких учёных была создана клеточная теория?

Ответ. В 1838-1939гг. немецкие ученые ботаник Маттиас Шлейден и физиолог Теодор Шванн создали так называемую клеточную теорию.

3. В чём основное отличие прокариотической клетки от эукариотической?

Ответ. Все живые организмы на земле состоят из клеток. Различают два вида клеток, в зависимости от их организации: эукариоты и прокариоты.

Эукариоты представляют собой надцарство живых организмов. В переводе с греческого языка «эукариот» обозначает «владеющий ядром» . Соответственно эти организмы в своем составе имеют ядро, в котором закодирована вся генетическая информация. К ним относятся грибы, растения и животные.

Прокариоты – это живые организмы, в клетках которых ядро отсутствует. Характерными представителями прокариот являются бактерии и цианобактерии.

Первыми приблизительно 3,5 миллиарда лет тому назад возникли прокариоты, которые через 2,4 миллиарда лет положили начало развитию эукариотических клеток.

Эукариоты и прокариоты сильно отличаются по размеру друг от друга. Так диаметр эукариотической клетки - 0,01-0,1 мм, а прокариотической – 0,0005-0,01 мм. Объем эукариота порядка 10000 раз больше, чем объем прокариота.

Прокариоты имеют кольцевую ДНК, которая располагается в нуклеоиде. Эта клеточная область отделена от остальной цитоплазмы при помощи мембраны. ДНК никак не связана с РНК и белками, отсутствуют хромосомы. ДНК эукариотических клеток линейная, располагается в ядре, в котором имеются хромосомы.

Прокариоты размножаются в основном простым делением пополам, в то время как эукариоты делятся при помощи митоза, мейоза или сочетанием этих двух способов.

У эукариотических клеток имеются органеллы, характеризующиеся наличием собственного генетического аппарата: митохондрии и пластиды. Они окружены мембраной и имеют способность к размножению посредством деления.

В прокариотических клетках также встречаются органеллы, но в меньшем количестве и не ограниченные мембраной.

Эукариоты, в отличие от прокариот, имеют способность к перевариванию твердых частиц, заключая их в мембранный пузырек. Существует мнение, что эта особенность возникла в ответ на необходимость полноценно обеспечить питанием клетку во много раз большую прокариотической. Следствием наличия у эукариот фагоцитоза стало появление первых хищников.

Жгутики эукариот имеют достаточно сложное строение. Они представляют собой тонкие клеточные выросты, окруженные тремя слоями мембраны, содержащие 9 пар микротрубочек по периферии и две в центре. Имеют толщину до 0,1 миллиметра и способны изгибаться по всей длине. Кроме жгутиков, для эукариот характерно наличие ресничек. Они по своей структуре идентичны жгутикам, отличаясь только размером. Длина ресничек не более 0,01 миллиметра.

Некоторые прокариоты также имеют жгутики, однако, очень тонкие, около 20 нанометров в диаметре. Они представляют собой пассивно вращающиеся полые белковые нити.

4. У всех ли эукариотических клеток есть ядро?

Ответ. У эукариотических организмов во всех клетках есть ядро, за исключением зрелых эритроцитов млекопитающих и клеток ситовидных трубок растений.

5. Каково строение клеточной мембраны?

Ответ. Клеточная мембрана представляет собой оболочку, отделяющую содержимое клетки от внешней среды или соседних клеток. Основу клеточной мембраны составляет двойной слой липидов, в который погружены белковые молекулы, некоторые из них выполняют функцию рецепторов. Снаружи мембрана покрыта слоем гликопротеинов – гликокаликсом.

Вопросы после §14

1. Какое строение имеет мембрана клетки? Какие функции она выполняет?

Ответ. Каждая клетка покрыта плазматической (цитоплазматической) мембраной, имеющей толщину 8–12 нм. Эта мембрана построена из двух слоёв липидов (билипидный слой, или бислой). Каждая молекула липида образована гидрофильной головкой и гидрофобным хвостом. В биологических мембранах молекулы липидов располагаются головками наружу, а хвостами внутрь (друг к другу). Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться и препятствуя проникновению в клетку опасных для неё веществ. В билипидный слой мембраны погружены многочисленные молекулы белков. Одни из них находятся на внешней стороне мембраны, другие – на внутренней, а третьи пронизывают всю мембрану насквозь. Мембранные белки выполняют целый ряд важнейших функций. Некоторые белки являются рецепторами, с помощью которых клетка воспринимает различные воздействия на свою поверхность. Другие белки образуют каналы, по которым осуществляется транспорт различных ионов в клетку и из неё. Третьи белки являются ферментами, обеспечивающими процессы жизнедеятельности в клетке. Как вы уже знаете, пищевые частицы не могут пройти через мембрану; они проникают в клетку путём фагоцитоза или пиноцитоза. Общее название фаго– и пиноцитоза – эндоцитоз. Существует и обратный эндоцитозу процесс – экзоцитоз, когда вещества, синтезированные в клетке (например, гормоны), упаковываются в мембранные пузырьки, которые подходят к клеточной мембране, встраиваются в неё, и содержимое пузырька выбрасывается из клетки. Таким же образом клетка может избавляться и от ненужных ей продуктов обмена.

