Производство полимерных изделий как бизнес. Производство полимерных изделий

Процессу переработки предшествуют выбор материала для изготовления каждого изделия, базирующийся на анализе условий его эксплуатации, конструирование изделия, выбор метода формования и оборудования, создание технол. оснастки и определение оптим. параметров процесса формования. Одновременно должен решаться вопрос утилизации отходов произ-ва.

Технол. процесс переработки включает контроль качества исходного материала или его компонентов, подготовит. операции, в ряде случаев формирование заготовки изделия, собственно формование изделия, последующие мех. и разл. рода обработки, обеспечивающие улучшение или стабилизацию св-в материала или изделия, нанесение покрытий на изделие, контроль качества готового изделия и его упаковку.

Осн. параметры процессов переработки-т-ра, и время. Нагревание приводит к увеличению податливости материала при формовании путем перевода его в вязкотекучее или эластическое состояние, к ускорению диффузионных и релаксац. процессов, а для - к послед. материала. обеспечивает уплотнение материала и создание изделий требуемой конфигурации, оказывает сопротивление внутр. силам, возникающим в материале при формовании вследствие температурных градиентов и градиентов , способствует выделению летучих продуктов. Временные параметры процесса переработки выбираются с учетом протекающих в материале физ. и хим. процессов. Оптим. параметры рассчитывают или выбирают по результатам анализа технол. св-в полуфабрикатов и изделий, физ. модели формования с учетом накопленного статистич. опыта.

Переработка основана на их способности при нагр. выше т-ры стеклования переходить в эластическое, а выше т-ры текучести и т-ры плавления-в и затвердевать при охлаждении ниже т-ры стеклования и т-ры . При переработке и происходит хим. взаимод. между (соотв. и )с образованием нового, высокомол. материала, находящегося в термостабильном состоянии и практически не обладающего р-римостью и плавкостью (см. , а также ). В нек-рых случаях (гл. обр. при переработке ) для облегчения с ингредиентами и дальнейшего формования изделий проводят предварит. .

Деформирование в эластическом состоянии и при течении сопровождается ориентацией и надмолекулярных образований, а после прекращения деформирования и течения идет обратный процесс-дезориентация. Степень сохранения ориентации в материале изделия зависит от скоростей протекания обоих процессов. В направлении ориентации нек-рые физ.-мех. характеристики материала ( , ) возрастают; при этом структура материала оказывается неравновесной и напряженной, что приводит к снижению формоустойчивости изделия, особенно при повыш. т-ре. Длит. воздействие повыш. т-ры, а в случае и значит. выделение теплоты, сопровождающее , может приводить к термоокислит. деструкции материала, а большие скорости течения материала-к его меха-нодеструкции. ряда по р-ции сопровождается выделением низкомол. продуктов, вызывающих образование вздутий и трещин в изготовляемых деталях.

Охлаждение кристаллизующихся сопровождается образованием , скорость роста, размеры и структура к-рых зависят от интенсивности охлаждения материала. Регулируя степень кристалличности и морфологию , можно направленно изменять эксплуатац. характеристики изделия.

Полуфабрикаты (или компоненты), предназначенные для формования, м.б. в виде (компаунды на основе мономеров и , р-ры и дисперсии и ), ( , на основе полиэфирных и эпоксидных ), (наполненные и ненаполненные , твердые смолы и ), гранул (ненаполненные , смолы, или , наполненные дисперсными частицами или армированные короткими волокнами), пленок, листов, плит, блоков ( и ), рыхловолокнистых композиций (спутанноволокнистые материалы, пропитанные ), на основе непрерывных волокнистых (нити, жгуты, ленты, маты, пропитанные , шпон). По технол. возможностям ненаполненные, наполненные дисперсными частицами или армированные волокнами идентичны и перерабатываются в изделия одинаковыми методами.

Методы формования изделий из ненаполненных и наполненных Формование под . Прямое прессование применяют для изготовления изделий разнообразных форм, размеров и толщин преим. из , выпускаемых в виде , гранул, слоистых заготовок из армированных , а также заготовок из . перед прессованием подвергают подготовке ( , предварит. нагрев), улучшающей их технол. св-ва и качество получаемых изделий. Подготовл. материалы перед прессованием обычно дозируют. Заданное кол-во перерабатываемого полуфабриката помещают в установленную на прессе нагретую прессформу, конфигурация оформляющей полости к-рой соответствует конфигурации детали (рис. 1). Прессформу смыкают. Материал нагревается, переходит в , под 7-50 МПа заполняет оформляющую полость и уплотняется. В прессформе материал выдерживают под до завершения или сырой , чем обеспечивается фиксация приданной материалу конфигурации. Готовое изделие выталкивают или извлекают из прессформы, как правило, при т-ре прессования.

Рис. 1. Изготовление изделий прессованием: а-загрузка прессматериала в нагретую прессформу; б-прессование; в - выталкивание изделия; 1-пуансон; 2-матрица; 3 - выталкиватель; 4-прессматериал; 5-готовое изделие.

