Рецепторы воспринимающие свет и цвет. Зрение - восприятие света

Страсть к цвету

Восприятие цвета. Физика

Около 80% всей входящей информации мы получаем визуально
Мы познаем окружающий мир на 78% благодаря зрению, на 13% - слуху, на 3% - тактильным ощущениям, на 3% - обонянию и на 3% - вкусовым рецепторам.
Мы запоминаем 40% увиденного и только 20% услышанного*
*Источник: R. Bleckwenn & B. Schwarze. Учебник дизайна (2004)

Физика цвета. Цвет мы видим только благодаря тому, что наши глаза способны регистрировать электромагнитное излучение в оптическом его диапазоне. А электромагнитное излучение это и радиоволны и гамма излучение и рентгеновское излучение, терагерцевое, ультрафиолетовое, инфракрасное.

Цвет - качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего
физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.
Восприятие цвета определяется индивидуальностью человека, а также спектральным составом, цветовым и яркостным контрастом с окружающими источниками света,
а также несветящимися объектами. Очень важны такие явления, как метамерия, индивидуальные наследственные особенности человеческого глаза
(степень экспрессии полиморфных зрительных пигментов) и психики.
Говоря простым языком цвет - это ощущение, которое получает человек при попадании ему в глаз световых лучей.
Одни и те же световые воздействия могут вызвать разные ощущения у разных людей. И для каждого из них цвет будет разным.
Отсюда следует что споры "какой цвет на самом деле" бессмысленны, поскольку для каждого наблюдателя истинный цвет - тот, который видит он сам


Зрение дает нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.





Отраженные от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.

Цвет происходит из света
Чтобы видеть цвета, необходим источник света. В сумерках мир теряет свою цветность. Там, где нет света, возникновение цвета невозможно.

Учитывая огромное, многомиллионное количество цветов и их оттенков, колористу нужно обладать глубокими, полноценными знаниями о цветовосприятии и происхождении цвета.
Все цвета представляют собой часть луча света – электромагнитных волн, исходящих от солнца.
Эти волны являются частью спектра электромагнитного излучения, в который входят гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение (свет), инфракрасное излучение, электромагнитное терагерцевое излучение,
электромагнитные микро- и радиоволны. Оптическое излучение – это та часть электромагнитного излучения, которую способны воспринимать наши глазные сенсоры. Мозг обрабатывает полученные от глазных сенсоров сигналы и интерпретирует их в цвет и форму.

Видимое излучение (оптическое)
Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова.
Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины - с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества.
По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.

Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов по Кельвину и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм, где находится и максимум чувствительности глаза).
Именно потому, что мы родились возле такойзвезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул.
Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см.: Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см.: Болометрия).
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях.
Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.
Источником энергии для большинства живых существ на Земле является фотосинтез - биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.

Цвет играет огромную роль в жизни обычного человека. Жизнь колориста посвящена цвету.

Заметно, что цвета спектра, начинаясь с красного и проходя через оттенки противоположные, контрастные красному (зелёный, циан), затем переходят в фиолетовый цвет, снова приближающийся к красному. Такая близость видимого восприятия фиолетового и красного цветов связана с тем, что частоты, соответствующие фиолетовому спектру, приближаются к частотам, превышающим частоты красного ровно в два раза.
Но сами эти последние указанные частоты находятся уже вне видимого спектра, поэтому мы не видим перехода от фиолетового снова к красному цвету, как это происходит в цветовом круге, в который включены неспектральные цвета, и где присутствует переход между красным и фиолетовым через пурпурные оттенки.

При прохождении луча света через призму различные по длине волны, его составляющие, преломляются под разными углами. В результате мы можем наблюдать спектр света. Этот феномен очень похож на феномен радуги.

Следует различать солнечный свет и свет, исходящий от искусственных источников освещения. Только солнечный свет можно считать чистым светом.
Все остальные искусственные источники освещения будут влиять на восприятие цвета. Например, лампы накаливания являются источниками теплого (желтого) света.
Флуоресцентные лампы, чаще всего, дают холодный (синий) свет. Для корректной диагностики цвета необходим дневной свет или же источник освещения, максимально к нему приближенный.
Только солнечный свет можно считать чистым светом. Все остальные искусственные источники освещения будут влиять на восприятие цвета.

Многообразие цветов: Цветовосприятие основывается на способности различать изменения в направлении тона, светлоте/яркости и насыщенности цвета в оптическом диапазоне с длинами волн от 750 нм (красный) до 400 нм (фиолетовый).
Изучив физиологию восприятия цвета, мы можем лучше понять, как формируется цвет, и использовать эти знания на практике.

Мы воспринимаем все многообразие цветов только при наличии и нормальном функционировании всех конусных сенсоров.
Мы способны различать тысячи различных направлений тона. Точное количество зависит от способности глазных сенсоров улавливать и различать световые волны. Эти способности можно развивать тренировками и упражнениями.
Цифры, приведенные ниже, звучат невероятно, но это реальные способности здорового и хорошо подготовленного глаза:
Мы можем различать около 200 чистых цветов. Меняя их насыщенность, мы получаем приблизительно по 500 вариаций каждого цвета. Меняя их светлоту, получаем еще по 200 нюансов каждой вариации.
Хорошо подготовленный человеческий глаз способен различать до 20 миллионов цветовых нюансов!
Цвет субъективен, поскольку мы все воспринимаем его по-разному. Хотя, пока наши глаза здоровы, эти отличия незначительны.

Мы можем различать 200 чистых цветов
Меняя насыщенность и светлоту этих цветов, мы можем различать до 20 миллионов оттенков!

“You only see what you know. You only know what you see.”
«Вы видите только ведомое. Вы ведаете только видимое ».
Марсель Пруст (французский романист), 1871-1922.

Восприятие нюансов одного цвета не одинаково для разных цветов. Тоньше всего мы воспринимаем изменения в зеленом спектре - достаточно изменения длины волны всего на 1 нм, чтобы мы могли увидеть отличие. В красном и синем спектрах необходимо изменение длины волны на 3-6 нм, чтобы отличие стало заметно для глаза. Возможно, отличие в более тонком восприятии зеленого спектра было связано с необходимостью отличать съедобное от несъедобного во времена зарождения нашего вида (профессор, доктор археологии, Герман Крастел BVA).

Цветные картинки, возникающие в нашем сознании, – это кооперация глазных сенсоров и мозга. Мы «ощущаем» цвета, когда конические сенсоры, находящиеся в сетчатке глаза, генерируют сигналы под воздействием попадающих на них волн определенной длины и передают эти сигналы в мозг. Поскольку в цветовосприятии задействованы не только глазные сенсоры, но и мозг, то в результате мы не только видим цвет, но и получаем на него определенный эмоциональный отклик.

