Лекции по микробиологии - файл Микробиология.docx. Краткая история развития микробиологии: ученые, открытия, достижения

Белова Алена, 12 группа

Самостоятельная работа 1

Предмет микробиологии

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Общий признак микроорганизмов – микроскопические размеры; отличаются они строением, происхождением, физиологией.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишённые хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишённые хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Разделом медицинской микробиологии является иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

Самостоятельная работа 2.

История развития микробиологии

Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооружённым какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Предметом изучения микробиологии является их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни.

В таксономическом отношении микроорганизмы очень разнообразны. Они включают прионы, вирусы, бактерии, водоросли, грибы, простейшие и даже микроскопические многоклеточные животные.

По наличию и строению клеток вся живая природа может быть разделена на прокариоты (не имеющие истинного ядра), эукариоты (имеющие ядро) и не имеющие клеточного строения формы жизни. Последние для своего существования нуждаются в клетках, т.е. являются внутриклеточными формами жизни (рис. 1).

По уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки все живое делят на 4 царства жизни: эукариоты, эубактерии, архебактерии, вирусы и плазмодии.

К прокариотам, объединяющим эубактерии и архебактерии, относят бактерии, низшие (сине- зелёные) водоросли, спирохеты, актиномицеты, архебактерии, риккетсии, хламидии, микоплазмы. Простейшие, дрожжи и нитчатые грибы-эукариоты.

Микроорганизмы-это невидимые простым глазом представители всех царств жизни. Они занимают низшие (наиболее древние) ступени эволюции, но играют важнейшую роль в экономике, круговороте веществ в природе, в нормальном существовании и патологии растений, животных, человека.

Микроорганизмы заселяли Землю ещё 3- 4 млрд. лет назад, задолго до появления высших растений и животных. Микробы представляют самую многочисленную и разнообразную группу живых существ. Микроорганизмы чрезвычайно широко распространены в природе и являются единственными формами живой материи, заселяющими любые, самые разнообразные субстраты (среды обитания), включая и более высокоорганизованные организмы животного и растительного мира.

Можно сказать, что без микроорганизмов жизнь в ее современных формах была бы просто невозможна.

Микроорганизмы создали атмосферу, осуществляют кругооборот веществ и энергии в природе, расщепление органических соединений и синтез белка, способствуют плодородию почв, образованию нефти и каменного угля, выветриванию горных пород, многим другим природным явлениям.

С помощью микроорганизмов осуществляются важные производственные процессы - хлебопечение, виноделие и пивоварение, производство органических кислот, ферментов, пищевых белков, гормонов, антибиотиков и других лекарственных препаратов.

Микроорганизмы как никакая другая форма жизни испытывает воздействие разнообразных природных и антропических (связанных с деятельностью людей) факторов, что, с учётом их короткого срока жизни и высокой скорости размножения, способствует их быстрому эволюционированию.

Наибольшую печальную известность имеют патогенные микроорганизмы (микробы-патогены) - возбудители заболеваний человека, животных, растений, насекомых. Микроорганизмы, приобретающие в процессе эволюции патогенность для человека (способность вызывать заболевания), вызывают эпидемии, уносящие миллионы жизней. До настоящего времени вызываемые микроорганизмами инфекционные заболевания остаются одной из основных причин смертности, причиняют существенный ущерб экономике.

Изменчивость патогенных микроорганизмов составляет основную движущую силу в развитии и совершенствовании систем защиты высших животных и человека от всего чужеродного (чужеродной генетической информации). Более того, микроорганизмы являлись до недавнего времени важным фактором естественного отбора в человеческой популяции (пример - чума и современное распространение групп крови). В настоящее время вирус иммунодефицита человека (ВИЧ) посягнул на святое святых человека - его иммунную систему.

Основные этапы развития микробиологии, вирусологии и иммунологии

К ним можно отнести следующие:

1 Эмпирических знаний (до изобретения микроскопов и их применения для изучения микромира).

Дж.Фракасторо (1546г.) предположил живую природу агентов инфекционных заболеваний- contagium vivum.

2 Морфологический период занял около двухсот лет.

Антони ван Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. Несовершенство приборов (максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах.