В процессе прессования для повышения качества изделий применяют подпрессовки (попеременные подача и снятие ) и задержку подачи . Подпрессовки способствуют удалению из летучих в-в (продуктов р-ции, адсорбир. влаги, остатков р-рителей). Эта же цель достигается предварит. вакуумированием материала в оформляющей полости прессформы (прессование с вакуумированием). Задержку подачи применяют для снижения текучести , имеющих при т-ре формования очень низкую , с тем чтобы предотвратить их вытекание через зазоры прессформы в процессе уплотнения.

При переработке прессование применяют для изготовления деталей толщиной >10-15 мм, если при т-ре переработки материал имеет слишком высокую , а также если т-ра текучести близка к т-ре его деструкции.

Литьевое (трансферное) прессование применяют гл. обр. для переработки . Формование осуществляют в прессформах, оформляющая полость к-рых отделена от загрузочной камеры и соединяется с ней литниковыми каналами (рис. 2). В процессе прессования материал, помещенный в загрузочную камеру нагретой прессформы, переходит в и под 60-200 МПа по литниковому каналу перетекает в оформляющую полость прессформы, где материал дополнительно прогревается и отверждается.



Рис. 2. Изготовление изделий литьевым прессованием: а-прессформа нагрета и закрыта; б-передавливание расплавл. материала в оформляющую полость и его; в-разъем прессформы; 1-пуансон; 2-матрица; 3-выталкиватель; 4-прессматериал; 5-готовое изделие; 6-загрузочная камера; 7-остаток прессматериала, отверлившегося в литьевом канале прессформы; 8-литьевой пуансон.

Преимущество литьевого прессования-возможность изготовления изделий сложных форм с глубокими сквозными отверстиями малого диаметра или с малопрочной внутр. (внеш.) арматурой. Изделия, полученные этим методом, характеризуются меньшим напряжением, чем при прямом прессовании, т.к. процесс в оформляющей полости идет одновременно по всему объему детали, а при заполнении формы создаются условия, обеспечивающие удаление из материала летучих продуктов.

Центробежное формование применяют для изготовления изделий, имеющих форму тел вращения (втулки, трубы, полые сферы и др.), под действием центробежных сил. Таким способом перерабатывают вязкотекучие термореактивные компаунды, и , как ненаполненные, так и содержащие порошкообразные и волокнистые . При центробежном формовании или термореактивный компаунд заливают в нагретую форму, закрепленную на валу , к-рую приводят во вращение. Под действием центробежных сил перерабатываемый материал распределяется равномерным слоем по оформляющей пов-сти формы и уплотняется. После охлаждения формы ее останавливают и извлекают готовое изделие. Для изготовления невысоких втулок и изделий, имеющих геометрию параболоида вращения, применяют форму с вертикальной осью вращения; длинные трубы получают в формах с горизонтальной осью вращения, полые сферы - одноврем. вращением формы вокруг двух взаимно перпендикулярных осей. Величина развивающегося в процессе формования определяется частотой вращения формы и радиусом ее оформляющей полости и достигает 0,3-0,5 МПа. Этим методом получают обычно тонко- и толстостенные изделия, изготовление к-рых др. методами затруднительно или невозможно.

Вальцевание применяют для смешивания компонентов сырых и пластич. масс на стадии их приготовления или улучшения технол. св-в материала перед формованием изделий, а также для изготовления полуфабрикатов (листов, пленки). Вальцевание осуществляют в зазоре между валками (охлаждаемыми или нагреваемыми), вращающимися навстречу друг другу с разл. скоростью. В зависимости от аппаратурного оформления метода материал с вальцов может сниматься в виде листа или узкой непрерывной ленты.

Каландрование применяют для непрерывного формования разл. пленочных или листовых , нанесения на пов-сть листовых материалов рельефного рисунка, дублирования предварительно отформованных ленточных заготовок, армирования или сеткой при т-ре выше т-ры текучести или т-ры . Осуществляют на агрегатах непрерывного действия, осн. частью к-рых является многовалковый (рис. 6). Полимерная или резиновая композиция непрерывно поступает на с питательных вальцов или . В отличие от вальцевания при каландровании материал проходит через зазор между валков только один раз. Для получения листа заданной толщины и с гладкой пов-стью делают многовалковым, что позволяет последовательно пропускать материал через два или три зазора разного размера. В процессе каландрования в зазоре между валками подвергается интенсивной сдвига, в нем в направлении движения развиваются значит. эластические , к-рые фиксируются в изделии послед. охлаждением. Продольная ориентация обусловливает значит. св-в материала (каландровый эффект).

Каландровые агрегаты м. б. снабжены дополнит. устройствами для одно- или двухосной ориентации пленки.



Рис. 6. Производство изделий каландрованием: 1 - смеситель; 2 - вальцы; 3 - детектор ; 4-5-образный наклонный ; 5 - охлаждающие ; 6-толщиномер; 7-устройство для обрезания кромок; 8-закаточное устройство.