Наше уникальное цветоощущение никоим образом не меняет наш эмоциональный отклик на определенные цвета., отмечают ученые. Независимо от того, каков для человека голубой цвет, он всегда становится немного более спокойным и расслабленным, смотря на небо. Короткие волны голубого и синего цветов успокаивают человека, тогда как длинные волны (красный, оранжевый, желтый) наоборот – придают активности и живости человеку.
Эта система реакции на цвета присуща каждому живому организму на Земле – от млекопитающих до одноклеточных (например, одноклеточные «предпочитают» обрабатывать рассеянный свет желтого цвета в процессе фотосинтеза). Считается, что данная взаимосвязь цвета и нашего самочувствия, настроения обуславливается дневным/ночным циклом существования. Например, на рассвете все окрашено в теплые и яркие цвета – оранжевый, желтый – это сигнал каждому, даже самому маленькому существу, что начался новый день и пора приниматься за дела. Ночью и в полдень, когда течение жизни замедляется, вокруг доминируют синие и фиолетовые оттенки.
В своих исследованиях Джей Нейц и его коллеги из Университета штата Вашингтон отметили, что изменение цвета рассеянного света может изменить суточный цикл рыб, в то время как изменение интенсивности этого света не имеет решающего влияния. На этом эксперименте и базируется предположение ученых, что именно благодаря доминированию синего цвета в ночной атмосфере (а не просто темнота), живые существа чувствуют усталость и желание спать.
Но наши реакции не зависят от цветочувствительных клеток сетчатки. В 1998 году ученые обнаружили совершенно отдельный набор цветовых рецепторов – меланопсинов – в человеческом глазу. Эти рецепторы определяют количество синего и желтого цветов в окружающем нас пространстве и отправляют эту информацию в участки мозга, отвечающие за регулирование эмоций и циркадного ритма. Ученые считают, что меланопсины – очень древняя структура, отвечавшая за оценку количества цветов еще в незапамятные времена.
«Именно благодаря этой системе, наше настроение и активность поднимаются, когда вокруг преобладают оранжевый, красный или желтый цвета», - считает Нейц. «Но наши индивидуальные особенности восприятия различных цветов – это совсем другие структуры – синие, зеленые и красные колбочки. Поэтому, тот факт, что у нас одинаковые эмоциональные и физические реакции на одни и те же цвета не может подтвердить, что все люди видят цвета одинаково».
Люди, которые в силу некоторых обстоятельств имеют нарушения в цветовосприятии, часто не могут видеть красный, желтый или синий цвет, но, тем не менее, их эмоциональные реакции не разнятся с общепринятыми. Для вас небо всегда голубое и оно всегда дарит ощущение умиротворенности, даже если для кого-то ваш «голубой» является «красным» цветом.

Три характеристики цвета.

Светлота - степень близости цвета к белому называют светлотой.
Любой цвет при максимальном увеличении светлоты становится белым
Другое понятие светлоты относится не к конкретному цвету, а к оттенку спектра, тону. Цвета, имеющие различные тона при прочих равных характеристиках, воспринимаются нами с разной светлотой. Жёлтый тон сам по себе - самый светлый, а синий или сине-фиолетовый - самый тёмный.

Насыщенность – степень отличия хроматического цвета от равного ему по светлоте ахроматического, «глубина» цвета. Два оттенка одного тона могут различаться степенью блёклости. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Цветовой тон - характеристика цвета, отвечающая за его положение в спектре: любой хроматический цвет может быть отнесён к какому-либо определённому спектральному цвету. Оттенки, имеющие одно и то же положение в спектре (но различающиеся, например, насыщенностью и яркостью), принадлежат к одному и тому же тону. При изменении тона, к примеру, синего цвета в зеленую сторону спектра он сменяется голубым, в обратную - фиолетовым.
Иногда изменение цветового тона соотносят с «теплотой» цвета. Так, красные, оранжевые и жёлтые оттенки, как соответствующие огню и вызывающие соответствующие психофизиологические реакции, называют тёплыми тонами, голубые, синие и фиолетовые, как цвет воды и льда - холодными. Следует учесть, что восприятие «теплоты» цвета зависит как от субъективных психических и физиологических факторов (индивидуальные предпочтения, состояние наблюдателя, адаптация и др.), так и от объективных (наличие цветового фона и др.). Следует отличать физическую характеристику некоторых источников света - цветовую температуру от субъективного ощущения «теплоты» соответственного цвета. Цвет теплового излучения при повышении температуры проходит по «тёплым оттенкам» от красного через жёлтый к белому, но максимальную цветовую температуру имеет цвет циан.

Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение даёт нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.

Каждое новое утро мы просыпаемся и открываем глаза - наша деятельность не возможна без зрения.
Зрению мы доверяем больше всего и его больше всего используем для получения опыта («не поверю, пока сам не увижу!»).
Мы говорим «с широко открытыми глазами», когда открываем разум навстречу чему-то новому.
Глаза используются нами постоянно. Они позволяют нам воспринимать формы и размеры объектов.
И, что самое главное для колориста, они позволяют нам видеть цвет.
Глаз является очень сложным по своему строению органом. Для нас важно понять, как мы видим цвет и как воспринимаем полученные оттенки на волосах.
Восприятие глаза основывается на светочувствительном внутреннем слое глаза, именуемом сетчаткой.
Отражённые от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.
Эти клетки являются своего рода датчиками, которые реагируют на падающий свет, преобразовывая его энергию в сигналы, передаваемые в мозг. Мозг переводит эти сигналы в образы, которые мы «видим».

