Смотреть страницы где упоминается термин поле корреляции.

Корреляционный анализ

1.3 Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (x i , y i) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i и y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения x i и y i . Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x i и y i графически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: м x , м y - средние значения (математические ожидания); у x ,у y - стандартные отклонения случайных величин Х и Y и р - коэффициент корреляции, который является мерой связи между случайными величинами Х и Y.
Если р = 0, то значения, x i , y i , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рисунок 5, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y.

Рисунок 5 - Графическая интерпретация взаимосвязи между показателями

Если р = 1 или р = -1, то между случайными величинами Х и Y существует линейная функциональная зависимость (Y = c + dX). В этом случае говорят о полной корреляции. При р = 1 значения x i , y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются), при р = -1 прямая имеет отрицательный наклон (рисунок 5, б). В промежуточных случаях (-1 < p < 1) точки, соответствующие значениям xi , y i , попадают в область, ограниченную некоторым эллипсом (рисунок 5, в, г), причем при p > 0 имеет место положительная корреляция (с увеличением x i значения y i имеют тенденцию к возрастанию), при p < 0 корреляция отрицательная. Чем ближе р к, тем уже эллипс и тем теснее экспериментальные значения группируются около прямой линии. Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях мы рассматривали бы так называемую, нелинейную (или криволинейную) корреляцию (риунок 5, д).

Таким образом, визуальный анализ корреляционного поля помогает выявить не только наличия статистической зависимости (линейную или нелинейную) между исследуемыми признаками, но и ее тесноту и форму. Это имеет существенное значение для следующего шага в анализе ѕ выбора и вычисления соответствующего коэффициента корреляции.

Корреляционную зависимость между признаками можно описывать разными способами. В частности, любая форма связи может быть выражена уравнением общего вида Y = f(X), где признак Y - зависимая переменная, или функция от независимой переменной X, называемой аргументом. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Динамическое программирование

В сельском хозяйстве непрерывно протекают разнообразные экономические процессы, в результате которых складываются определенные производственные результаты, формируются экономические явления...

Целью курсовой работы является: развитие умения разрабатывать имитационные модели организационных и технических объектов, а также получения практических навыков работы в среде GPSS World...

Имитационное моделирование работы билетной кассы железнодорожного вокзала

Исследование функционирования работы билетной кассы на железнодорожном вокзале и анализ влияния времени обслуживания в каждой кассе на очереди и количество обслуженных гражданских и военных пассажиров...

Исследование свойств случайных величин, планирование эксперимента и анализ данных

Корреляционное поле используется для выявления и демонстрации зависимостей между двумя связанными наборами данных и для подтверждения предполагаемых зависимостей между ними...

Корреляционно-регрессионный анализ однофакторной стохастической связи

Метод последовательных сравнений

Программно реализовать интерактивный метод последовательных...

Моделирование систем массового обслуживания

Развитие современного общества характеризуется повышением технического уровня, усложнением организационной структуры производства, углублением общественного разделения труда...

Обработка результатов полного факторного плана для получения математической модели результатов полного факторного плана

Основными целями и задачами планирования эксперимента являются: 1) Планирование эксперимента с целью математического описания объекта. Целью данного эксперимента является получение математической модели методом регрессионного анализа...

Определение рационального маршрута следования коммивояжера

Целью данной работы является определение рационального маршрута следования коммивояжера и выбора экономически целесообразного способа поездки. Задача - выбрать такой вид транспорта для объезда коммивояжером населенных пунктов...

Оценка инвестиционных проектов

Необходимо разработать имитационную модель финансово-экономической деятельности фирмы по реализации этого проекта, выбрать схему финансирования и оценить показатели экономической эффективности проекта...

Построение структурной схемы устройства станка 3Б722

Выбор объекта морфологического исследования. Приобретение практических навыков структурного анализа. 2. Общие сведения Шлифование - это процесс обработки заготовок абразивными материалами...

Разработка модели предприятия тепличного хозяйства, используя методологии проектирования IDEF0, DFD и IDEF3

Целями данной курсовой работы были: применение методов предпроектного обследования предприятия; анализ полученных материалов для последующего моделирования; разработка модели процесса в стандарте IDEF0; описание документооборота и...

Трендовые и корреляционные модели

Функциональное моделирование

Создаваемая IDEF0-модель имеет конкретное назначение, называемое целью модели. Цель моделирования можно понять из следующего формального определения модели : M есть модель системы S...