Прокатку применяют для обработки листовых термопластичных полуфабрикатов с целью придания им требуемых размеров поперечного сечения или повышения мех. св-в в направлении прокатки. В отличие от каландрования ее осуществляют на валковых машинах, валки к-рых вращаются навстречу друг другу с одинаковой скоростью, при т-рах, не превышающих т-ры стеклования и т-ры . В зазоре между валками происходит уплотнение материала и ориентация его в направлении прокатки вследствие развивающихся в материале вынужденных эластических .

Для формования монолитных тонкостенных изделий из заготовок (листов, труб и др.) применяют штамповку (штампование) и ее разновидности (механо-пневмоформование, вакуум-формование и др.).

Штамповку используют преим. для формования крупногабаритных объемных изделий из заготовок, получаемых литьем, прессованием, или экструзией и переведенных нагреванием в эластическое состояние. Нагретая заготовка под действием изменяет форму, заполняя оформляющую полость штампа, имеющего т-ру ниже т-ры стеклования . Для фиксации полученной конфигурации отформованное изделие охлаждают под . При штамповке можно совмещать операцию изготовления заготовки и получения из нее изделия. Заготовку в этом случае получают или экструзией и, не давая ей охладиться ниже т-ры стеклования, подвергают штамповке. В зависимости от конструкции применяемого оборудования и оснастки, формы и размеров заготовки и изделий применяют разл. виды штамповки.

Детали со стенками переменной толщины или с рельефом на пов-сти изготовляют из сравнительно толстостенных заготовок в жестких штампах, имеющих пуансон и и устанавливаемых на гидравлич. или пневматич. прессах (рис. 7). Из всех видов штамповки этот метод наиб. дорог, т.к. требует сопряженных друг с другом пуансонов и .

Рис. 7. Штамповка с помощью жесткого штампа, имеющего пуансон и : 1 - камера; 2 - ; 3 - заготовка; 4-прижимное кольцо; 5-пуансон.

Мех. штамповку пуансоном (рис. 8, а) через протяжное кольцо и механопневмоформование (рис. 8,б) применяют для изготовления изделий с резко выраженной разнотолщинностью, напр., если дно изделия должно быть значительно толще стенок. При получении изделий, на одну из пов-стей к-рых необходимо нанести рисунок с мелкими элементами, применяют гл. обр. штамповку в эластичным пуансоном, выполненным из губчатой или мягкой монолитной .



Рис. 8. Штамповка пуансоном: а-через протяжное кольцо; б-механопневмоформование; 1 -камера; 2-заготовка; 3-протяжное кольцо; 4-прижимное кольцо; 5-пуансон.

Вакуум-формованием через протяжное кольцо (рис. 9, а) из листовых заготовок получают изделия, имеющие форму тел вращения. Заготовку защемляют между прижимным и протяжным кольцом, закрепленными на торце герметичной емкости, в к-рой создают разряжение. Под действием атм. заготовка деформируется внутрь емкости, а при создании в емкости избыточного давления-в обратную сторону. Форма и размеры получаемого изделия определяются конфигурацией в плане протяжного кольца и степенью (глубиной) вытяжки заготовки, характеризующейся отношением высоты изделия к его ширине. Вакуум-формованием в (рис. 9,б)при формования до 0,09 МПа получают изделия из тонкостенных заготовок. Если такого для оформления изделий недостаточно, применяют в матри цу (рис. 10). Этот метод позволяет также получать изделия более сложной конфигурации.



Рис.9. Вакуум-формование: а-через протяжное кольцо; б-в ; 1-камера; 2-заготовка; 3-протяжное кольцо; 4-прижимное кольцо; 5-матрица.

Рис. 10. в : 1-камера; 2-заготовка; 3-при жимное кольцо; 4-матрица.

В процессе штамповки-вырубки производят изготовление плоских изделий разл. конфигурации, имеющих в плоскости детали отверстия разл. диаметра. Вырубка изделий осуществляется в штампах, оснащенных режущими элементами (для отделения изделия от заготовки по контуру), прижимом, удерживающим заготовку в необходимом положении, пуансоном и , производящими пробивку отверстий в заготовке.

Формование без . В этом случае уплотнение материала и формование изделия осуществляется под действием силы тяжести и сил .

Методом литья изготовляют изделия из отверждающих-ся компаундов на основе мономеров, смол, полимер-мономерных композиций или , имеющих консистенцию вязкой . Компаунд при нормальной или повыш. т-ре заливают в технол. оснастку (форму), в к-рой происходит его или затвердевание. Для обеспечения извлечения изделия из формы стенки формы покрывают слоем антиадгезива, напр. отвер-ждающейся силиконовой смазкой. Литьем изготовляют листы, плиты, блоки, разл. рода машиностроит. детали (шестерни, шкивы, кулачки, шаблоны), технол. оснастку для штамповки, и др. методов формования.

Подготовит. операции включают подготовку ( , разл. виды энергетич. и хим. обработки для улучшения совмещения со ), формообразующей и формующей оснастки и оборудования, а в ряде случаев - приготовление и его нанесение на . Структура и форма используемого армирующего во многом определяют выбор метода изготовления заготовки изделия.

Получение заготовки изделия выбранным методом осуществляют путем укладки армирующего в заданной последовательности на оснастке, определяющей форму будущей детали. При этом ориентация волокнистого выдерживается в соответствии с эпюрой напряжений, что обеспечивает требуемую св-в материала в изделии.