Человеческий глаз представляет из себя сложную систему, главной целью которой является наиболее точное восприятие, первоначальная обработка и передача информации, содержащейся в электромагнитном излучении видимого света. Все отдельные части глаза, а также клетки, их составляющие, служат максимально полному выполнению этой цели.
Глаз - это сложная оптическая система. Световые лучи попадают от окружающих предметов в глаз через роговицу. Роговица в оптическом смысле - это сильная собирающая линза, которая фокусирует расходящиеся в разные стороны световые лучи. Причём оптическая сила роговицы в норме не меняется и дает всегда постоянную степень преломления. Склера является непрозрачной наружной оболочкой глаза, соответственно, она не принимает участия в проведении света внутрь глаза.
Преломившись на передней и задней поверхности роговицы, световые лучи проходят беспрепятственно через прозрачную жидкость, заполняющую переднюю камеру, вплоть до радужки. Зрачок, круглое отверстие в радужке, позволяет центрально расположенным лучам продолжить свое путешествие внутрь глаза. Более периферийно оказавшиеся лучи задерживаются пигментным слоем радужной оболочки. Таким образом, зрачок не только регулирует величину светового потока на сетчатку, что важно для приспособления к разным уровням освещённости, но и отсеивает боковые, случайные, вызывающие искажения лучи. Далее свет преломляется хрусталиком. Хрусталик тоже линза, как и роговица. Его принципиальное отличие в том, что у людей до 40 лет хрусталик способен менять свою оптическую силу - феномен, называемый аккомодацией. Таким образом, хрусталик производит более точную до фокусировку. За хрусталиком расположено стекловидное тело, которое распространяется вплоть до сетчатки и заполняет собой большой объем глазного яблока.
Лучи света, сфокусированные оптической системой глаза, попадают в конечном итоге на сетчатку. Сетчатка служит своего рода шарообразным экраном, на который проецируется окружающий мир. Из школьного курса физики мы знаем, что собирательная линза дает перевёрнутое изображение предмета. Роговица и хрусталик - это две собирательные линзы, и изображение, проецируемое на сетчатку, также перевёрнутое. Другими словами, небо проецируется на нижнюю половину сетчатки, море - на верхнюю, а корабль, на который мы смотрим, отображается на макуле. Макула, центральная часть сетчатки, отвечает за высокую остроту зрения. Другие части сетчатки не позволят нам ни читать, ни наслаждаться работой на компьютере. Только в макуле созданы все условия для восприятия мелких деталей предметов.
В сетчатке оптическая информация воспринимается светочувствительными нервными клетками, кодируется в последовательность электрических импульсов и передается по зрительному нерву в головной мозг для окончательной обработки и сознательного восприятия.

Конусные сенсоры (0,006 мм в диаметре) способны различать малейшие детали, соответственно активными они становятся при интенсивном дневном или искусственном освещении. Они гораздо лучше, чем палочки, воспринимают быстрые движения и дают высокое визуальное разрешение. Но их восприятие снижается при уменьшении интенсивности света.

Самая высокая концентрация колбочек находится в середине сетчатки, в точке называемой центральной ямкой. Здесь концентрация колбочек достигает 147,000 на квадратный миллиметр, обеспечивая максимальное визуальное разрешение картинки.
Чем ближе к краям сетчатки, тем ниже концентрация конусных сенсоров (колбочек) и тем выше концентрация цилиндрических сенсоров (палочек), отвечающих за сумеречное и периферийное зрение. В центральной ямке палочки отсутствуют, что объясняет нам, почему ночью мы лучше видим тусклые звезды, когда смотрим на точку рядом с ними, а не на них самих.

Существует 3 типа конусных сенсоров (колбочек), каждый из которых отвечает за восприятие одного цвета:
Чувствительный к красному (750 нм)
Чувствительный к зеленому (540 нм)
Чувствительный к синему (440 нм)
Функции колбочек: Восприятие в условиях интенсивной освещенности (дневное зрение)
Восприятие цветов и мелких деталей. Количество колбочек в человеческом глазе: 6-7 миллионов

Эти 3 типа колбочек позволяют нам видеть все многообразие цветов окружающего мира. Поскольку все остальные цвета являются результатом сочетания сигналов, поступающих от этих 3 видов колбочек.

Например: Если объект выглядит желтым – это означает, что отраженные от него лучи стимулируют чувствительные к красному и чувствительные к зеленому колбочки. Если цвет объекта оранжево-желтый – это означает, что чувствительные к красному колбочки были простимулированы сильнее, а чувствительные к зеленому – слабее.
Белый мы воспринимаем в тех случаях, когда все три типа колбочек простимулированы одновременно в равной интенсивности. Такое трехцветное зрение описывается в теории Юнга-Гельмгольца.
Теория Юнга-Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, не раскрывая все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Существует т.н. цветоведение - анализ процесса восприятия и различения цвета на основе систематизированных сведений из физики, физиологии и психологии. Носители разных культур по-разному воспринимают цвет объектов. В зависимости от важности тех или иных цветов и оттенков в обыденной жизни народа, некоторые из них могут иметь большее или меньшее отражение вязыке. Способность цветораспознавания имеет динамику в зависимости от возраста человека. Сочетания цветов воспринимаются гармоничными (гармонирующими) либо нет.

Тренировка цветовосприятия.

Изучение теорие цвета и тренировка цветовосприятия важны в любой профессии работающей с цветом.
Глаза и разум нужно тренировать для постижения всех тонкостей цвета, также как тренируются и оттачиваются навыки стрижки или иностранные языки: повторение и практика.

Эксперимент 1: Выполняйте упражнение ночью. Выключите свет в комнате – вся комната мгновенно погрузится во мрак, вы ничего не будете видеть. Через несколько секунд глаза привыкнут к низкой освещенности и начнут все четче выявлять контрасты.
Эксперимент 2: Положите перед собой два чистых белых листа бумаги. На середину одного из них положите квадратик красной бумаги. В середине красного квадратика нарисуйте маленький крестик и в течение нескольких минут смотрите на него, не отрывая взора. Затем переведите взгляд на чистый белый лист бумаги. Почти сразу вы увидите на нем образ красного квадратика. Только цвет у него будет другой - голубовато-зеленый. Через несколько секунд он начнет бледнеть и вскоре исчезнет. Почему это происходит? Когда глаза были сфокусированы на красном квадрате, интенсивно возбуждался соответствующий этому цвету тип колбочек. При переводе взгляда на белый лист интенсивность восприятия этих колбочек резко падает и более активными становятся два других типа колбочек – зелено- и синечувствительных.

Особенности человеческого зрения

Человек не может видеть в полной темноте. Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы).

глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными – тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом.

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств. Глаз можно назвать сложным оптическим прибором. Его основная задача - "передать" правильное изображение зрительному нерву.

Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения - адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя. Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации.

В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета. За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.[