3.Физиологический период (с 1875г.)- эпоха Л.Пастера и Р. Коха.

Л. Пастер - изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления (аттенуации) вирулентности и получения вакцин (вакцинных штаммов).

Р. Кох - метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры (запятой Коха), туберкулёза (палочки Коха), совершенствование техники микроскопии. Экспериментальное обоснование критериев Хенле, известные как постулаты (триада) Хенле- Коха.

4 Иммунологический период.

И.И. Мечников - “поэт микробиологии” по образному определению Эмиля Ру. Он создал новую эпоху в микробиологии - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета.

Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. В последующей многолетней и плодотворной дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета, и родилась наука иммунология.

В дальнейшем было установлено, что наследственный и приобретенный иммунитет зависит от согласованной деятельности пяти основных систем: макрофагов, комплемента, Т- и В- лимфоцитов, интерферонов, главной системы гистосовместимости, обеспечивающих различные формы иммунного ответа. И.И.Мечникову и П.Эрлиху в 1908г. была присуждена Нобелевская премия.

12 февраля 1892г. на заседании Российской академии наук Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И. Ивановского - ее основоположником. Впоследствии оказалось, что вирусы вызывают заболевания не только растений, но и человека, животных и даже бактерий. Однако только после установления природы гена и генетического кода вирусы были отнесены к живой природе.

5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин, и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго - вне хромосомного (плазмидного) генома бактерий.

Изучение плазмид показало, что они представляют собой еще более просто устроенные организмы, чем вирусы, и в отличии от бактериофагов не вредят бактериям, а наделяют их дополнительными биологическими свойствами. Открытие плазмид существенно дополнило представления о формах существования жизни и возможных путях ее эволюции.

6. Современный молекулярно-генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа.

В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Использование бактерий, вирусов, а затем и плазмид в качестве объектов молекулярно-биологических и генетических исследований привело к более глубокому пониманию фундаментальных процессов, лежащих в основе жизни. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно-генетические закономерности, свойственные более высоко организованным организмам.

Расшифровка генома кишечной палочки сделало возможным конструирование и пересадку генов. К настоящему времени генная инженерия создала новые направления биотехнологии.

Расшифрованы молекулярно-генетическая организация многих вирусов и механизмы их взаимодействия с клетками, установлены способность вирусной ДНК встраиваться в геном чувствительной клетки и основные механизмы вирусного канцерогенеза.

Подлинную революцию претерпела иммунология, далеко вышедшая за рамки инфекционной иммунологии и ставшая одной из наиболее важных фундаментальных медико-биологических дисциплин. К настоящему времени иммунология - это наука, изучающая не только защиту от инфекций. В современном понимании иммунология - это наука, изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании структурной и функциональной целостности организма.

Иммунология в настоящее время включает ряд специализированных направлений, среди которых, наряду с инфекционной иммунологией, к наиболее значимым относятся иммуногенетика, иммуноморфология, трансплантационная иммунология, иммунопатология, иммуногематология, онкоиммунология, иммунология онтогенеза, вакцинология и прикладная иммунодиагностика.

Микробиология и вирусология как фундаментальные биологические науки также включают ряд самостоятельных научных дисциплин со своими целями и задачами: общую, техническую (промышленную), сельскохозяйственную, ветеринарную и имеющую наибольшее значение для человечества медицинскую микробиологию и вирусологию.

Медицинская микробиология и вирусология изучает возбудителей инфекционных болезней человека (их морфологию, физиологию, экологию, биологические и генетические характеристики), разрабатывает методы их культивирования и идентификации, специфические методы их диагностики, лечения и профилактики.

7.Перспективы развития.

На пороге 21 века микробиология, вирусология и иммунология представляют одно из ведущих направлений биологии и медицины, интенсивно развивающееся и расширяющее границы человеческих знаний.

Иммунология вплотную подошла к регулированию механизмов самозащиты организма, коррекции иммунодефицитов, решению проблемы СПИДа, борьбе с онкозаболеваниями.

Создаются новые генно- инженерные вакцины, появляются новые данные об открытии инфекционных агентов - возбудителей “соматических” заболеваний (язвенная болезнь желудка, гастриты, гепатиты, инфаркт миокарда, склероз, отдельные формы бронхиальной астмы, шизофрения и др.).