Изготовление заготовки детали может производиться с использованием - предварительно пропитанного , высушенного или подотвержден-ного (т. наз. сухой способ намотки, выкладки), с пропиткой в процессе его выкладки или намотки (т. наз. мокрый способ намотки, выкладки), с чередованием слоев непропитанного или частично пропитанного со слоями в виде плавкой пленки или с использованием , в к-рых армирующие волокна чередуются с волокнами матричного материала (волоконная технология).

Получение заготовки изделия из , армированных непрерывными волокнистыми (гл. обр. нитями, жгутами, ровингами, лентами, трикотажными материалами), осуществляют методами послойной выкладки, намотки, методом плетения или ткачества, а также комбинир. методом.

Методом послойной выкладки с из непрерывных волокон изготовляют заготовки листов, плит, обшивок, а также изделий сравнительно простых геом. форм. При послойной выкладке слои или непропитанного армирующего последовательно, соблюдая заданную ориентацию, собирают на жесткой форме (пуансоне), повторяющей форму изделия, в пакет до требуемой толщины. В процессе выкладки производят послойное уплотнение пакета с помощью ролика или др. инструмента. При серийном произ-ве применяют спец. выкладочные установки или комплексы с применением робототехники и программного управления.

Метод намотки широко применяют для изготовления заготовок изделий, имеющих форму тел вращения. При использовании однонаправленных непрерывных армирующих в виде нитей, жгутов, лент, ровницы применяют окружную, продольную, спиральную (геликоид-ную) или комбинир. намотку.

Спиральную намотку применяют для изготовления оболочек совместно с днищами, деталей конич. формы, изделий переменного сечения. При комбинир. намотке сочетают в любых вариантах спиральную, продольную или окружную намотку для достижения требуемой св-в материала. Простейший вид комбинир. намотки-продольно-поперечная. Применение многокоординатных намоточных станков с программным управлением позволяет автоматизировать процесс намотки и сделать его высокопроизводительным.

При использовании армирующих в виде , холстов, лент с перекрестным расположением волокон применяют окружную намотку с прикаткой, напр. при изготовлении труб, цилиндров, оболочек конич. формы. Если уплотнение материала вследствие натяжения или при прикатке является достаточным для обеспечения необходимой плотности материала при послед. изделия, то намотка представляет собой и метод формования.

Комбинированные методы создания заготовок изделий включают неск. разл. методов при сборке одной детали, напр. сочетание послойной выкладки и намотки.

Указанные выше методы позволяют ориентировать в одной или двух плоскостях изделия. При необходимости получения объемного армирования в трех и более плоскостях применяют метод плетения или ткачества заготовки из жгутов или нитей. Направление армирования и содержание в каждом из направлений определяются условиями эксплуатации детали. Метод плетения применяется также для создания многослойных заготовок деталей, в к-рых слои механически связаны между собой.

Изготовление заготовки детали из , армированных короткими волокнами, производят методом послойной выкладки с использованием рулонных в виде матов, холстов, войлока, как предварительно пропитанных, так и пропитываемых в процессе изготовления заготовки, а также методами напыления, насасывания и рубленых волокон. При изготовлении заготовок изделия методом напыления в качестве используют отрезки жгутов (30-60 мм), к-рые с помощью спец. установок напыляют потоком совместно со на форму до достижения требуемой толщины. Этим методом производят крупногабаритные изделия, напр. корпуса лодок и катеров, элементы легковых и грузовых автомобилей, разл. назначения, плават. бассейны, покрытия полов, облицовки бетонных конструкций.

Метод насасывания применяют при произ-ве изделий сравнительно небольших размеров. Изготовление заготовки осуществляют гл. обр. в камере насасывания, в верх. часть к-рой подается рубленое волокно (рис. 12); в ниж. части камеры на вращающемся столе смонтирована перфорир. форма, через к-рую с помощью мощного вентилятора просасывается (прокачивается) . Распыленное волокно, увлекаемое потоком , насасывается на форму до обеспечения требуемой толщины. Метод позволяет использовать как сухие в виде или плавких полимерных волокон, подаваемых совместно с армирую щим волокном, так и жидкие , наносимые на насасываемую заготовку при помощи пистолетов, расположенных по периметру камеры. После насасывания заготовка вынимается из камеры и формуется одним из перечисленных ниже методов. Насасывание, кроме того, может проводиться из волокон в жидкой среде по бумагоделательной технологии (см. ).

Рис. 12. Изготовление заготовок деталей из методом насасывания: 1 - бобина со жгутом; 2-резательное устройство; 3-воронка для порошкообразного ; 4 -камера; 5-пистолет для напыления жидкого ; 6-пер-форир, форма; 7 - вращающийся стол; 8-вентилятор.

После формирования заготовка детали подвергается формованию разл. методами. Метод контактного формования применяют при изготовлении деталей с применением полиэфирных и эпоксидных холодного преим. в сочетании с созданием заготовки методом выкладки. При этом способе формования пропитанные слои уплотняют путем прижатия кистью или прикатки роликом. материала производится без приложения постоянного в осн. при т-ре цеха.

