Строение и функции митохондрий и пластид. Строение и функции митохондрий

Лекция № 6.

Количество часов: 2

МИТОХОНДРИИ И ПЛАСТИДЫ

1.

2. Пластиды, строение, разновидности, функции

3.

Митохондрии и пластиды – двухмембранные органоиды эукариотических клеток. Митохондрии встречаются во всех клетках животных и растений. Пластиды характерны для клеток растений, осуществляющих фотосинтетические процессы. Эти органоиды имеют сходный план строения и некоторые общие свойства. Однако по основным метаболическим процессам они существенно отличаются друг от друга.

1. Митохондрии, строение, функциональное значение

Общая характеристика митохондрий. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа. Митохондрии были открыты в 1894 г. Р. Альтманом, который дал им название «биобласты». Термин "митохондрия" был введен К. Бенда в 1897 г. Митохондрии имеются практически во всех эукариотических клетках. У анаэробных организмов (кишечные амебы и др.) митохондрии отсутствуют. Число митохондрий в клетке колеблется от 1 до 100 тыс. и зависит от типа, функциональной активности и возраста клетки. Так в растительных клетках митохондрий меньше, чем в животных; а в молодых клетках больше, чем в старых. Жизненный цикл митохондрий составляет несколько дней. В клетке митохондрии обычно скапливаются вблизи участков цитоплазмы, где возникает потребность в АТФ. Например, в сердечной мышце митохондрии находятся вблизи миофибрилл, а в спермиях образуют спиральный футляр вокруг оси жгутика.

Ультрамикроскопическое строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Размножение митохондрий. Митохондрии размножаются путем деления перетяжкой или фрагментацией крупных митохондрий на более мелкие. Образовавшиеся таким путем митохондрии могут расти и снова делиться.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО 2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Аналоги митохондрий у бактерий. У бактерий митохондрий нет. Вместо них у них имеются цепи переноса электронов, локализованные в мембране клетки.

2. Пластиды, строение, разновидности, функции. Проблема происхождения пластид

Пластиды (от. греч. plastides – создающие, образующие) – это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Пластиды связаны между собой единым происхождением в онтогенезе от пропластид меристематических клеток. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки.

Хлоропласты (от греч. « chloros » – зеленый, « plastos » - вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов. Хлоропласты представляют собой органоиды зеленого цвета длиной 5-10 мкм и шириной 2-4 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму. Количество хлоропластов в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов. Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По-видимому, это зависит от внешних воздействий (интенсивность освещения).

Ультрамикроскопическое строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды , имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. М ежду собой граны соединены другими тилакоидами (ламелы, фреты ). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях (a , b , c , d ). У высших растений и водорослей в качестве основного пигмента содержится х лорофилл а с формулой С 55 Н 72 О 5 N 4 М g . В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора. Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен.

Свойства хлоропластов:

· полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

· способность к самостоятельному движению (уходят от прямых солнечных лучей);

· способность к самостоятельному размножению.

Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. У высших растений также встречается деление зрелых хлоропластов, но крайне редко. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты (от греч. chromatos – цвет, краска и « plastos » – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

В отличие от лейкопластов и особенно хлоропластов внутренняя мембрана хлоропластов не образует тилакоидов (или образует одиночные). Хромопласты – это конечный итог развития пластид (в хромопласты превращаются хлоропласты и пластиды).

Лейкопласты (от греч. leucos – белый, plastos – вылепленный, созданный) . Это бесцветные пластиды округлой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами , масла – эйлалопластами , белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

3. Проблема происхождения митохондрий и пластид. Относительная автономия

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Согласно теории прямой филиации митохондрии и пластиды образовались путем компартизации самой клетки. Фотосинтезирующие эукариоты произошли от фотосинтезирующих прокариот. У образовавшихся автотрофных эукариотических клеток путем внутриклеточной дифференцировки образовались митохондрии. В результате утраты пластид от автотрофов произошли животные и грибы.

Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя свободноживущие аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотической генофор формируется в обособленное от цитоплазмы ядро. Таким путем возникла первая эукариотическая клетка, которая была гетеротрофной. Возникшие эукариотические клетки путем повторных симбиозов включили в себя синезеленые водоросли, что привело к появлению в них структур типа хлоропластов. Таким образом, митохондрии уже были у гетеротрофных эукариотических клеток, когда последние в результате симбиоза приобрели пластиды. В дальнейшем в результате естественного отбора митохондрии и хлоропласты утратили часть генетического материала и превратились в структуры с ограниченной автономией.