Изменение зрения с возрастом

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, его преломляющая способность выше. Это позволяет ребенку четко видеть предмет на меньшем расстоянии от глаза, чем взрослому. И если у младенца он прозрачный и бесцветный, то у взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов. Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет формируется в возрасте от 5 дней до 3–5 месяцев. Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и уже в последнюю очередь – цвет. Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Стереоскопическое зрение (от греч. στερεός - твёрдый, пространственный) - вид зрения, при котором возможно восприятие формы, размеров и расстояния до предмета, например благодаря бинокулярному зрению Стереоскопическое зрение к 17–22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Поле зрения интенсивно увеличивается. К 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого. После 40 лет наблюдается падение уровня периферического зрения, то есть происходит сужение поля зрения и ухудшение бокового обзора. Примерно после 50 лет сокращается выработка слезной жидкости, поэтому глаза увлажняются хуже, чем в более молодом возрасте. Чрезмерная сухость может выражаться в покраснении глаз, рези, слезотечении под действием ветра или яркого света. Это может не зависеть от обычных факторов (частые напряжения глаз или загрязненность воздуха). С возрастом человеческий глаз начинает воспринимать окружающее более тускло, с понижением контрастности и яркости. Также может ухудшиться способность распознавать цветовые оттенки, особенно близкие в цветовой гамме. Это напрямую связано с сокращением количества клеток сетчатой оболочки, воспринимающих оттенки цвета, контрастность, яркость. Некоторые возрастные нарушения зрения обусловлены пресбиопией, которая проявляется нечеткостью, размытостью картинки при попытке рассмотреть предметы, расположенные близко от глаз. Возможность фокусировки зрения на небольших предметах требует аккомодацию около 20 диоптрий (фокусировка на объекте в 50 мм от наблюдателя) у детей, до 10 диоптрий в возрасте 25 лет (100 мм) и уровни от 0,5 до 1 диоптрии в возрасте 60 лет (возможность фокусировки на предмете в 1-2 метрах). Считается, что это связано с ослаблением мышц, которые регулируют зрачок, при этом так же ухудшается реакция зрачков на попадающий в глаз световой поток. Поэтому возникают трудности с чтением при тусклом свете и увеличивается время адаптации при перепадах освещенности.

Так же с возрастом начинает быстрее возникать зрительное утомление и даже головные боли.

Психология восприятия цвета

Психология восприятия цвета - способность человека воспринимать, идентифицировать и называть цвета. Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи. Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов. В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.

Периферическое зрение (поле зрения ) - определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра).

Светочувствительный аппарат глаза. Луч света, прой­дя через оптические среды глаза, пронизывает сетчатку и попадает на ее наружный слой (рис. 51). Здесь находятся рецепторы зри­тельного анализатора. Это особые, чувствительные к свету клет­ки-палочки и колбочки (см. цв. табл.). Чувствительность пало­чек необычайно велика. Они дают возможность видеть в сумерки и даже ночью, но без различения цвета, так как возбуждаются лу­чами почти всего видимого спектра. Чувствительность колбочек по крайней мере в 1000 раз меньше. Они приходят в состояние воз­буждения лишь при достаточно сильном освещении, но зато позво­ляют различать цвета.

Вследствие низкой чувствительности колбочек различение цве­тов к вечеру становится все более затруднительным и в конце кон­цов исчезает.

В сетчатке человеческого глаза на площади примерно 6- 7 кв. см насчитывают около 7 млн. колбочек и около 130 млн. па­лочек. Распределены они в сетчатке неравномерно. В центре сет­чатки, как раз против зрачка, находится так называемое желтое пятно с углублением посредине - центральной ямкой. Когда че­ловек рассматривает деталь какого-нибудь предмета, ее изображе­ние попадает на центр желтого пятна. В центральной ямке имеют­ся только колбочки (рис. 52). Здесь их диаметр по крайней мере вдвое меньше, чем в других участках сетчатки, и на 1 кв. мм их ко­личество достигает 120-140 тыс., что способствует более ясному и отчетливому видению. По мере удаления от центральной ямки на-. чинают встречаться и палочки, сначала небольшими группами, а потом все в большем количестве, а колбочек становится меньше. Так, уже на расстоянии 4 мм от центральной ямки на 1 кв. мм при­ходится около 6 тыс. колбочек и 120 тыс. палочек.

Рис. 51< Схема строения сетчатки.

I-.прилегающий к сетчатке край сосу­дистой оболочки;

II - слой пигмент­ных клеток; III- слой палочек и кол­бочек; IV и V - два последовательных ря­да нервных клеток, на которые перехо­дит возбуждение с палочек и колбочек;

1 - палочки; 2 - кол­бочки; 3 - ядра па­лочек и колбочек;

4 - нервные волокна.

Рис. 52. Строение сетчатки в области желтого пятна (схема):

/ - центральная ямка; 2 - колбочки; 3 - палочки; 4 - слои нервных клеток; 5 - нервные волокна, направляющиеся к сле­пому пятну,

В полутьме, когда колбочки не функционируют, человек лучше различает те предметы, изображение которых попадает не на жел­тое пятно. Он не заметит белого предмета, если направит на него взор, так как изображение попадет на центр желтого пятна, где нет палочек. Однако предмет станет видимым, если перевести взор в сторону на 10-15°. Теперь изображение попадает на участок сет­чатки, богатый палочками. Отсюда при большой фантазии может возникнуть впечатление «призрачности» предмета, его необъясни­мого появления и исчезновения. На этом основаны суеверные пред­ставления о призраках, блуждающих по ночам.



При дневном свете человек хорошо различает цветовые оттенки предмета, на который он смотрит. Если же изображение попадает на периферические участки сетчатки, где мало колбочек, то разли­чение цветов становится неотчетливым и грубым.

В палочках и колбочках, как и на фотопленке, под влиянием света происходят химические реакции, действующие как раздра­житель. Возникающие импульсы приходят от каждого пункта сет­чатки в определенные участки зрительной области коры больших полушарий.

Цветовое зрение. Все многообразие цветовых оттенков может быть получено путем смешения трех цветов спектра - красного, зеленого и фиолетового (или синего). Если быстро вращать диск, составленный из этих цветов, он будет казаться белым. Доказано, что цветоощущающий аппарат состоит из трех видов колбочек:

одни преимущественно чувствительны к красным лучам, другие - к зеленым, третьи - к" синим. От соотношения силы возбужде­ния каждого вида колбочек и зависит цветовое зрение.

Наблюдения за электрическими реакциями коры больших полу­шарий позволили установить, что мозг новорожденного реагирует


не только на свет, но и на цвет. Способность различать цвета была обнаружена у грудного ребенка методом условных рефлексов. Раз­личение цветов становится все более совершенным по мере образо­вания новых условных связей, приобретаемых в процессе игры. ^ Дальтонизм. В конце XVIII в. известный английский естество-. испытатель Джон Дальтон подробно описал расстройство цветово­го зрения, которым он сам страдал. Он не отличал красного цвета. от зеленого, а темно-красный казался ему серым или черным. Та­кое нарушение, получившее название дальтонизма, встречается примерно у 8% мужчин и очень редко у женщин. Оно передается по наследству через поколение по женской линии, иными словами, от деда к внуку через мать. Бывают и другие расстройства цветового зрения, но они встречаются очень редко. Страдающие дальтониз­мом могут долгие годы не замечать своего дефекта. Иногда человек узнает о нем при проверке зрения для поступления на работу, ко­торая требует отчетливого различения красного и зеленого цветов (например, машинистом на железнодорожном транспорте).