При изготовлении крупногабаритных деталей широкое распространение получили вакуумный, вакуумно-авто-клавный и пресскамерный методы формования с использованием эластичного мешка (чехла). В этих случаях на оправку по форме изделия наносят разделит. слой (для предотвращения прилипания формуемой детали), выкладывают или наматывают заготовку изделия, на к-рую последовательно укладывают перфорир. разделит. слой, цулагу (

Полимеры окружают нас повсюду, большинство предметов общего употребления изготовлены именно из них. Существует несколько видов полимерных материалов. Об их особенностях, свойствах и характеристике поговорим далее.

Классификация полимерных материалов и изделий

Полимерные материалы объединяют в себе несколько групп пластика синтетического происхождения. Среди них отметим:

  • полимерные вещества;
  • пластмассовые составы;
  • ПКМ - полимерные композитные материалы.

В каждой из перечисленных групп присутствует полимерное вещество, с помощью которого можно определить характеристику того или иного состава. Полимеры являются высокомолекулярными веществами, в которые вводят специальные добавки, то есть стабилизаторы, пластификаторы, смазки и т.д.

Пластмасса - является композиционным материалом, в основе которых лежит полимер. Кроме того, в их составе содержится наполнитель дисперсного или коротковолокнистого типа. Наполнители не склонны к образованию непрерывных фаз. Различают два вида пластмассовых веществ:

  • термопластик;
  • термоактивы.

Первый вариант пластмасс склонен к расплавлению и дальнейшему использованию, второй вариант пластмассы не склонен к расплавлению под воздействием высокой температуры.

В соотношении со способом полимеризации, пластмассы добывают с помощью:

  • поликонцентрирования;
  • полиприсоединений.

Рассматривая виды полимерных веществ, выделим:

1. Вид полиоэфинов - полимеры с одинаковой химической природой относятся к данной разновидности полимеров. В их составе присутствует два вещества:

  • полиэтиленовое;
  • полипропиленовое.

Каждый год, в мире производят более ста пятидесяти тонн таких полимеров. Среди преимуществ полиоэфинных веществ отметим:

  • устойчивость перед окислителями и разрывом;
  • механическая стойкость;
  • отсутствие усадки;
  • изменение свойств при необходимости.

Если сравнивать полиоэфины с другими типами полимерных веществ, то первые отличаются наибольшей экологической безопасностью. Для их изготовления и переработки материалов необходимо минимальное количество энергии.

2. Полиэтилен широко распространен в процессе упаковки любых изделий. Среди преимуществ использования данного материала отметим широкую сферу применения и отличные эксплуатационные характеристики.

Строение полиэтилена довольно простое, поэтому он легко кристаллизуется.

Полиэтиленовые вещества с высоким давлением. Данный материал отличается наличием легкого матового блеска, пластичностью, наличием волнообразной текстуры. Данный вид пленки отличается высокой механической стойкостью, устойчивостью перед ударами и разрывом, прочностью даже при морозе. Для его размягчения потребуется наличие температуры около ста градусов.

Полиэтиленовые вещества с низким давлением. Пленки такого типа имеют жесткую, прочную основу, которая отличается меньшей волнообразностью, по сравнению с предыдущим вариантом полиэтилена. Для стерилизации данного вещества используется пар, а температура его размягчения составляет более ста двадцати одного градуса. Несмотря на наличие высокой стойкости перед сжатием, пленка отличается более низкими характеристиками стойкости перед ударом и разрывом. Однако, среди их преимуществ также отмечают стойкость перед влагой, химическими веществами, жиром, маслом.

Использование полиэтилена при комнатной температуре позволяет получить более мягкую и гибкую его текстуру. Однако, в морозных условиях, данные характеристики сохраняются. Поэтому полиэтилены используются для хранения замороженной продукции. Однако, при повышении температуры до ста градусов тепла, характеристики полиэтилена изменяются, он становится непригодным к использованию.

Полиэтилен низкого давления используется при изготовлении бутылок и для упаковки разного рода веществ. Он обладает отличными эксплуатационными характеристиками.

Полиэтилен высокого давления более широко применим как упаковочный полимер. У него присутствует низкая кристалличность, мягкость, гибкость и доступная стоимость.

3. Полипропилен - материал у которого присутствует отличная прозрачность, высокая температура расплавления, химическая стойкость и устойчивость перед влагой. Полипропилен способен пропускать пар, неустойчив перед кислородом и окислителями.

4. Поливинилхлорид - довольно хрупкий и не эластичный материал, который чаще всего используется в качестве добавки к полимерам. Отличается дешевой стоимостью, высоковязким расплавом, термической нестабильностью, а при нагреве, склонен выделять токсичные вещества.