Эконометрические модели рентабельности собственного капитала (на примере СПК "Слава")

Так как в данной курсовой работе рассматривается рентабельность собственного капитала, то возьмем ее за результативный показатель. Одним из факторов, оказывающих влияние, является рентабельность продаж, %...

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

Наглядным изображением корреляционной таблицы служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладываются значения X, по оси ординат – Y, а точками показываются сочетания X и Y. По расположению точек можно судить о наличии связи.

Использование графического метода.

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.

Совокупность точек результативного и факторного признаков называется полем корреляции.

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Здесь ε - случайная ошибка (отклонение, возмущение).

Причины существования случайной ошибки:

1. Невключение в регрессионную модель значимых объясняющих переменных;

2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.

3. Неправильное описание структуры модели;

4. Неправильная функциональная спецификация;

21. Корреляционно-регрессионный анализ.

Корреляционно-регрессионный анализ как общее понятие включает в себя измерение тесноты и направления связи и установление аналити­ческого выражения (формы) связи (регрессионный анализ).

Целью регрессионного анализа является оценка функциональной зависимости условного среднего значения результативного признака (У) от факторных (х1, х2, …, хk).

Уравнение регрессии, или статистическая модель связи социально-эко­номических явлений, выражается функцией:

Yx = f(х1, х2, …, хn),

где “n” – число факторов, включенных в модель;

Хi – факторы, влияющие на результат У.

Этапы корреляционно-регрессионного анализа:

Предварительный (априорный) анализ. Он дает неплохие результаты если проводится достаточно квалифицированным исследователем.

Сбор информации и ее первичная обработка.

Построение модели (уравнения регрессии). Как правило эту процедуру выполняют на ПК используя стандартные программы.

Оценка тесноты связей признаков, оценка уравнения регрессии и анализ модели.

Прогнозирование развития анализируемой системы по уравнению регрессии.

На первом этапе формулируется задача исследования, определяется методика измерения показателей или сбора информации, определяется число факторов, исключаются дублирующие факторы или связанные в жестко-детерминированную систему.

На втором этапе анализируется объем единиц: совокупность должна быть достаточно большой по числу единиц и наблюдений (N>>50), число факторов “n” должно соответствовать количеству наблюдений “N”. Данные должны быть количественно и качественно однородны.

На третьем этапе определяется форма связи и тип аналитической функции (парабола, гипербола, прямая) и находятся ее параметры.

На четвертом этапе оценивается достоверность всех характеристик корреляционной связи и уравнения регрессии используя критерий достоверности Фишера или Стьюдента, производится экономико-технологический анализ параметров.

На пятом этапе осуществляется прогноз возможных значений результата по лучшим значениям факторных признаков, включенных в модель. Здесь выбираются наилучшие и наихудшие значения факторов и результата.

22. Виды уравнений регрессии.

Для количественного описания взаимосвязей между экономическими переменными в статистике используют методы регрессии и корреляции.

Регрессия - величина, выражающая зависимость среднего значения случайной величины у от значений случайной величины х.

Уравнение регрессии выражает среднюю величину одного признака как функцию другого.

Функция регрессии - это модель вида у = л», где у - зависимая переменная (результативный признак); х - независимая, или объясняющая, переменная (признак-фактор).

Линия регрессии - график функции у = f (x).

2 типа взаимосвязей между х и у:

1) может быть неизвестно, какая из двух переменных является независимой, а какая - зависимой, переменные равноправны, это взаимосвязь корреляционного типа;

2) если х и у неравноправны и одна из них рассматривается как объясняющая (независимая) переменная, а другая - как зависимая, то это взаимосвязь регрессионного типа.

Виды регрессий:

1) гиперболическая - регрессия равносторонней гиперболы: у = а + b / х + Е;

2) линейная - регрессия, применяемая в статистике в виде четкой экономической интерпретации ее параметров: у = а+b*х+Е;

3) логарифмически линейная - регрессия вида: In у = In а + b * In x + In E

4) множественная - регрессия между переменными у и х1 , х2 ...xm, т. е. модель вида: у = f(х1 , х2 ...xm)+E, где у - зависимая переменная (результативный признак), х1 , х2 ...xm - независимые, объясняющие переменные (признаки-факторы), Е- возмущение или стохастическая переменная, включающая влияние неучтенных факторов в модели;

5) нелинейная - регрессия, нелинейная относительно включенных в анализ объясняющих переменных, но линейная по оцениваемым параметрам; или регрессия, нелинейная по оцениваемым параметрам.