Ребенок, страдающий дальтонизмом, может запомнить, что этот шарик красный, а другой, побольше, зеленый. Но если дать ему два одинаковых шарика, отличающихся только по цвету (красный и зеленый), то он не сумеет их различить. Такой ребенок путает цве­та при сборе ягод, на занятиях по рисованию, при подборе цветных кубиков по цветным картинкам. Видя это, окружающие, в том чис­ле и воспитатели, обвиняют ребенка в невнимании, или обдуманной. шалости, делают ему замечания, наказывают, снижают оценку за выполненную работу. Такая незаслуженная кара может только от­разиться на нервной системе ребенка, повлиять на его дальнейшее развитие и поведение. Поэтому, в тех случаях, когда ребенок пута­ет илц долго не может усвоить те или иные цвета, его следует по-" казать врачу-специалисту, чтобы выяснить, не результат ли эта врожденного дефекта зрения.

Острота зрения. Остротой зрения называется способность глаза различать мельчайшие детали. Если лучи, исходящие от двух ря­дом расположенных точек, возбуждают одну и ту- же или две со­седние колбочки, то обе точки воспринимаются как одна более крупная. Дл» их раздельного видения необходимо, чтобы между;

возбужденными колбочками находилась еще одна. Следовательно, максимально возможная острота зрения: зависит от толщины кол­бочек в центральной ямке желтого пятна. Высчитано, что угол, под которым падают на сетчатку лучи от двух точек, максимально сближенных, но видимых раздельно, равен "/во 0 , т. е. одной угловой минуте. Этот угол и принято считать за норму остроты зрения. Ост­рота зрения несколько меняется в зависимости от силы освещения.-Однако и при одной и той же освещенности она может значитель­но меняться. Она увеличивается под влиянием тренировки, если, например, человеку приходится иметь дело. с тонким.различением мелких предметов. При утомлении острота зрения понижается.

Здесь мы рассмотрим некоторые научные данные из области физики и физиологии для того, чтобы понять, как происходит процесс восприятия.

Начнем со зрительного канала. Зрение — самый информативный канал информации. Через него мы получаем наибольшее количество информации из внешнего мира. Из физики нам известно, что зрение — это восприятие света от окружающей среды. Наибольший источник света на Земле – это Солнце. Свет, по своей природе, представляет собой электромагнитную волну определенной частоты.

Субъективно мы воспринимаем эти волны как определенный цвет. Например, красным мы воспринимаем свет с частотой 400-480 ТГц, а синим – свет с частотой 620-680 ТГц. Почему именно так мы воспринимаем эти частоты света, мы обсудим чуть позже. На самом деле, если взять весь диапазон частот электромагнитного излучения, то мы увидим, что мы воспринимаем как видимый свет только очень короткий диапазон частот. Остальное мы не воспринимаем, т.е. волна есть, но мы ее не видим. Например, радиоволны, которые принимает ваш телевизор, мы не видим, хотя физически они присутствуют в пространстве.

Луч света, который идет от солнца, содержит в себе целый пучок электромагнитных волн разной частоты. По сути, в этом луче света есть волны почти всех частот. Этот луч света называется белым светом. Чтобы увидеть, что в белом свете есть волны всех частот, нужно просто направить этот луч света на призму, и вот что мы увидим.

Белый свет разложился на радугу всех цветов. Призма как бы разделила волны разной частоты по разным направлениям.

Теперь посмотрим, как получается, что предметы вокруг нас имеют разный цвет. Когда белый луч света падает на предмет, то поверхность предмета поглощает почти все волны разных частот и отражает волны определенного узкого диапазона частот. Если, например, белый луч света упал на поверхность красного предмета, то сам этот предмет поглотит все волны, у которых частота отличается от частоты красного цвета, а волны с частотой красного цвета он отразит от своей поверхности.

Пожалуйста, имейте в виду, что когда я говорю «частота красного цвета» я не имею в виду, что волна действительно имеет красный цвет. Имеется в виду, что у этой волны частота находится в диапазоне 400-480 ТГц. Не более. Никаких цветов сама световая волна не имеет.

Итак, волна света частотой красного цвета отражается от предмета в разные стороны. Далее этот отраженный от предмета свет попадает к нам в глаза. Разные предметы кажутся нам разного цвета потому, что поверхности этих предметов по-разному отражают падающий на них белый свет. Одни отражают преимущественно волны красного диапазона, другие отражают волны зеленого, третьи поглощают почти все волны, и тогда предмет нам кажется черным.

Что происходит, когда свет разных частот попадает нам в глаза? На сетчатке глаз есть рецепторы света — колбочки и палочки. Есть три типа колбочек: одни лучше всего воспринимают свет в сине-фиолетовой области, другие - в жёлто-зелёной, третьи - в красной. Т.е. разные колбочки реагируют на световую волну из определенного диапазона частот.

Далее, колбочки на сетчатке глаза создают нервный импульс. Этот импульс идет от сетчатки глаза по нервным волокнам (нейронам) в мозг человека. В мозгу человека есть область, которая обрабатывает сигналы, идущие от глаз — зрительная зона мозга . Сам мозг представляет собой огромное скопление нейронов . Это клетки, которые состоят из тела, одного аксона и тысяч дендритов.

Дендриты – это отростки нейрона, которые принимают сигнал, идущий от аксона другого нейрона. Аксон – это отросток нейрона, который передает сигнал от данного нейрона другим нейронам. Причем аксон на конце разветвляется и поэтому может передавать сигнал от данного нейрона нескольким нейронам одновременно.

Все нейроны в мозгу связаны друг с другом через аксоны и дендриты. К одному нейрону через дендриты присоединяются тысячи нейронов и передают ему через свои аксоны свои сигналы. Далее, нейрон суммирует все сигналы в один и передает его через свой аксон другим нейронам, с которыми он связан. В итоге получается своеобразная нейронная сеть, которая соединяет миллиарды клеток головного мозга.

Кроме нейронов в мозгу есть еще так называемые глиальные клетки . Они выполняют дополнительные функции и служат нейронам в обеспечении передачи сигнала. Больше в мозгу, по сути, ничего нет.

Итак, сигнал от глаза попадает в зрительную зону мозга, которая находится в затылочной части головы. Далее, из зрительной зоны сигнал разветвляется и попадает в другие отделы мозга, в том числе и в кору головного мозга, где происходит преобразование сигналов в визуальные образы, которые мы с вами воспринимаем.

Хочу акцентировать внимание, что никаких картинок в мозгу нигде нет. Все, что там есть, это только нервные импульсы, переходящие от одного нейрона к другому.

Мозг различает световые волны разных диапазонов только с помощью того, что разные колбочки реагируют на разные частоты световых волн. Далее от этих колбочек идет обычный электрический сигнал. Зрительная зона головного мозга различает цвета по тому, от каких колбочек пришел сигнал. Сам сигнал никакого цвета не имеет.