Технология производства полимерных материалов

Изготовление полимеров - довольно сложный процесс, для выполнения которого следует учитывать многие технические моменты работы с данными материалами. Различают несколько разновидностей технологий изготовления материалов на полимерной основе. Полимерные материалы, изделия, оборудование, технологии, методы:

  • вальцево-каландровый метод;
  • применение трехкомпонентной технологии;
  • использование экструзии термопластиковых изделий;
  • метод литья полимеров крупной, средней и маленькой формы;
  • формирование полистирольных веществ;
  • изготовление плит из пенополистирола;
  • выдувной метод;
  • изготовление изделий на основе ППУ.

Самыми популярными методами производства изделий из полимерных материалов являются выдув и термоформировка. Для выполнения первого метода главными исходными материалами выступает полиэтилен и полипропиленовые составы. Среди основных характеристик полиэтилена отметим быструю усадку, стойкость к температурной нестабильности. С помощью выдува формируются изделия объемной формы.

С помощью термической формировки удается сделать пластиковую посуду. В таком случае, процедура изготовления изделий состоит из трех этапов. Вначале определяют количество пластика, далее он помещается в предварительно подготовленную форму, далее производится его расплавливание. Пластмасса устанавливается под прессом, далее она закрывается. В формирующей станции изделия доводится до нужной формы, на следующем этапе производится его охлаждение и затвердение. Далее изделие извлекают из формы и выбрасывают в специальный резервуар.

Использование современного оборудования для изготовления пластмассовых изделий, позволяет получить вещество, отличающееся прочностью, длительностью эксплуатации.

Выделяют оборудование автоматизированного типа, с его помощью также производят полимерные вещества. В таком случае, в процессе работы над полимерными изделиями человеческий фактор практически отсутствует вся работа проводится специальными роботами.

С помощью применения автоматизированного оборудования удается получить вещества, отличающиеся более высоким качеством, широким ассортиментом продукции и снижением расходов на их изготовление.

Различают огромное количество изделий из полимерных материалов. Они различаются между собой по величине, способу изготовления, составу, Для изготовления полимеров используют вещества в виде:

  • натуральных полиамидов с содержанием стекловолокна;
  • полипропиленов, которые делают изделия стойкими перед морозом;
  • поликарбонатов;
  • полиуретана;
  • ПВХ и т.д.

Кровельные полимерные материалы и изделия в строительной отрасли

Любая кровля должна быть долговечной и надежной. Довольно популярными отделочными материалами для кровли являются изделия на основе полимерных материалов. Среди преимуществ их использования отметим:

  • высокую степень эластичности;
  • надежность;
  • отличную прочность;
  • стойкость перед растяжением и механическими повреждениями;
  • установка практически в любом климатическом регионе;
  • легкий монтаж и простая эксплуатация;
  • длительность эксплуатации.

Использование мембранной кровли полимерного состава основывается на механическом креплении сначала теплоизоляционного и гидроизоляционного слоев. С помощью мембраны удается создать различные по форме и конфигурации кровли зданий.

Выделяют несколько видов полимерных мембран в зависимости от их состава и основных характеристик:

  • поливинилхлоридные мембраны, в составе которых присутствуют дополнительные наполнители;
  • мембраны на основе пластичных полиэфинов;
  • мембраны, в составе которых присутствует этиленпропилендиенпономер.

Первый вариант мембраны отличается особой популярностью. Основным составляющим веществом мембраны является поливинилхлорид и разного рода добавки. С их помощью состав становится более устойчив перед низкой температурой. В качества армирования пленки используется сетка из полиэстера. Она делает изделие более прочным и стойким к разрыву. Именно с помощью данных характеристик удается обеспечить механическое крепление пленки.

Если рассматривать недостатки ПВХ мембран, то стоит отметить потерю их эластичности, по прошествии определенного периода эксплуатации. Так как, добавки, присутствующие в их составе со временем теряют свойства. Кроме того, данный материал ни в коем случае не используется с гидроизоляторами на битумной основе, они между собой несовместимы. Длительность эксплуатации ПВХ мембран составляет не более тридцати лет.

Мембраны на основе термопластичных полиэфинов содержат в составе каучук и особые вещества, улучшающие их пожарную безопасность. В данном материале удается удачность скомбинировать пластичность и резину. Среди их преимуществ отметим:

  • совместимость с веществами на битумной основе;
  • длительность эксплуатации, не нуждаются в ремонте до сорока лет;
  • существует возможность ремонта поверхности, при необходимости;
  • легки в монтаже;
  • более длительный срок эксплуатации, по сравнению с материалами на основе ПВХ.

Среди недостатков отметим только более высокую стоимость такой кровли. Которая вполне перекрывается всеми ее достоинствами.

Мембраны на основе ЭПДМ отличаются отличной стойкостью перед климатическими изменениями, эластичностью и длительностью эксплуатации.

Среди большого количества полимерных строительных материалов и изделий, к особой группе относят наличную полимерную кровлю. Среди преимуществ ее применения, отмечают:

  • отличные гидроизоляционные характеристики;
  • высокий уровень прочности;
  • стойкость к изменению температуры;
  • высокий уровень морозостойкости;
  • отсутствие стыков;
  • высокая стойкость к механическим повреждениям и износу;
  • стойкость перед гниением;
  • разнообразие цветовых решений;
  • легкость выполнения монтажных работ;
  • срок эксплуатации составляет около пятнадцати лет.