Доказательства эндосимбиотической теории:

1. Сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов, с другой стороны.

2. Митохондрии и пластиды имеют собственную специфическую систему синтеза белков (ДНК, РНК, рибосомы). Специфичность этой системы заключается в автономности и резком отличии от таковой в клетке.

3. ДНК митохондрий и пластид представляет собой небольшую циклическую или линейную молекулу, которая отличается от ДНК ядра и по своим характеристикам приближается к ДНК прокариотических клеток. Синтез ДНК митохондрий и пластид не зависит от синтеза ядерной ДНК.

4. В митохондриях и хлоропластах имеются и-РНК, т-РНК, р-РНК. Рибосомы и р-РНК этих органоидов резко отличаются от таковых в цитоплазме. В частности рибосомы митохондрий и хлоропластов, в отличие от цитоплазматических рибосом, чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

5. Увеличение числа митохондрий происходит путем роста и деления исходных митохондрий. Увеличение числа хлоропластов происходит через изменения пропластид, которые, в свою очередь, размножаются путем деления.

Эта теория хорошо объясняет сохранение у митохондрий и пластид остатков систем репликации и позволяет построить последовательную филогению от прокариот к эукариотам.

Относительная автономия хлоропластов и пластид. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, эти структуры образуются только из исходных митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Относительная автономия митохондрий и пластид рассматривается как одно из доказательств их симбиотического происхождения.

В клетках живых организмов обнаруживаются митохондрии и хлоропласты. Эти органоиды имеют немало одинаковых черт. Но вместе с тем существует и разница между ними. Произведем сравнение и выясним, чем отличаются митохондрии от хлоропластов.

Общие сведения

Объектом внимания служат органоиды, верхний слой которых представлен двойной мембраной. Немаловажным объединяющим признаком митохондрий и хлоропластов также является их относительно автономное существование в клетке. Оно выражается, во-первых, в том, что и те и другие имеют «персональные» рибосомы и РНК для синтеза белка.

Во-вторых, митохондриям и хлоропластам свойственно не образование из каких-либо клеточных структур, а размножение делением, происходящее в большинстве случаев по самостоятельному сценарию. Вся наследственная информация заключается опять-таки в собственных молекулах ДНК. Однако полностью независимыми обсуждаемые органоиды не являются, и в целом ими управляет главный клеточный аппарат.

Сравнение

Образования первого вида есть в клетках любого происхождения (растительного и животного), имеющих в своей структуре ядро. Так устроены митохондрии :

Строение митохондрии

Хлоропласты – необходимые элементы только растительных клеток. Это пластиды с зеленой окраской, обусловленной содержанием соответствующего пигмента.


Строение хлоропласта

Отличие митохондрий от хлоропластов заключается в их назначении. Первым из них отведена роль главных производителей АТФ – незаменимого источника энергии. Процесс синтеза связан с клеточным дыханием, за которое отвечают ферменты митохондрий. Хлоропласты тоже способны к производству энергетического материала. Но в первую очередь они нацелены на фотосинтез, сущность которого сводится к выработке органических веществ при действии света.

Как уже было упомянуто, рассматриваемые компоненты клетки обладают двухслойной мембраной. Но строение этой защитной оболочки у органоидов отличается. В чем разница между митохондриями и хлоропластами в данном отношении? Ее можно увидеть в особенностях организации внутреннего мембранного слоя (наружный в том и другом случае является ровным).

У митохондрий эта часть структуры образует направленные вглубь складки, иначе кристы. Собранный так внутренний слой имеет внушительную площадь поверхности. Это повышает эффективность биохимических процессов, ведь здесь размещено множество различных ферментов.

В свою очередь, у хлоропластов внутренними мембранными образованиями являются тилакоиды. Это дискообразные элементы, которые содержат вещества, ответственные за фотосинтез. Тилакоиды группируются в стопки. Каждый такой блок из нескольких прижатых друг к другу единиц называется граной.

1. Распределите органоиды на три группы: одномембранные, двумембранные и немембранные.

Рибосомы, лизосомы, пластиды, комплекс Гольджи, вакуоли, клеточный центр, митохондрии, эндоплазматическая сеть.

Одномембранные: лизосомы, комплекс Гольджи, вакуоли, эндоплазматическая сеть.

Двумембранные: пластиды, митохондрии.

Немембранные: рибосомы, клеточный центр.