Появилось понятие о новых и возвращающихся инфекциях (emerging and reemerging infections). Примеры реставрации старых патогенов- микобактерии туберкулеза, риккетсии группы клещевой пятнистой лихорадки и ряд других возбудителей природноочаговых инфекций. Среди новых патогенов- вирус иммунодефицита человека (ВИЧ), легионеллы, бартонеллы, эрлихии, хеликобактер, хламидии (Chlamydia pneumoniae). Наконец, открыты вироиды и прионы - новые классы инфекционных агентов.

Вироиды - инфекционные агенты, вызывающие у растений поражения, сходные с вирусными, однако эти возбудители отличаются от вирусов рядом признаков: отсутствием белковой оболочки (голая инфекционная РНК), антигенных свойств, одноцепочечной кольцевой структурой РНК (из вирусов - только у вируса гепатита D), малыми размерами РНК.

Прионы (proteinaceous infectious particle- белкоподобная инфекционная частица) представляют лишенные РНК белковые структуры, являющиеся возбудителями некоторых медленных инфекций человека и животных, характеризующихся летальными поражениями центральной нервной системы по типу губкообразных энцефалопатии й- куру, болезнь Крейтцфельдта - Якоба, синдром Герстманна- Страусслера- Шайнкера, амниотрофический лейкоспонгиоз, губкообразная энцефалопатия коров (коровье “бешенство”), скрепи у овец, энцефалопатия норок, хроническая изнуряющая болезнь оленей и лосей. Предполагается, что прионы могут иметь значение в этиологии шизофрении, миопатий. Существенные отличия от вирусов, прежде всего отсутствие собственного генома, не позволяют пока рассматривать прионы в качестве представителей живой природы.

3. Задачи медицинской микробиологии.

К ним можно отнести следующие:

    Установление этиологической (причинной) роли микроорганизмов в норме и патологии.

    Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определения) возбудителей.

    Бактериологический и вирусологический контроль окружающей среды, продуктов питания, соблюдения режима стерилизации и надзор за источниками инфекции в лечебных и детских учреждениях.

    Контроль за чувствительностью микроорганизмов к антибиотикам и другим лечебным препаратам, состоянием микро биоценозов (микрофлорой) поверхностей и полостей тела человека.

4. Методы микробиологической диагностики.

Методы лабораторной диагностики инфекционных агентов многочисленны, к основным можно отнести следующие.

    Микроскопический- с использованием приборов для микроскопии. Определяют форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определёнными красителями.

    К основным способам микроскопии можно отнести световую микроскопию (с разновидностями- иммерсионная, темнопольная, фазово - контрастная, люминесцентная и др.) и электронную микроскопию. К этим методам можно также отнести авторадиографию (изотопный метод выявления).

    Микробиологический (бактериологический и вирусологический) - выделение чистой культуры и ее идентификация.

    Биологический - заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).

    Иммунологический (варианты - серологический, аллергологический) - используется для выявления антигенов возбудителя или антител к ним.

    Молекулярно-генетический - ДНК- и РНК- зонды, полимеразная цепная реакция (ПЦР) и многие другие.

Заключая изложенный материал, необходимо отметить теоретическое значение современной микробиологии, вирусологии и иммунологии. Достижения этих наук позволили изучить фундаментальные процессы жизнедеятельности на молекулярно-генетическом уровне. Они обусловливают современное понимание сущности механизмов развития многих заболеваний и направления их более эффективного предупреждения и лечения.

Микробиологические процессы широко применяют в различных отраслях народного хозяйства. В их основе лежит использование в промышленности биологических систем и процессов, ими вызываемых. В основе многих производств лежат реакции обмена веществ, происходящие при росте и размножении некоторых микроорганизмов.

В настоящее время с помощью микроорганизмов производят кормовые белки, ферменты, витамины, аминокислоты и антибиотики, органические кислоты, липиды, гормоны, препараты для сельского хозяйства и т.д.

В пищевой промышленностимикроорганизмы используются при получении ряда продуктов. Так, алкогольные напитки- вино, пиво, коньяк, спирт-и другие продукты получают при помощи дрожжей. В хлебопекарной промышленности используют дрожжи и бактерии, в молочной промышленности -молочнокислые бактерии и т.д.