Получается примерно такая схема работы зрения. Свет, как электромагнитные волны разной частоты, отражается от предметов и попадает нам в глаза. Поверхность предметов поглощает часть волн и часть отражает (это зависит от свойств поверхности). Отраженные волны попадают нам в глаза, где с помощью колбочек и палочек на сетчатке глаза они преобразовываются в нейронные импульсы. Эти нейронные импульсы идут по сети нейронов в мозг, точнее в зрительную зону мозга. Из зрительной зоны сигнал распространяется по остальным участкам мозга. Кроме сети нейронов, вспомогательных глиальных клеток и нейронных сигналов в мозге ничего больше нет.

Теперь вкратце рассмотрим схему работы остальных каналов восприятия. Эти схемы работы каналов восприятия по сути не отличаются от схемы работы визуального канала.

Звук, по своей природе, представляет собой колебания воздуха. Т.е. предмет, благодаря тому, что он колеблется, производит колебания воздуха вокруг него. Эти колебания распространяются по воздуху в разные стороны, и в конце концов попадает в уши человеку. Если бы не было воздуха, предмет не передавал бы колебания, и звука не было бы.

Звуковые волны, так же как и световые волны, имеют разную частоту. Чем ниже частота колебания звуковой волны, тем нам субъективно кажется, что звук более низкий. Это касается басов. Чем выше колебания звуковой волны, тем нам субъективно кажется, что звук более высокий, писклявый.

Однако высота звука к звуковым волнам отношения не имеет. Звуковые волны – это просто волны, разной частоты, которые передаются по воздуху. Сами эти волны не имеют никакого звука.

Далее, звуковые волны от предметов попадают к нам у уши. В ухе есть барабанная перепонка, которая тонко реагирует на колебания воздуха, который попадает в ухо. Она колеблется в той же частоте, что и звуковая волна, которая попала в ухо. Далее, с помощью сложной системы преобразования колебаний в ухе, звуковая волна преобразовывается в нервный импульс, который по слуховому нерву идет в мозг, в те отделы, которые отвечают за обработку слуховой информации.

Итак, как и свет, звук тоже преобразовывается в нервный импульс, который обрабатывается мозгом. Нервный импульс, который идет от глаз, ничем не отличается от нервного импульса, который идет от ушей. Все различение между этими сигналами и определение какого рода сигнал они несут, происходит в мозге. Мозг это определяет по тому, по каким нервным путям пришел сигнал. Если нервный импульс (сигнал) пришел от нейронов, отвечающих за восприятие света, то мозг будет трактовать этот сигнал как визуальный. Если сигнал пришел от нейронов, отвечающих за восприятие звука, то мозг будет трактовать этот сигнал как аудиальный (звуковой).

Что касается осязания, обоняния и вкуса, то коротко можно сказать следующее. Кожа имеет специальные рецепторы, которые реагируют на прикосновение и температуру воздуха. Далее все по той же схеме. Нервный сигнал от этих рецепторов попадает в мозг.

В носу есть рецепторы, которые реагируют на определенные молекулы. Например, цветок розы выделяет молекулы. Эти молекулы попадают в нос, и обонятельные рецепторы реагируют на определенные молекулы. Далее обонятельные рецепторы передают сигнал в мозг.

Что касается вкуса, то на языке есть соответствующие рецепторы, которые реагируют на молекулы веществ, попадающих в рот человека. И, все так же по схеме, от этих рецепторов в мозг идут нервные сигналы.

Итак, заострю ваше внимание на том факте, что внешний мир не несет никаких картинок, звуков, вкусов и ощущений. Все, что есть во внешнем мире, это разного рода волны и молекулы веществ. А то, что мы видим, слышим и ощущаем – это все результат работы нашего мозга . Здесь впору задать важный вопрос: а почему сигналы со зрительной зоны головного мозга воспринимаются именно так, как мы их воспринимаем, т.е. в виде объемной картинки? Почему сигналы с зоны головного мозга, отвечающей за звук, воспринимаются именно как звук? Ведь ни в световых волнах, ни в колебаниях воздуха нет таких качеств, как цвет и звук.

свет цвет физиология восприятие

Для создания безопасных условий труда требуется не только достаточная освещенность рабочих поверхностей, но и рациональное направление света, отсутствие резких теней и бликов, вызывающих слепящее действие.

Правильная освещенность и окраска оборудования, опасных мест дает возможность следить за ними более внимательно (станок, окрашенный в однотонный цвет), а предупреждающая окраска опасных мест позволит уменьшить травматизм. Кроме того подбор правильного сочетания цветов и их интенсивности сведет до минимума время адаптации глаз при переводе взгляда с детали на рабочую поверхность. Правильно подобранная окраска может влиять на настроение рабочих, а, следовательно, и на производительность труда. Таким образом, недооценка влияния освещения, выбора цвета и света приводят к преждевременному утомлению организма, накоплению ошибок, снижению производительности труда, увеличению брака и, как следствие, к травматизму. Некоторое пренебрежение к вопросам освещенности вызвано тем, что глаз человека имеет очень широкий диапазон приспособления: от 20 лк (в полнолуние) до 100000 лк.

Естественное освещение - это видимый спектр излучения электромагнитных волн солнечной энергии длиной 380 - 780 нм (1 нм = 10 -9 м). Видимый свет (белый) состоит из спектра цветов: фиолетовый (390 - 450 нм), синий (450 - 510 нм), зеленый (510 - 575 нм), желтый (575 - 620 нм), красный (620 - 750 нм). Излучение с длиной волны более 780 нм называется инфракрасным, а с длиной волны менее 390 нм - ультрафиолетовым.

Цвет и свет взаимосвязаны между собой. Цвета, наблюдаемые человеком, делятся на хроматические и ахроматические. Ахроматические цвета (белый, серый, черный) имеют разные коэффициенты отражения и, поэтому, основной их характеристикой является яркость. Хроматические цвета (красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый) характеризуются, в основном, тоном, который определяется длиной волны и чистотой или насыщенностью (степень "разбавленности" основного цвета белым). Окраска оборудования, материалов и др. в чёрный цвет угнетает человека. При переноске стандартных ящиков белого и черного цвета все рабочие заявили, что чёрные ящики тяжелее. Чёрную нить на белом фоне видно в 2100 раз лучше, чем на черном, но при этом наблюдается резкий контраст (отношение яркостей). С увеличением яркости и освещения до известных пределов усиливается острота зрения и яркость, с которой глаз различает отдельные предметы, т.е. быстрота различения. Слишком большая яркость света отрицательно влияет на органы зрения, вызывая ослепление и резь в глазах. Приспособление глаз к изменению яркости называется тёмной и светлой адаптацией. При работе на станке тёмно-серого цвета (отражающего 5% света) и с блестящей деталью (отражающей 95% цвета) рабочий переводит взгляд со станка на деталь 1 раз в минуту, при этом на адаптацию глаза затрачивается примерно 5 секунд. За семичасовой рабочий день будет потеряно 35 минут. Если при тех же условиях работы изменить время адаптации до 1 секунды за счет правильного подбора контраста, потеря рабочего времени будет равна 7 минутам.