2. Как устроены митохондрии? Какую функцию они выполняют?

Митохондрии могут иметь вид округлых телец, палочек, нитей. Это двумембранные органоиды. Наружная мембрана гладкая, она отделяет содержимое митохондрии от гиалоплазмы и отличается высокой проницаемостью для различных веществ. Внутренняя мембрана менее проницаема, она образует кристы – многочисленные складки, направленные внутрь митохондрий. За счёт крист площадь поверхности внутренней мембраны существенно увеличивается. Внутренняя мембрана митохондрий содержит ферменты, участвующие в процессе клеточного дыхания и обеспечивающие синтез АТФ. Между наружной и внутренней мембранами имеется межмембранное пространство.

Внутреннее пространство митохондрий заполнено гелеобразным матриксом. В нём содержатся различные белки, в том числе ферменты, аминокислоты, кольцевые молекулы ДНК, все типы РНК и другие вещества, а также рибосомы.

Функция митохондрий – синтез АТФ за счёт энергии, высвобождающейся в процессе клеточного дыхания при окислении органических соединений. Начальные этапы окисления веществ в митохондриях происходят в матриксе, а последующие – на внутренней мембране. Таким образом, митохондрии являются «энергетическими станциями» клетки.

3. Какие типы пластид вам известны? Чем они различаются? Почему осенью листья меняют окраску с зелёной на жёлтую, красную, оранжевую?

Основные типы пластид – хлоропласты, лейкопласты и хромопласты.

Хлоропласты имеют зелёную окраску т.к. содержат основные фотосинтетические пигменты – хлорофиллы. Также в хлоропластах содержатся оранжевые, жёлтые или красные каротиноиды. Обычно хлоропласты имеют форму двояковыпуклой линзы. Хорошо развита внутренняя мембранная система, тилакоиды собраны в стопки – граны. Главная функция хлоропластов – осуществление фотосинтеза.

Лейкопласты – бесцветные пластиды. Они не имеют гран и не содержат пигментов. В лейкопластах откладываются запасные питательные вещества – крахмал, белки, жиры.

Хромопласты имеют оранжевый, жёлтый или красный цвет, что связано с содержанием в них каротиноидов. Форма хромопластов разнообразная – дисковидная, серповидная, ромбическая, пирамидальная и т.п. В этих пластидах отсутствует внутренняя мембранная система. Хромопласты обусловливают яркую окраску зрелых плодов (например, томатов, рябины, шиповника) и некоторых других органов растений (например, корнеплодов моркови).

При старении листьев растений в хлоропластах происходит разрушение хлорофилла, внутренней мембранной системы, и они превращаются в хромопласты. Поэтому осенью листья меняют окраску с зелёной на жёлтую, красную, оранжевую.

4. Охарактеризуйте строение и функции хлоропластов.

Хлоропласты – зелёные пластиды, их цвет обусловлен наличием основных фотосинтетических пигментов – хлорофиллов. Хлоропласты содержат также вспомогательные пигменты – оранжевые, жёлтые или красные каротиноиды.

Чаще всего хлоропласты имеют форму двояковыпуклой линзы. Это двумембранные органоиды, между наружной и внутренней мембранами есть межмембранное пространство. Наружная мембрана ровная, а внутренняя образует впячивания, которые превращаются в замкнутые дисковидные образования – тилакоиды. Стопки лежащих друг над другом тилакоидов называются гранами.

В мембранах тилакоидов расположены фотосинтетические пигменты, а также ферменты, которые участвуют в преобразовании энергии света. Внутренняя среда хлоропласта – строма. В ней содержатся кольцевые молекулы ДНК, все типы РНК, рибосомы, запасные вещества (липиды, зёрна крахмала) и различные белки, в том числе ферменты, участвующие в фиксации углекислого газа.

Основная функция хлоропластов – осуществление фотосинтеза. Кроме того, в них происходит синтез АТФ, некоторых липидов и белков.

5. Клетки летательных мышц насекомых содержат по нескольку тысяч митохондрий. С чем это связано?

Главная функция митохондрий – синтез АТФ, т.е. митохондрии являются "энергетическими станциями" клетки. Для работы летательных мышц необходимо большое количество энергии, поэтому каждая клетка содержит несколько тысяч митохондрий.

6. Сравните хлоропласты и митохондрии. Выявите черты их сходства и различия.