Среди многообразия вызываемых микроорганизмами процессов одним из существенных является брожение.

Под брожением понимают превращение углеводов и некоторых других органических соединений в новые вещества под воздействием ферментов, продуцируемых микроорганизмами. Известны различные виды брожения. Обычно их называют по конечным продуктам, образующимся в процессе брожения, например спиртовое, молочнокислое, уксуснокислое и др.

Многие виды брожения- спиртовое, молочнокислое, ацетонобутиловое, уксуснокислое, лимоннокислое и другие, вызываемые различными микроорганизмами, - используют в промышленности. Например, в производстве этилового спирта, хлеба, пива применяют дрожжи; в производстве лимонной кислоты - плесневые грибы; в производстве уксусной и молочной кислот, ацетона¾ бактерии. Основная цель указанных производств превращение - субстрата (питательной среды) под действием ферментов микроорганизмов в необходимые продукты. В других производствах, например в производстве хлебопекарных дрожжей, главной задачей является накопление максимального количества культивируемых дрожжей.

Основные группы микроорганизмов, используемых в отраслях пищевой промышленности, - бактерии, дрожжевые и плесневые грибы.

Бактерии. Используют в качестве возбудителей молочнокислого, уксуснокислого, маслянокислого. ацетонобутилового брожения. Культурные молочнокислые бактерии используют при получении молочной кислоты, в хлебопечении, иногда в спиртовом производстве. Они превращают сахар в молочную кислоту.

В производстве ржаного хлеба важная роль принадлежит молочнокислым бактериям. В процессе получения ржаного хлеба участвуют истинные (гомоферментативные) и неистинные (гетероферментативные) молочнокислые бактерии. Гетероферментативные молочнокислые бактерии наряду с молочной кислотой образуют летучие кислоты (в основном уксусную), спирт и диоксид углерода. Истинные бактерии в ржаном тесте участвуют только в кислотообразовании, а неистинные наряду с кислотообразованием оказывают существенное влияние на разрыхление теста, являясь энергичными газообразователями. Молочнокислые бактерии ржаного теста существенное влияние оказывают также на вкус хлеба, так как он зависит от общего количества кислот, содержащихся в хлебе, и от их соотношения. Кроме того, молочная кислота оказывает влияние на процесс образования и структурно-механические свойства ржаного теста.


Маслянокислое брожение, вызываемое маслянокислыми бактериями, используют для производства масляной кислоты, эфиры которой применяют в качестве ароматических веществ, а для спиртового производства эти бактерии опасны,так как масляная кислота подавляет развитие, дрожжей и инактивирует a-амилазу.

К особым видам маслянокислых бактерий относятся ацетонобутиловые бактерии, превращающие крахмал и другие углеводы в ацетон, бутиловый и этиловый спирты. Эти бактерии используют в качестве возбудителей брожения в ацетонобутиловом производстве.

Уксуснокислые бактерии используют для получения уксуса (раствора уксусной кислоты), так как они способны окислять этиловый спирт в уксусную кислоту.

Следует отметить, что уксуснокислое брожение является вредным для спиртового производства. так как приводит к снижению выхода спирта, а в пивоварении ухудшает качество пива, вызывает его порчу.

Наука биология включает в себя большое количество подразделов и дочерних наук. Однако одной из самых молодых и перспективных, полезных для человека и его деятельности является микробиология. Сравнительно недавно возникшая, но стремительно набравшая обороты в развитии, эта наука на сегодняшний день сама стала родоначальницей таких разделов, как биотехнология и Что такое микробиология и как проходили этапы ее становления и развития? Разберемся в этом вопросе подробнее.

Что такое микробиология?

В первую очередь, микробиология - это наука. Объемная, интересная, молодая, но динамично развивающаяся наука. Этимология слова ведет свое происхождение от греческого языка. Так, "mikros" означает "малый", вторая часть слова происходит от "bios", что значит "жизнь", и заключительная часть от греч. "logos", что переводится как учение. Теперь можно дать дословный ответ на вопрос, что такое микробиология. Это учение о микро-жизни.