6) обратная - регрессия, приводимая к линейному виду, реализованная в стандартных пакетах прикладных программ вида: у = 1/a + b*х+Е;

    парная - регрессия между двумя переменными у и x, т. е, модель вида: у = f (x) + Е, где у -зависимая переменная (результативный признак), x – независимая, объясняющая переменная (признак - фактор), Е - возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.

    Ряды динамики и их виды

Динамический ряд всегда состоит из 2 элементов: 1) момент времени или временной период, по отношению к которому приводятся статистические данные, 2)статистического показателя, который называется уровнем динамического ряда.

В зависимости от содержания временного показателя, ряды динамики бывают моментные или интервальные

В зависимости от вида статистического показателя, динамические ряды подразделяются на ряды абсолютных, относительных и средних величин

Абсолютные показывают точные значения

Относительные показывают изменение удельных весов показателя в общей совокупности

Средние величины содержат об изменении во времени показателя, являющимся средним уровнем явления

    Показатели ряда динамики. Средний уровень ряда динамики.

Показатели: 1)средний уровень дин.ряда, 2)абс.приросты, цепные и базисные, ср.абс.прирост, 3)тымпы роста и прироста, цепные и базисные, ср.темп роста и прироста, 4)fmcjk.nystзначения 1% прироста

Средние показатели динамики

Обобщённые характеристики ряда динамики, с их помощью сравнивают интенсивность развития явления по отношению к разным объектам, например по странам, отраслям, предприятиям

Средний уровень в мом.времени уи. Методика расчета среднего уровня зависит от вида ряда(моментальный/интервальный)(с равными/разными интервалами). Если дан интервальныя ряд динамики абсолютных или средних вельчин с равными промежутками времени, то для расчета среднего уровня применяются формула для расчета средней простой. Если промежутки времени интервального ряда неравные, то средний уровень находят по средней арифметической взвешенной. Уср=сммУи*Ти/сммТи

25. Абсолютный прирост (дельта и) – это разность между двумя уровнями динамического ряда, которая пока­зывает, насколько данный уровень ряда превышает уровень, принятый за базу сравнения. Дельта и=Уи-У0

Дельта и=Уи-Уи-1

Абсолютное ускорение - разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период одинаковой дли­тельности: Дельта и с чертой=дельта и- дельта и-1. Абсолютное ускорение показывает, насколько увеличилась (уменьшилась) скорость изменения показателя. Показатель ускорения применяется для цепных абсолютных приростов. Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда.

    Показатели относительного изменения уровней ряда динамики.

Коэффициент роста (темп роста) - это отношение двух сравниваемых уровней, которое показывает, во сколько раз данный уровень превышает уровень базисного периода. Отражает интенсивность изменения уровней ряда динамики и показывает, во сколько раз увеличился уровень по сравнению с базисным, а в случае уменьшения - какую часть базисного уровня составляет сравниваемый уровень.

Формула расчета коэффициента роста: при сравнении с постоянной базой : K i .=y i /y 0 , при сравнении с переменной базой : K i .=y i /y i -1 .

Темп роста - это коэффициент роста, выраженный в процентах:

T р = К 100 %.

Темпы роста для любых рядов динамики являются интервальными показателями, т.е. характеризуют тот или иной промежуток (интервал) времени.

Темп прироста - относительная величина прироста, т. е. отношение абсолютного прироста к предыдущему или базисному уровню. Характеризует, на сколько процентов уровень данного периода больше (или меньше) базисного уровня.

Темп прироста - отношение абсолютного прироста к уровню, принятому за базу сравнения:

Тпр=Уи-У0/У0*100%

Темп прироста - разность между темпом роста (в процентах) и 100,

Для экспериментального изучения зависимостей между случайными величинами х и у производят некоторое количество независимых опытов. Результат i -го опыта дает пару значений (х г, у г), i = 1, 2,..., п.

Величины, характеризующие различные свойства объектов, могут быть независимыми или взаимосвязанными. Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связь.

При функциональной зависимости двух величин значению одной -x h обязательно соответствует одно или несколько точно определенных значений другой величины -у { . Достаточно часто функциональная связь проявляется в физике, химии. В реальных ситуациях существует бесконечно большое количество свойств самого объекта и внешней среды, влияющих друг на друга, поэтому такого рода связи не существуют, иначе говоря, функциональные связи являются математическими абстракциями.