Сходство:

● Двумембранные органоиды. Наружная мембрана ровная, а внутренняя образует многочисленные впячивания, служащие для увеличения площади поверхности. Между мембранами имеется межмембранное пространство.

● Имеют собственные кольцевые молекулы ДНК, все типы РНК и рибосомы.

● Способны к росту и размножению путём деления.

● В них осуществляется синтез АТФ.

Различия:

● Впячивания внутренней мембраны митохондрий (кристы) имеют вид складок или гребней, а впячивания внутренней мембраны хлоропластов образуют замкнутые дисковидные структуры (тилакоиды), собранные в стопки (граны).

● Митохондрии содержат ферменты, участвующие в процессе клеточного дыхания. Внутренняя мембрана хлоропластов содержит фотосинтетические пигменты и ферменты, участвующие в преобразовании энергии света.

● Основная функция митохондрий – синтез АТФ. Основная функция хлоропластов – осуществление фотосинтеза.

И (или) другие существенные признаки.

7. Докажите на конкретных примерах справедливость утверждения: «Клетка представляет собой целостную систему, все компоненты которой находятся в тесной взаимосвязи друг с другом».

Структурные компоненты клетки (ядро, поверхностный аппарат, гиалоплазма, цитоскелет, органоиды) относительно обособлены друг от друга, и каждый из них выполняет специфические функции. Тем не менее, все клеточные компоненты тесно взаимосвязаны, и клетка представляет собой единое целое.

Наследственная информация клетки хранится в ядре, а реализуется на рибосомах в виде конкретных белков. Структурные компоненты рибосом (субъединицы) формируются в ядре. Некоторые рибосомы находятся в свободном состоянии в гиалоплазме, другие же прикрепляются к мембранам ЭПС и ядра. Вещества, синтезированные на мембранах ЭПС, поступают для хранения и модификации в комплекс Гольджи. От цистерн комплекса Гольджи отшнуровываются экзоцитозные пузырьки и лизосомы. Из пузыревидных расширений ЭПС и пузырьков комплекса Гольджи формируются вакуоли. Цитоплазматическая мембрана участвует в отборе веществ, необходимых клетке. Некоторые из них могут быть использованы только после предварительного расщепления с помощью лизосом. Часть полученных веществ служит источником энергии для клетки, подвергаясь расщеплению в гиалоплазме, а затем – в митохондриях. Другие вещества используются в качестве материала для синтеза более сложных соединений. Эти процессы протекают в различных частях клетки – в гиалоплазме, ЭПС, комплексе Гольджи, на рибосомах, а энергию, необходимую для всех процессов биосинтеза, поставляют митохондрии (в виде АТФ). Внутриклеточный транспорт частиц и органоидов обеспечивают микротрубочки, сборку которых инициирует клеточный центр. Гиалоплазма объединяет все внутриклеточные структуры, обеспечивая их различные взаимодействия.

И (или) другие примеры, иллюстрирующие взаимосвязь структурных компонентов клетки.

8. В чём заключается относительная автономность митохондрий и хлоропластов в клетке? Чем она обусловлена?

Относительная автономность митохондрий и хлоропластов обусловлена наличием собственного генетического аппарата (молекул ДНК) и системы биосинтеза белка (рибосом и всех типов РНК). Поэтому митохондрии и хлоропласты самостоятельно синтезируют ряд белков (в том числе ферментов), необходимых для их функционирования. В отличие от других органоидов, митохондрии и хлоропласты способны к размножению путём деления. Однако эти органоиды не являются полностью автономными, т.к. в целом их состояние и функционирование контролируется ядром клетки.

9. В чём проявляется взаимосвязь и взаимозависимость митохондрий и рибосом?

С одной стороны, на рибосомах происходит синтез белков из аминокислот, а энергию, необходимую для осуществления этого процесса, поставляют митохондрии в виде АТФ. Кроме того, митохондрии имеют собственные рибосомы, их рРНК кодируется митохондриальной ДНК и сборка субъединиц осуществляется непосредственно в матриксе митохондрий. С другой стороны, все белки, входящие в состав митохондрий и необходимые для функционирования этих органоидов, синтезируются на рибосомах.

Жизнь как биологический процесс едина во всей биосфере, и она существует на основании фундаментальных принципов. А потому разные формы жизни, а также различные структурные компоненты представителей биологических видов, имеют значительные сходства. Отчасти они обеспечиваются общностью происхождения или выполнением похожих функций. В данном контексте следует детально разобрать, в чем проявляется сходство митохондрий и хлоропластов, хотя с первого взгляда эти клеточные органеллы имеют мало общего.