Полимерная кровля наливного характера очень схожа с мембраной, однако, они различаются в технологии монтажа материала. В зависимости от технологии наливки кровли она бывает:

  • полимерной;
  • полимерно-резиновой.

Первый вариант более распространен из-за наличия в нем огромного количества преимуществ. Для нанесения данного типа кровли потребуется налить состав на поверхность и равномерно распределить его с помощью кисти или валиком. Главным преимуществом данной кровли является полная ее герметичность, эластичность и монолитность.

В соотношении с технологией установки наливной кровли, она бывает:

  • армированной;
  • неармированной;
  • комбинированной.

Наливная кровля с армированием содержит в своем составе цельную битумную эмульсию и дополнительное армирование с помощью стеклоткани. Неармированное покрытие состоит из эмульсионного материала, который наносится непосредственно на кровлю, толщиной около 1 мм. Комбинированный вариант предполагает использование полимерных мастик, гидроизоляционных материалов рулонного типа, верхнего слоя, в составе которого присутствует каменная крошка, гравий и краска на влагостойкой основе. Нижний слой кровли содержит подкладку в виде недорогого рулонного материала. При этом, армирование обеспечивается верхним слоем из каменной крошки.

В составе полимерной наливной кровли присутствует:

  • композиции полимерного типа;
  • наполнители, повышающие эксплуатационные характеристики материала;
  • грунтовка, с помощью которой выполняется подготовка основания перед нанесением кровли;
  • армирующий состав - полиэфирное волокно или стеклоткань.

Довольно распространенным вариантом является использование кровли на основе полиуретана. Она отлично ложится на поверхность и легко устанавливается на сложных участках вблизи дымохода или телевизионной антены. Полиуретан делает кровлю схожей с резиной, он придает ей таких качеств как стойкость к перепаду температур, длительность эксплуатации.

Еще одним вариантом полимера на органической основе, используемого в процессе ремонта и изготовления наливной кровли, является полимочевина. Среди ее преимуществ отметим:

  • очень быстрая полимеризация, для хождения по кровле достаточно подождать один час после нанесения материала;
  • способность проводить работы при температуре до -16 и высокой влажности;
  • отличные электроизоляционные характеристики;
  • стойкость перед ультрафиолетовым излучением;
  • пожарная безопасность и стойкость перед высокой температурой;
  • длительность эксплуатации;
  • экологическая безопасность.

Применение полимерных материалов и изделий связано с разными отраслями промышленности и общественности. Использование полимочевины особо актуально в регионах с нестабильным климатом и резкими изменениями температурного режима.

Производство изделий из полимерных материалов является сложной и ответственной задачей, так как именно из полимеров сегодня изготовляется половина предметов быта, техники, косметики и мебели.

Технологии производства изделий из полимерных материалов

При производстве изделий из полимерных материалов могут быть использованы следующие технологии:

  • Вальцево-каландровая технология.

  • Трехкомпонентная технология.

  • Экструзия термопластов.

  • Литье мелких, средних и крупных деталей из полимеров.

  • Производство полиэтиленовой пленки.

  • Формирование полистирола.

  • Изготовление пенополистирольных плит.

  • Выдувное формование.

  • Формование изделий из ППУ.

Наиболее распространенными методами являются метод выдува и метод термоформировки. В первом случае в качестве сырья используется полипропилен и полиэтилен.

Полиэтилен обладает некоторыми свойствами, в частности, быстрой усадкой и устойчивостью к температурам, что делает его самым распространенным материалом для изготовления деталей различного рода. Обычно такой метод используется для создания объемных изделий.

Метод термоформировки используется при создании флакончиков, посуды. В данном случае процесс содержит 3 стадии. Сначала определяется доза пластмассы, она отправляется в полузакрытую форму, затем ее плавят.

Пластмассу подводят под пресс, форму закрывают. Далее форму открывают, изделие попадает в формирующую станцию. Для сохранения полученной формы станция охлаждается и изделие затвердевает.

На конечном этапе несущий элемент раскрывается, изделие освобождается и вбрасывается в специальную емкость.

В современном мире производство полимерных пластмасс ведется при помощи новейшего оборудования, которое позволяет получить высококачественные, прочные и долговечные изделия.

Благодаря наличию большого выбора оборудования ассортимент продукции и ее характеристики также улучшились.

Все новинки в сфере оборудования для производства изделий из полимерных материалов будут представлены на выставке, которая пройдет в конце октября в ЦВК «Экспоцентр». Выставка будет посвящена химической технике, науке и технологиям, на ней можно будет ознакомиться с продукцией ведущих мировых брендов.

Автоматизированное оборудование для производства полимеров

Использование автоматизированного оборудования имеет множество преимуществ, так как за счет применения в технологии особых роботов, субъективный и человеческий фактор полностью исчезает.

Автоматизированный процесс литья или экструзии позволяет получить более качественные результаты производства, расширить ассортимент товаров, а также снизить трудозатраты и затраты материалов на производство.

Оборудование применяется для производства самых разных деталей по форме и размерам. Полимерные изделия могут быть как большими, так и маленькими, иметь разный состав.