Неправильный подбор освещения влияет не только на потерю рабочего времени и утомление рабочих, но и увеличивает травматизм в период адаптации, когда рабочий не видит или плохо видит деталь, и выполняет рабочие операции автоматически. Подобные условия наблюдаются и при монтажных работах, работе крана и других видах работ в вечернее время при искусственном освещении. Поэтому отношение яркостей (сущность контраста) не должно быть большим.

В восприятии цветов человеком важную роль играет цветовой контраст, т.е. преувеличение действительной разницы между одновременными восприятиями. Одна французская торговая фирма заказала партию красной, фиолетовой и голубой ткани с черным узором. Когда заказ был выполнен, фирма отказалась его принять, т.к. на красной ткани вместо черного узора был зеленоватый; на голубой - оранжевый, на фиолетовой - желто-зеленоватый. Суд обратился к специалистам, и когда те закрыли ткань, то в прорезях на бумаге рисунок был черный.

В настоящее время установлено, что красный цвет возбуждает, но и быстро утомляет человека; зеленый полезен для человека; желтый вызывает тошноту и головокружение. Естественное освещение считается самым лучшим для здоровья человека.

Солнечный свет оказывает биологическое действие на организм, поэтому естественное освещение является гигиеничным. Замена естественного освещения искусственным допускается только тогда, когда по каким-либо причинам нельзя использовать (или невозможно использовать) естественное освещение рабочих мест.

Поэтому нормирование освещения производственных помещений и рабочих мест осуществляется на научной основе с учетом следующих основных требований:

  • 1. Достаточная и равномерная освещенность рабочих мест и обрабатываемых деталей;
  • 2. Отсутствие яркости, блеклости и слепящего действия в поле зрения рабочих;
  • 3. Отсутствие резких теней и контрастов;
  • 4. Оптимальная экономичность и безопасность осветительных систем.

Следовательно, для правильного светового режима необходимо учитывать весь комплекс гигиенических условий, т.е. количественную и качественную стороны освещения.

Для измерения освещенных рабочих мест и общей освещенности помещений используют люксметр типа Ю-116, Ю-117, универсальный люксметр - яркометр ТЭС 0693, фотометр типа 1105 фирмы "Брюль и Кэр". Принцип работы приборов основан на использовании фотоэлектрического эффекта - эмиссии электронов под действием света (рис 2.4.1).

При выполнении различных видов работ применяют естественное, искусственное и смешанное освещение, параметры которых регламентируются ГОСТ 12.1.013-78, СНиП ІІ-4-79 "Естественное и искусственное освещение", инструкцией по проектированию электрического освещения строительных площадок (СН 81-80). Все помещения с постоянным пребыванием людей должны иметь естественное освещение.

Там, где невозможно осуществить естественное освещение или если оно не регламентируется СНиП П-4-79, применяется искусственное или смешанное освещение.

Оптическая часть спектра, состоящая из ультрафиолетовых, видимых и инфракрасных излучений, имеет диапазон волн от 0,01 до 340 мкм. Видимое излучение, воспринимаемое глазом, называется световым и имеет длину волн от 0,38 до 0,77 мкм, а мощность такого излучения - световым потоком (F). Единицей светового потока принят люмен. Это величина, равная 1/621 светового ватта. Люмен [лм] определяется как световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площадью 530,5?10 -10 м 2 (световой поток от эталонного точечного источника в 1 канделу, расположенного в вершине телесного угла в 1 стерадиан). Стерадиан - это единичный телесный угол щ, который является частью среды радиусом 1 м и площадью сферической поверхности, основание которой равно 1 м 2 .

где щ - единичный телесный угол, 1 стер;

S - площадь сферической поверхности, 1 м 2 ;

R - радиус сферической поверхности, 1 м.

Пространственная плотность светового потока в данном направлении называется силой света (I). За единицу силы света принята кандела [кд].

где Й - сила света, кд;

F - световой поток, лм.

Величина светового потока, который приходится на единицу освещаемой поверхности, называется освещенностью (Е). Измеряется освещенность в люксах. Люкс - освещенность поверхности площадью 1м 2 равномерно распределенным световым потоком в 1 лм.

Видимость предметов зависит от части света, отраженного предметом, и характеризуется яркостью (В). Измеряется яркость в [кд/м 2 ].

где б - угол между нормалью к элементу поверхности S и направлением, для которого определяется яркость.

Яркость - светотехническая величина, на которую непосредственно реагирует глаз. Гигиенически приемлемым являются яркости до 5000 кд. Яркость в 30000 кд и выше является ослепляющей. К качественным показателям освещенности относятся фон и контрастность, видимость, показатель ослепленности и т.д.

Фон - это поверхность, которая примыкает к объекту (различие). Фон считается светлым при коэффициенте отражения с > 0,4; средним при с = 0,2-0,4; и темным при с < 0,2.

Контрастность характеризуется отношением яркостей рассматриваемого предмета и фона:

Контрастность освещения считается большой при > 0,5; средней при = 0,2-0,5; и малой при < 0,2.

Равномерность освещения характеризуется отношением минимальной освещенности к её максимальному значению в пределах всего помещения.

Естественное освещение

Естественное освещение является наиболее приемлемым человеку, поэтому помещения с постоянным пребыванием людей должны иметь в основном естественное освещение. Естественное освещение осуществляется через оконные, дверные проемы, через фонари, прозрачные кровли. Поэтому оно подразделяется на (рис.2.4.2):

  • а) верхнее освещение - через световые фонари, прозрачные кровли;
  • б) боковое освещение - через окна;
  • в) комбинированное освещение - через окна и фонари, и т.д.

Критерием естественной освещенности является коэффициент естественной освещенности (КЕО или Е Н), который представляет отношение естественной освещенности светом неба в некоторой точке заданной плоскости внутри помещения Е вн к одновременному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода Е нар, и выражается в процентах:

Нормирование КЕО проводится согласно с требованиями СНиП ЙЙ-4-79 "Естественное и искусственное освещение. Нормы проектирования".