Воздействие общих факторов, наличие объективных закономерностей в поведении объектов приводят лишь к проявлению статистической зависимости. Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения других (другой), и эти другие величины принимают некоторые значения с определенными вероятностями. Функциональную зависимость в таком случае следует считать частным случаем статистической: значению одного фактора соответствуют значения других факторов с вероятностью, равной единице. Более важным частным случаем статистической зависимости является корреляционная зависимость, характеризующая взаимосвязь значений одних случайных величин со средним значением других, хотя в каждом отдельном случае любая взаимосвязанная величина может принимать различные значения.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение - сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Термин «корреляция» впервые применил французский палеонтолог Ж. Кювье, который вывел «закон корреляции частей и органов животных» (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел английский биолог и статистик Ф. Гальтон (не просто связь - relation, а «как бы связь» - corelation).

Корреляционные зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается - увеличение массы внесенных удобрений ведет к росту урожайности.

Простейшим приемом выявления связи между изучаемыми признаками является построение корреляционной таблицы; ее наглядным изображением служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладываются значения jq, по оси ординат у х. По расположению точек, их концентрации в определенном направлении можно качественно судить о наличии связи.

Рис. 7.3.

Положительная корреляция между случайными величинами, близкая к параболической функциональной, представлена на рис. 6.1, а. На рис. 6.1, б приведен пример слабой отрицательной корреляции, а на рис. 6.1, в - пример практически некоррелированных случайных величин. Корреляция высокая, если на графике зависимость «можно представить» прямой линией (с положительным или отрицательным углом наклона).

Различают два вида зависимости между экономическими явле­ниями : функциональную и статистическую. Зависимость между дву­мя величинами X и Y , отображающими соответственно два явле­ния, называется функциональной , если каждому значению величины x соответствует единственное значение величины Y и наоборот. Примером функциональной связи в экономике может служить за­висимость производительности труда от объема произведенной продукции и затрат рабочего времени. При этом следует отметить, что если Х – детерминированная, не случайная величина, то и фун­кционально зависящая от нее величина Y тоже является детерминированной. Если же Х – величина случайная, то и Y также случай­ная величина.

Однако гораздо чаще в экономике имеет место не функциональ­ная, а статистическая зависимость , когда каждому фиксирован­ному значению независимой переменой X соответствует не одно, а множество значений зависимой переменной Y, причем заранее нельзя сказать, какое именно значение примет Y . Это связано с тем, что на Y кроме переменной X влияют и многочисленные неконт­ролируемые случайные факторы. В этой ситуации Y является слу­чайной величиной, а переменная X может быть как детерминиро­ванной, так и случайной величиной.

Частным случаем статистичес­кой зависимости является корреляционная зависимость , при кото­рой функциональной зависимостью связаны фактор X и среднее значение (математическое ожидание) результативного показателя Y . Статистическая зависимость может быть выявлена лишь по результатам достаточно большого числа наблюдений. Графически статистическая зависимость двух признаков может быть представлена с помощью поля корреляции, при построении которого на оси абсцисс откладывается значение факторного признака X , а по оси ординат – результирующего Y .

Корреляционная связь – частный случай статистической связи, при котором разным значениям переменной соответствуют разные средние значения другой переменной. Корреляционная связь предполагает, что изучаемые переменные имеют количественное выражение.

Если изучается связь между двумя признаками, налицо парная корреляция; если изучается связь между многими признаками – множественная корреляция.

В качестве примера на рис.

1 представлены данные, иллюстри­рующие прямую зависимость между х и у (рис. 1, а) и обратную зависимость (рис. 1, б). В случае «а» это прямая зависимость между, к примеру, среднедушевым доходом (х ) и сбережением (у ) в семье. В случае «б» речь идет об обратной зависимости. Такова, наш пример, зависимость между производительностью труда (х ) и себе­стоимостью единицы продукции (у ). На рис. 1 каждая точка характер изучает объект наблюдения со своими значениями х и у .

Рис. 1. Поле корреляции

На рис. 1 также представлены прямые линии, линейные уравнения регрессии типа , характеризующие функциональную зависимость между независимой переменной х и средним зна­чением результативного показателя у . Таким образом, по уравнению регрессии, зная х , можно восстановить лишь среднее значение у .

Похожие публикации