Другими словами, это изучение самых мелких живых существ, которые не видимы невооруженным глазом. К таким одноклеточным организмам относятся:

  1. Прокариоты (безъядерные организмы, или не имеющие оформленного ядра):
  • бактерии;
  • археи.

2. Эукариоты (организмы, имеющие оформленное ядро):

  • одноклеточные водоросли;
  • простейшие.

3. Вирусы.

Однако приоритетное значение в микробиологии отводится изучению именно бактерий самых разных видов, форм и способов получения энергии. Именно в этом состоят основы микробиологии.

Предмет изучения науки

На вопрос, что изучает микробиология, можно ответить так: она изучает внешнее многообразие бактерий по форме и размерам, их влияние на окружающую среду и на живые организмы, способы питания, развития и размножения микроорганизмов, а также их влияние на хозяйственную и практическую деятельность человека.

Микроорганизмы - это существа, способные обитать в самых разнообразных условиях. Для них практически нет пределов по температуре, по кислотности и щелочности среды, давлению и влажности. При любых условиях существует хотя бы одна (а чаще всего множество) группа бактерий, способная выживать. Сегодня известны сообщества микроорганизмов, которые заселяют совершенно анаэробные условия внутри вулканов, на дне термоисточников, в темных глубинах океанов, суровых условиях гор и скал и так далее.

Науке известны сотни видов микроорганизмов, которые со временем складываются в тысячи. Однако установлено, что это только малая толика того разнообразия, что есть в природе. Поэтому работы у микробиологов очень много.

Одним из самых знаменитых центров, в котором происходило подробное изучение микроорганизмов и всех процессов, с ними связанных, являлся Пастеровский институт во Франции. Названный в честь знаменитого основателя микробиологии как науки Луи Пастера, этот институт микробиологии выпустил из своих стен массу замечательных специалистов, которыми были совершены не менее замечательные и значительные открытия.

В России на сегодняшний день действует институт микробиологии им. С. Н. Виноградского РАН, который является самым крупным исследовательским центром в области микробиологии в нашей стране.

Исторический экскурс в микробиологическую науку

История развития микробиологии как науки складывается из трех основных условных этапов:

  • морфологический или описательный;
  • физиологический или накопительный;
  • современный.

В целом, история микробиологии насчитывает в своем развитии около 400 лет. То есть начало возникновения приходится примерно на XVII век. Поэтому и считается, что она достаточно молодая наука в сравнении с другими разделами биологии.

Морфологический или описательный этап

Само название говорит о том, что на данном этапе проходило, строго говоря, просто накопление знаний о морфологии бактериальных клеток. Началось все с открытия прокариот. Данная заслуга принадлежит родоначальнику микробиологической науки итальянцу Антонио ван Левенгуку, который обладал острым умом, цепким взглядом и хорошим умением логически мыслить и обобщать. Будучи также неплохим техником, он сумел выточить линзы, дающие увеличение в 300 раз. Причем повторить его достижение смогли только в середине XX века русские ученые. И то не вытачиванием, а выплавкой линз из оптического стекловолокна.

Вот эти линзы и послужили материалом, через который Левенгук обнаружил микроорганизмы. Причем изначально он ставил перед собой задачу весьма прозаичного характера: ученого интересовало, почему хрен такой горький. Растерев части растения и рассмотрев их под микроскопом собственного производства, он и увидел целый живой мир крошечных созданий. Было это в 1695 году. С этих пор Антонио начинает активно изучать и описывать различные виды бактериальных клеток. Он различает их только по форме, однако и это уже немало.

Левенгуку принадлежит около 20 рукописных томов, которые описывают подробно шаровидные, палочковидные, спиральные и другие виды бактерий. Им написан первый труд по микробиологии, который называется "Тайны природы, открытые Антони ван Левенгуком". Первая попытка систематизировать и обобщить накопленные знания по морфологии бактерий принадлежит ученому О. Мюллеру, который предпринял ее в 1785 году. С этого момента история развития микробиологии начинает набирать свои обороты.