Согласно СНиП ЙЙ-4-79 при одностороннем боковом освещении критерием оценки является минимальное значение КЕО в точке, расположенной в 1 м от стены, наиболее удаленной от световых проемов, на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности или пола. Под характерным разрезом помещения понимается поперечный разрез помещения, плоскость которого перпендикулярна к плоскости остекления световых проемов. В характерный разрез помещения должны попадать участки с наибольшим количеством рабочих мест. За условную рабочую поверхность принимается горизонтальная поверхность, расположенная на высоте 0,8 м от пола. При двустороннем боковом освещении критерием оценки является минимальное значение KЕO в середине помещения, в точке на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности (пола).

При верхнем, боковом и комбинированном освещении нормируется среднее значение КЕО (табл. 2.4.1.).

Все параметры освещения определяются разрядом зрительной работы. Разряд зрительной работы при расстоянии от объекта различия до глаз работающего более 0,5 м определяется отношением минимального размера объекта различия (d) к расстоянию от этого объекта до глаз работающего (l). Под объектом различия понимается рассматриваемый предмет, отдельная его часть или дефект, которые требуется различать в процессе работ. Всего установлено восемь разрядов зрительной работы (табл. 2.4.1).

Нормированное значение KЕO (Е н) принимается в зависимости от разряда зрительной работы, особенностей светового климата и солнечного климата.

Для зданий располагаемых в Й, II, ЙV и V поясах светового климата стран СНГ, в зависимости от вида освещения, боковое или верхнее нормированное значение КЕО (Е н б, Е н в) определяется по формуле:

где m-коэффициент светового климата; с-коэффициент солнечности климата.

Значение Е н III находится по таблице 2.4.1; коэффициент светового климата (m) - по таблице 2.4.2; коэффициент солнечности климата (С) - по таблице 2.4.3. Неравномерность естественного освещения производственных и общественных зданий с верхним или с верхним и боковым освещением основных помещений для детей и подростков при боковом освещении не должна превышать 3:l.

Неравномерность естественного освещения не нормируется для помещений с боковым освещением при выполнении работ VЙЙ, VIII разрядов при верхнем и комбинированном освещении, для вспомогательных и общественных зданий ЙЙЙ и IV групп (п.1.2 СНиП ЙЙ-4-79). При проектировании зданий в ЙЙЙ и V климатических районах, где выполняются работы I - IV разрядов, необходимо предусматривать солнцезащитные устройства. При естественной освещенности помещений большое значение имеет уход за окнами и фонарями. Грязные стекла задерживают до 50% всего света. Поэтому должна производиться регулярная чистка стекол и побелка помещений. С незначительным выделением пыли чистки стекол производится через шесть месяцев, побелка - один раз в три года; в пыльных - четыре раза в год чистка и один раз в год побелка.

При проектировании зданий одной из важных задач является правильный расчет площади световых проемов при естественном освещении.

Если площадь световых проемов будет меньше требуемой, то это приведет к снижению освещенности и, как следствие, к снижению производительности труда, повышенной утомляемости работающих, заболеваниям и появлению травматизма.

Таблица 2.4.1. Нормирование коэффициента естественного освещения

Характеристика

зрительной работы

Наименьший размер объекта различия, мм

зрительной работы

КЕО (Е н IV), %

при верхнем и комбинированном освещении

при боковом освещении

в зоне со стойким снеговым покровом

на остальной территории

Наивысшая точность

Меньше 0,15

Очень высокая точность

От 0,15 до 0,8

Высокая точность

Выше 0,3 до 0,5

Средняя точность

Выше 0,5 до 1,0

Малая точность

Выше 1,0 до 5,0

Грубая (очень малая точность)

Больше 0,5

Работа с материалами, которые светятся, и изделиями в горячих цехах

Больше 0,5

Общие наблюдения за ходом производственного процесса:

постоянное

периодическое при постоянном нахождении людей

периодическое при периодическом нахождении людей

Таблица 2.4.2. Значение коэффициента светового климата, m

Таблица 2.4.3. Значение коэффициента солнечности климата, с

Пояс светового климата

При световых проемах, сориентированных по сторонам горизонта (азимут), град

При зенитных фонарях

во внешних стенах строений

в прямоугольных и трапециидальных фонарях

в фонарях типа "шод"

  • а) севернее 50°с.ш.
  • б) 50°с.ш. и южнее
  • а) севернее 40°с.ш.
  • б) 40°с.ш. и южнее

Рис. 2.4.3

Для исправления допущенной ошибки необходимо дополнительно вводить искусственное освещение, что вызовет постоянные дополнительные расходы. Если площадь световых проемов будет больше, то потребуется постоянные дополнительные расходы на отопление зданий. Поэтому СНиП II-4-79 запрещает для отапливаемых зданий предусматривать площадь световых проемов больше, чем требуется по настоящим нормам (рис. 2.4.5). Установленные размеры световых проемов допускается изменять на +5, -10%.

Площадь световых проемов в свету рассчитывают

При боковом освещении, м 2:

  • (2.4.8)
  • - при верхнем освещении, м 2:

где - нормированное значение КЕО;

S 0 и S ф - площадь окон и фонарей;

S п - площадь пола;

з 0 и з ф - световые характеристики окна и фонаря (ориентировочно приняты для окон 8,0 - 15,0, для фонарей 3,0 - 5,0).

Световая характеристика окон (з о) оценивается по таблице 26 с учетом характеристики помещения, а световая характеристика фонаря или светового проема (з ф) - по таблицам 31 и 32 приложения 5 СНиП ЙЙ-4-79 с учетом характеристик помещения и фонарей.

Коэффициенты, учитывающие затенение окон противостоящими зданиями (К зд), тип фонаря (К ф) определяются по таблице 3 СНиП II-4-79; К з - коэффициент запаса принимается по таблице 5.

При боковом освещении до проведения работ необходимо оценить отношение ширины (глубины) помещений (В) к расстоянию от уровня условной рабочей поверхности до верхнего края окна (h 1).

Общий коэффициент (рис.2.4.3.) светопропускания (ф 0), зависит от коэффициентов светопропускания материала (ф 1), коэффициентов, учитывающих потери света в переплетах светопроема (ф 2), потери света в несущих конструкциях (ф 3), потери света в солнцезащитных устройствах (ф 4), потери света в защитной сетке, устанавливаемой под фонарями (ф 5 =0,9). Значения коэффициентов приведены в СНиП II-4-79 приложения 5 таблицы 28, 29.

Коэффициенты, которые учитывают повышение КЕО от отражения света (r 1 и r 2) находят по таблицам 30 и 33 приложения 5 СНиП ЙЙ-4-79 с учётом коэффициента отражения (с ср) и характеристик помещения.

Чтобы правильно рассчитать площадь световых проемов (в свету) при боковом (S 0) или верхнем (S ф) освещении, необходимо знать не только параметры проектируемого помещения, но и виды работ, для которых проектируется здание, в каком световом климате Украины или СНГ строится объект, взаимное расположение объектов.

Похожие публикации