Митохондрии

Митохондриями называются двухмембранные клеточные структуры, ответственные за энергообеспечение ядра и органелл. Их находят в растений, грибов и животных. Они отвечают за то есть конечное усваивание кислорода, из чего в результате биохимического превращения извлекается энергия для синтеза макроэргов. Достигается это путем передачи заряда через мембрану митохондрий и ферментативное окисление глюкозы.

Хлоропласты

Хлоропластами называются клеточные органеллы растений, некоторых фотосинтезирующих бактерий и протистов. Это клеточные двухмембранные структуры, в которых синтезируется глюкоза благодаря использованию энергии солнечного света. Этот процесс достигается передачей энергии фотона и протеканием ферментативных реакций, связанных с передачей заряда через мембрану. Результатом фотосинтеза является утилизация углекислого газа, синтез глюкозы и высвобождение молекулярного кислорода.

Сходство митохондрий и хлоропластов

Хлоропласты и митохондрии являются клеточными органеллами с двумя мембранами. Первым слоем они ограждаются от цитоплазмы клетки, а второй формирует многочисленные складки, на которых протекают процессы передачи зарядов. Принцип их работы схож, однако направлен в разные стороны. У митохондрий происходит ферментативное с использованием кислорода, а в качестве продуктов реакции выступает углекислый газ. В результате превращения также синтезируется энергия.

В хлоропластах наблюдается обратный процесс — синтез глюкозы и высвобождение кислорода из углекислого газа с расходом энергии света. Это принципиальное различие между данными органеллами, но отличается лишь направление процесса. Его электрохимия практически идентична, хотя для этого используются разные посредники.

Также можно детально рассмотреть, в чем проявляется сходство митохондрий и хлоропластов. Оно заключается в автономности органелл, так как они имеют даже свою молекулу ДНК, хранящую коды структурных белков и ферментов. В обеих органеллах имеется свой автономный аппарат биосинтеза белка, потому хлоропласты и митохондрии способны самостоятельно обеспечивать себя необходимыми ферментами и восстанавливать свою структуру.

Резюме

Главное сходство митохондрий и хлоропластов — их автономия внутри клетки. Отделившись от цитоплазмы двойной мембраной и имея свой собственный комплекс ферментов биосинтеза, они ни в чем не зависят от клетки. Также они имеют свой собственный набор генов, а потому могут считаться отдельным живым организмом. Существует филогенетическая теория, что на ранних этапах развития одноклеточной жизни митохондрии и хлоропласты были простейшими прокариотами.

Она гласит, что в определенный период произошло их поглощение другой клеткой. Из-за наличия отдельной мембраны они не были расщеплены, став донором энергии для «хозяина». В ходе эволюции за счет обмена генами у доядерных организмов произошло встраивание ДНК хлоропластов и митохондрий в геном клетки-хозяина. С этого момента клетка сама была способна осуществить сборку этих органелл, если они не были переданы ей в ходе митоза.

Структура всех митохондрий похожа, и функция их неизменно одна и та же – это энергетические станции клетки . Именно в митохондриях происходит такой процесс, как клеточное дыхание. Именно во внутреннем пространстве митохондрий имеет место цикл Кребса, в ходе которого расходуется пируват, выделяется углекислый газ, производится часть АТФ и восстанавливается кофермент НАД+. И именно во внутренней мембране митохондрий располагается цепь переноса электронов, происходит окисление НАД-H и синтезируется остальная АТФ.

Структура и функции пластид более разнообразны. Различают так называемые:

  • пропластиды – мелкие нефункциональные ювенильные пластиды, из которых развиваются другие типы пластид;
  • лейкопласты – бесцветные пластиды, участвующие в синтезе жиров;
  • амилопласты – пластиды, запасающие крахмал; в конечном счете они превращаются вкрахмальные зерна , в каких, например, запасен крахмал у картофеля;
  • хромопласты – пластиды, наполненные пигментами каротиноидами; их можно найти, к примеру, в плодах рябины.
  • хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез, как световая, так и темновая его фазы.

Основной структурной особенностью хлоропластов являются граны – стопки тилакоидов. Таким образом, хлоропласты имеют наиболее развитую внутреннюю мембранную структуру , так как в мембране хлоропластов располагаются и фотосистемы, и фермент рибулозофосфаткарбоксилаза.

И митохондрии, и большинство пластид являются овальными или цилиндрическими структурами.