Физиологический или накопительный этап

На данном этапе развития науки были изучены механизмы, лежащие в основе жизнедеятельности бактерий. Рассмотрены процессы, в которых они принимают участие и которые без них невозможны в природе. Была доказана невозможность самозарождения жизни без участия живых организмов. Все эти открытия были совершены в результате экспериментов великого ученого-химика, но после этих открытий еще и микробиолога, Луи Пастера. Сложно переоценить его значение в развитии этой науки. История микробиологии вряд ли сумела бы развиться так быстро и полно, если бы не этот гениальный человек.

Открытия Пастера можно отобразить несколькими основными пунктами:

  • доказал, что знакомый людям издревле процесс брожения сахаристых веществ обусловлен наличием определенного вида микроорганизмов. Причем для каждого вида брожения (молочно-кислое, спиртовое, масляное и так далее) характерно наличие специфической группы бактерий, которые его и осуществляют;
  • ввел в пищевую отрасль процесс пастеризации для избавления продуктов от микрофлоры, вызывающей их гниение и порчу;
  • ему принадлежит заслуга повышения иммунитета к болезням путем введения вакцины в организм. То есть Пастер - родоначальник прививок, именно он доказал, что болезни вызываются наличием болезнетворных бактерий;
  • разрушил представления об аэробности всего живого и доказал, что для жизни многих бактерий (маслянокислых, например) кислород вообще не нужен, и даже вреден.

Главной неоспоримой заслугой Луи Пастера стало то, что все свои открытия он доказывал экспериментально. Так, что ни у кого не могло оставаться сомнений в справедливости полученных результатов. Но на этом история микробиологии, конечно, не заканчивается.

Еще одним ученым, работавшим в XIX веке и внесшим неоценимый вклад в изучение микроорганизмов, стал - немецкий ученый, которому принадлежит заслуга выведения чистых линий бактериальных клеток. То есть в природе все микроорганизмы тесно взаимосвязаны между собой. Одна группа в процессе жизнедеятельности создает для другой, другая делает тоже самое для третьей и так далее. То есть это те же цепи питания, что и у высших организмов, только внутри бактериальных сообществ. Вследствие этого очень сложно изучить какое-то отдельное сообщество, группу микроорганизмов, ведь их размеры чрезвычайно малы (1 -6 м или 1 мкм) и, находясь в постоянном тесном взаимодействии между собой, они не поддаются тщательному изучению поодиночке. Идеальной представлялась возможность вырастить множество идентичных клеток бактерий одного сообщества в искусственных условиях. То есть получить массу одинаковых клеток, которые будут видны невооруженным глазом и изучить процессы у которых станет значительно легче.

Таким образом было накоплено множество ценных сведений о жизнедеятельности бактерий, их пользе и вреде для человека. Развитие микробиологии пошло еще более интенсивным путем.

Современный этап

Современная микробиология - это целый комплекс подразделов и мини-наук, которые занимаются изучением не только самих бактерий, но и вирусов, грибков, архей и всех известных и вновь открываемых микроорганизмов. На вопрос, что такое микробиология, сегодня можно дать очень полный и развернутый ответ. Это комплекс наук, занимающихся изучением жизнедеятельности микроорганизмов, их применения в практической жизни человека в разных областях и сферах, а также влияния микроорганизмов друг на друга, на окружающую среду и живые организмы.

В связи с таким обширным понятием микробиологии следует привести современную градацию данной науки на разделы.

  1. Общая.
  2. Почвенная.
  3. Водная.
  4. Сельскохозяйственная.
  5. Медицинская.
  6. Ветеринарная.
  7. Космическая.
  8. Геологическая.
  9. Вирусология.
  10. Пищевая.
  11. Промышленная (техническая).

Каждый из приведенных разделов занимается подробным изучением микроорганизмов, их влияния на жизнь и здоровье людей и животных, а также возможности использования бактерий в практических целях для улучшения качества жизни человечества. Все это в комплексе и есть то, что изучает микробиология.