2. Каково строение ядерной оболочки?

Ответ. Ядро отделено от цитоплазмы оболочкой, состоящей из двух мембран. Внутренняя мембрана – гладкая, а наружная переходит в каналы эндоплазматической сети (ЭПС). Общая толщина двумембранной ядерной оболочки составляет 30 нм. В ней имеется множество пор, по которым из ядра в цитоплазму выходят молекулы иРНК и тРНК, а в ядро из цитоплазмы проникают ферменты, молекулы АТФ, неорганических ионов и т. д.

3. Какова функция ядра в клетке?

Ответ. В ядре содержится вся информация о процессах жизнедеятельности, росте и раз­витии клетки. Эта информация хранится в ядре в виде молекул ДНК, входящих в состав хромосом. Поэтому ядро координирует и регулирует синтез белка, а следовательно, все процессы обмена веществ и энергии, протекающие в клетке.

Роль ядра в клетке можно продемонстрировать в следующем опыте. Клетку амёбы разделяют на две части, в одной из которых содержится ядро, а другая, естественно, оказывается без ядра. Первая часть быстро оправляется от травмы, питается, растёт, начинает делиться. Вторая же часть существует несколько дней, а затем погибает. Но если в неё ввести ядро от другой амебы, то она быстро восстанавливается в нормальный организм, который способен выполнять все жизненные функции амебы

4. Что представляет собой хроматин?

Ответ. Хроматин – это ДНК, связанная с белками. Перед делением клетки ДНК плотно скручивается, образуя хромосомы, а ядерные белки – гистоны – необходимы для правильной укладки ДНК, в результате которой объём, занимаемый ДНК, во много раз уменьшается. В растянутом виде длина хромосомы человека может достигать 5 см.

5. Сколько молекул ДНК образуют одну хромосому?

Ответ. Количество молекул ДНК в хромосоме зависит от стадии клеточного цикла.

До репликации ДНК в хромосоме одна хроматида (т. е. одна молекула ДНК) и набор хромосом описывается формулой 2n2c (т. е. сколько хромосом - 2n, столько и хроматид - 2c).

В период интерфазы происходит репликация ДНК (удвоение хроматид) , и к концу интерфазы хромосомы становятся двухроматидными и набор хромосом описывается формулой 2n4c (т. е. хромосом - 2n, а хроматид в 2 раза больше - 4c). Двухроматидные хромосомы содержат 2 молекулы ДНК.

В профазе и метафазе митоза хромосомы двухроматидные и набор хромосом описывается формулой 2n4c.

В анафазе хроматиды расходятся к полюсам и у каждого полюса образуется диплоидный набор однохроматидных хромосом 2n2c (у одного полюса) и 2n2c (у другого полюса) .

В телофазе вокруг хромосом формируется ядерная оболочка, в клетке 2 ядра, каждое из которых содержит диплоидный набор однохроматидных хромосом 2n2c (в одном ядре) и 2n2c (в другом ядре) .

6. Какую функцию выполняют ядрышки?

Ответ. Ядрышки - участки ДНК, которые отвечают за синтез молекул РНК и белков, использующихся клеткой для постро­ения рибосом

7. Какие клетки имеют не одно ядро, а несколько ядер?

Ответ. Многоядерные клетки: клетки скелетных мышц, волокна поперечно-полосатой мускулатуры, до 20% клеток печени человека, мыши, крапива двудомная, виноградная улитка, гриб-трутовик, клоп ягодный, кишечная палочка, инфузория туфелька.

8. Какие клетки не имеют ядер?

Ответ. Не имеют ядра клетки прокариотов. У эукариотов практически все клетки имеют ядра. Единственное исключение составляют эритроциты и тромбоциты млекопитающих.

Похожие публикации