Однако многие неродственные друг другу водоросли имеют единственный хлоропласт на клетку, он может иметь самую необычную форму. Встречаются и митохондрии с преобразованной структурой –одна спирально закрученная митохондрия имеется в шейке сперматозоида, т. е. она обвивает основание его жгутика.

Самой потрясающей общей особенностью митохондрий и пластид является то, что они имеют свою, независимую от ядра, генетическую систему . И эта генетическая система очень похожа на генетическую систему прокариот. В ее состав входит прежде всего собственная, соответственно митохондриальная или пластидная ДНК. У митохондрий, как и у бактерий, ДНК имеет кольцевую структуру (лишь у некоторых простейших – линейную). ДНК пластид организована в сложные букетоподобные структуры , состоящие из частично спаренных друг с другом кольцевых и линейных фрагментов, но исходной структурной единицей ее также является элементарная кольцевая ДНК.

ДНК пластид и митохондрий не имеет характерной хроматиновой упаковки, здесь нет нуклеосом и гистонов, вообще здесь гораздо меньше белков. Иначе говоря, все устроено как у прокариот. Промоторы и терминаторы также бактериального типа. Далее, в пластидах и митохондриях имеются рибосомы, причем рибосомы именно прокариотического типа. Как и у прокариот, при трансляции синтез полипептидной цепи начинается с аминокислоты формилметионина. У пластид к прокариотическому типу принадлежат также и свои тРНК, РНК-полимеразы, регуляторные последовательности.

Впрочем, некоторые гены как пластид, так и митохондрий содержат интроны, подобно ядерным генам эукариот и в отличие от генов бактерий. Поэтому считываемая с них во время транскрипции РНК должна быть подвергнута сплайсингу. Возможно, эти гены «заразились» интронами от ядерного генома.

Все эти факты относительной автономии пластид и митохондрий и их глубинного сходства с прокариотами, которое не может быть случайным, свидетельствуют об одном – пластиды и митохондрии на самом деле неродственны эукариотической клетке . Они произошли от каких-то прокариот, которые когда-то поселились внутри эукариотической клетки. Считается, что это были эндосимбионты – организмы, которые живут внутри других организмов и находятся с ними в отношениях симбиоза – взаимной выгоды. Таковы, например, зеленые водоросли, живущие внутри кораллов и некоторых плоских червей.

Митохондрии произошли от каких-то аэробных (способных к дыханию кислородом) бактерий, к каковым относится большинство современных бактерий. Аэробные бактерии, в свою очередь, произошли от фотосинтезирующих бактерий, утративших фотосинтез. Об этом говорит поразительное сходство цепи переноса электронов в системе клеточного дыхания и при фотосинтезе. Предполагают, что митохондрии произошли именно от каких-то пурпурных бактерий, утративших способность к фотосинтезу. Это произошло около 1-1,5 млрд лет назад, когда в атмосфере впервые появился в достаточных концентрациях свободный кислород, наработанный цианобактериями (сине-зелеными водорослями), господствовавшими в то время на мелководьях.

Предками пластид наверняка были какие-то цианобактерии (сине-зеленые водоросли), об этом говорит сходный набор пигментов и те же самые две сопряженные фотосистемы. Причем хлоропласты красных водорослей, динофлагеллят + бурых + золотистых водорослей и зеленых водорослей + зеленых растений происходили от разных прокариот и были «одомашнены» независимо. Хлоропласты красных водорослей по составу пигментов прямо соответствуют цианобактериям. Открыты и свободноживущие и симбиотические бактерии, по составу пигментов соответствующие двум другим типам хлоропластов (бактерия Prochloron с хлорофиллами a и b , как у зеленых водорослей и растений, является симбионтом оболочников).

Приобретя митохондрии, эукариоты обзавелись мощными энергетическими станциями, которые намного повысили энергообеспеченность клетки. А приобретя пластиды, часть эукариотических клеток получила возможность к автотрофии и стала тем, что мы называем растениями.

Пластиды и митохондрии давно утратили свою автономность. Большая часть белков, функционирующих в этих органеллах, кодируется генами , находящимися в ядре. У пластид даже часть рибосомальных РНК и белков, часть субъединиц РНК-полимеразы и целиком белки репликации – все прокариотического типа – кодируются в ядре. Судя по всему, в ходе эволюции шел непрерывный процесс экспроприации генов ядром из органелл, перенесения их из органелльного генома в хромосомы.

Похожие публикации