Наибольший вклад в развитие современных методов микробиологии, способов выведения и возделывания штаммов микроорганизмов внесли такие ученые, как Вольфрам Циллиг и Карл Штеттер, Карл Везе, Норман Пейс, Уотсон Крик, Полинг, Цукеркандль. Из отечественных ученых это такие имена, как И. И. Мечников, Л. С. Ценковский, Д. И. Ивановский, С. Н. Виноградский, В. Л. Омелянский, С. П. Костычев, Я. Я. Никитинский и Ф. М. Чистяков, А. И. Лебедев, В. Н. Шапошников. Благодаря работам перечисленных ученых, были созданы способы борьбы с серьезными болезнями животных и людей (сибирская язва, сахарный клещ, ящур, оспа и так далее). Были созданы способы повышения иммунитета к бактериологическим и вирусным заболеваниям, получены штаммы микроорганизмов, способных перерабатывать нефть, создавать в процессе жизнедеятельности массу различных органических веществ, очищать и улучшать экологическую обстановку, разлагать нераспадающиеся химические соединения и многое другое.

Вклад этих людей поистине неоценим, поэтому некоторые из них (Мечников И. И.) получили Нобелевскую премию за свои работы. На сегодняшний день существуют дочерние науки, образовавшиеся на основе микробиологии, которые являются самыми передовыми в биологии - это биотехнология, биоинженерия и генная инженерия. Работа каждой из них направлена на получение организмов или группы организмов с заранее заданными свойствами, удобными человеку. На выведение новых методов работы с микроорганизмами, на получение максимальной выгоды от использования бактерий.

Таким образом, этапы развития микробиологии хотя и немногочисленны, однако очень содержательны и полны событиями.

Методы изучения микроорганизмов

Современные методы микробиологии основаны на работе с чистыми культурами, а также использовании новейших достижений техники (оптической, электронной, лазерной и так далее). Вот основные из них.

  1. Использование микроскопических технических средств. Как правило, только световые микроскопы полного результата не дают, поэтому применяются также люминесцентные, лазерные и электронные.
  2. Посевы бактерий на специальных питательных средах для выведения и культивирования абсолютно чистых колоний культур.
  3. Физиолого-биохимические методы анализа культуры микроорганизмов.
  4. Молекулярно-биологические методы анализа.
  5. Генетические методы анализа. На сегодняшний день стало возможным проследить генеалогическое древо практически каждой открытой группы микроорганизмов. Это стало возможным благодаря работам Карла Везе, который сумел расшифровать участок генома колонии бактерий. С этим открытием стало возможным построение филогенетической системы прокариот.

Совокупность перечисленных методов позволяет получать полную и подробную информацию о любом из вновь открывающихся или уже открытых микроорганизмов и находить им правильное применение.

Этапы микробиологии, которые она прошла в своем становлении как наука, не всегда включали такой щедрый и точный набор методов. Однако примечательно, что самым действенным в любые времена является метод экспериментальный, именно он послужил основой для накопления знаний и умений в работе с микромиром.

Микробиология в медицине

Один из наиболее важных и значимых именно для человеческого здоровья разделов микробиологии является медицинская микробиология. Предметом ее изучения стали вирусы и патогенные бактерии, которые вызывают тяжелые заболевания. Поэтому перед медиками-микробиологами стоит задача: выявить патогенный организм, культивировать его чистую линию, изучить особенности жизнедеятельности и причины, по которым наносится вред организму человека, и найти средство для устранения данного действия.

После того как чистая культура патогенного организма будет получена, необходимо провести тщательный молекулярно-биологический анализ. На основе результатов провести испытание устойчивости организмов к антибиотикам, выявить пути распространения заболевания и выбрать наиболее эффективный метод лечения против данного микроорганизма.

Именно медицинская микробиология, в том числе ветеринарная, помогла решить ряд злободневных проблем человечества: созданы бешенства, рожи непарнокопытных, оспы овец, анаэробных инфекций, туляремии и паратифа, стало возможным избавление от чумы и парапневмонии и так далее.

Пищевая микробиология

Основы микробиологии, санитарии и гигиены тесно взаимосвязаны между собой и вообще едины. Ведь патогенные организмы способны распространяться гораздо быстрее и в большем объеме, когда условия санитарии и гигиены оставляют желать лучшего. И в первую очередь это находит отражение в пищевой промышленности, при массовых производствах продуктов питания.