Производственный комплекс оборудования, которое подойдет для изготовления различных деталей, содержит в себе обычно такие составляющие:

  • Термопластавтоматы. Такое оборудование может иметь разные характеристики, усилие прибора колеблется от 50 до 2700 тонн, то есть прибор подойдет для изготовления любых деталей.

  • Выдувные формовочные машины. Усилие для нормальной работы – 60 тонн.

  • Автоматизированные роботы разных размеров. Предназначением роботов может служить подача сырья, его погрузка и обработка. Все процессы осуществляются автоматически.

  • Комплекс приборов для производства изделий из пенополистирола.

  • Разнообразные машины для формования.

  • Тиснильный каландр.

  • Смеситель, работающий на несколько стадий. Как правило, их две.

При производстве изделий из полимеров должно быть использовано качественное сырье.

От его характеристик зависит прочность и надежность будущего изделия. Обычно для выпуска современных продуктов из полимеров используются такие материалы:

  • Полиамиды натурального происхождения, в которых содержится тальк и стекловолокно.

  • Полипропилены, а также компаунды, отличающиеся устойчивостью к морозам и ударам, а также любым механическим воздействиям.

  • Поликарбонаты.

  • Полиуретан.

  • Поливинилхлорид.

  • Натуральный АБС и компаунды с поликарбонатом.

Современные технологии производства изделий из полимерных материалов демонстрируются на выставке «Химия», проходящей ежегодно в ЦВК «Экспоцентр».

Производство и переработка полимеров

Производство полимероа

Изделия из пластика давно стали неотъемлемой частью нашей повседневной жизни. Именно поэтому производство полимеров - это перспективная и стремительно развивающаяся отрасль промышленности. Полимеры - это вещества, состоящие из больших макромолекул, которые соединяются из элементарных звеньев, или мономеров. Благодаря своим свойствам, полимерные материалы обрели такую популярность на сегодняшнем рынке. Производство изделий из полимеров насчитывает множество различных направлений, так как эти изделия с успехом используются практически во всех сферах нашей жизни, начиная от автомобильных запчастей и заканчивая обычной пищевой плёнкой. А производство полимеров в России особенно актуально, ведь наша страна богата на природные ресурсы, тогда как основным сырьём, применяемым в производстве полимеров, является нефть, а вспомогательным - природный газ.

Технология производства полимеров

Полимеры, используемые в промышленности, можно разделить на три группы. Природные полимеры, такие как каучук, целюллоза или казеиновый клей, не получили широкого распространения и мало используются. Химически обработанные природные полимеры - переработанные - используются немного больше, но всё равно не играют в современной промышленности значительной роли. Наиболее распространены сегодня в промышленности синтетические полимеры, их получают, объединяя мономеры в макромолекулы. Технология производства полимеров из мономеров включает в себя два основных способа: поликонденсация и полимеризация. В первом случае между двумя молекулами мономера образуется связь при отрывании от них небольшой молекулы другого вещества, например, аммиака, воды или хлористого водорода. Во втором же случае в мономерах разрываются двойные связи, что приводит к образованию полимерной цепи с межмономерными связями.

Завод по производству полимеров комплекса предприятий ООО «Пластик» обладает огромным научным потенциалом и современным оборудованием. При этом, технологическая база постоянно обновляется, поэтому полимеры, произведённые нами, и изделия из них отличаются высшим качеством, а ассортимент стремительно растёт.

Переработка полимеров

Не менее важным и остро стоящим является вопрос экологичности изделий из полимеров. Срок разложения обычной пластиковой бутылки или пищевой плёнки превышает стони лет. Именно поэтому так важна переработка полимеров. Производство изделий из пластикового вторичного сырья - один из вариантов решения данной проблемы, однако этот процесс сопряжён со значительным количеством трудностей. Главной загвоздкой становится то, что изделия, при производстве которых используется переработанный полимерный материал, получаются гораздо более низкого качества. Полимерные отходы значительно уступают исходным полимерам в их механических свойствах. Более того, по сравнению с исходными полимерами, изменяются параметры технологического процесса получения полимерной массы для производства изделий из вторичного сырья, потому что такое сырьё достаточно сильно отличается от исходного: изменяется вязкость, прочность, материал может содержать неполимерные включения. Однако, не смотря на все трудности, тенденция к производству из вторичных полимеров новых изделий постепенно развивается. Например, всё чаще каскадную переработку применяют к производству пластиковых бутылок, так как это не сказывается на их качестве.

Ещё одним вариантом решения проблемы экологичности является производство биоразлагаемых полимеров. На сегодня наибольшей популярностью среди таких пластмасс пользуется полилактид (PLA), так как он изготавливается из органических материалов. Также ведутся исследования в области придания способности к биоразложению другим широко распространённым в промышленности видам пластика, таким как полистирол, поливинилхлорид, полипропилен и другие. Одним из вариантов реализации этой задачи является добавление в полимерную массу органического концентрата, что не особенно сказывается на качестве получаемого изделия, но значительно сокращает срок его разложения.

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.

Похожие публикации