Современные данные о морфологии и физиологии микроорганизмов, биохимических процессах, вызываемых ими, а также влияние экологических факторов на микрофлору, развивающуюся в продуктах питания при транспортировании, хранении, реализации и переработке сырья, позволяют избежать многих проблем. Роль микроорганизмов в процессе формирования и изменения качества пищевых продуктов и возникновения ряда заболеваний, вызываемых патогенными и условно-патогенными видами, весьма значительна, и поэтому задачей пищевой микробиологии, санитарии и гигиены является эту роль выявить и повернуть на благо человеку.

Также пищевая микробиология культивирует бактерии, способные преобразовывать из нефти белки, использует микроорганизмы для разложения пищевых продуктов, для обработки многих товаров питания. Процессы брожения на основе молочно-кислых и масляно-кислых бактерий дают человечеству множество необходимых продуктов.

Вирусология

Совершенно отдельная и очень большая группа микроорганизмов, которая на сегодняшний день является самой малоизученной - это вирусы. Микробиология и вирусология - две тесно взаимосвязанные категории микробиологической науки, которые изучают патогенные бактерии и вирусы, способные нанести тяжкий вред здоровью живых организмов.

Вирусология раздел очень обширный и сложный, поэтому заслуживает отдельного изучения.

Микробиологией называют науку о микроскопических живых существах, размер которых не превышает 1 мм. Такие организмы можно рассмотреть только с помощью увеличительных приборов. Объектами микробиологии являются представители разных групп живого мира: бактерии, археи, простейшие, микроскопические водоросли, низшие грибы. Все они характеризуются малыми размерами и объединяются общим термином «микроорганизмы».

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой - являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология - это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

История микробиологии

История микробиологии исчисляется примерно с 1661 г, когда голландский торговец сукном Антони ван Левенгук (1632-1723) впервые описал микроскопические существа, наблюдаемые им в микроскоп собственного изготовления. В своих микроскопах Левенгук использовал одну короткофокусную линзу, закрепленную в металлическую оправу. Перед линзой находилась толстая игла, к кончику которой прикреплялся исследуемый объект. Иглу можно было передвигать относительно линзы с помощью двух фокусирующих винтов. Линзу следовало приложить к глазу и через нее рассматривать объект на кончике иглы. Будучи по складу характера любознательным и наблюдательным человеком, Левенгук изучил различные субстраты естественного и искусственного происхождения, рассмотрел под микроскопом огромное количество объектов и сделал очень точные рисунки. Он исследовал микроструктуру растительных и животных клеток, сперматозоиды и эритроциты, строение сосудов растений и животных, особенности развития мелких насекомых. Достигнутое увеличение (50-300 раз) позволило Левенгуку увидеть микроскопические существа, названные им «зверушками», описать их основные группы, а также сделать вывод о том, что они вездесущи. Свои заметки о представителях мира микробов (простейших, плесневых грибах и дрожжах, различных формах бактерий - палочковидных, сферических, извитых), о характере их движения и устойчивых сочетаниях клеток Левенгук сопровождал тщательными зарисовками и в виде писем направлял в Английское Королевское общество, которое имело целью поддерживать обмен информацией среди научной общественности. После смерти Левенгука изучение микроорганизмов долго сдерживалось несовершенством увеличительных приборов. Только к середине XIX века были созданы модели световых микроскопов, позволившие другим исследователям детально описать основные группы микроорганизмов. Этот период истории микробиологии можно условно назвать описательным.

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

При исследовании причин прокисания вина Л.Пастер установил, что сбраживание виноградного сока и образование спирта осуществляют дрожжи, а порчу вина (появление посторонних запахов, вкусов и ослизнение напитка) вызывают другие микробы. Для предохранения вина от порчи Пастер предложил способ тепловой обработки (нагревание до 70 о С) сразу после брожения, чтобы уничтожить посторонние бактерии. Такой прием, применяемый и сегодня для предохранения молока, вина и пива, получил название «пастеризация».

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма , при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами .

Пастер окончательно опроверг возможность самозарождения живых существ из неживой материи в обычных условиях. К тому времени вопрос о самозарождении животных и растений из неживого материала был уже решен отрицательно, а относительно микроорганизмов спор продолжался. Опыты итальянского ученого Ладзаро Спалланцани и французского исследователя Франсуа Аппера по длительному прогреванию питательных субстратов в герметичных сосудах для предотвращения развития микробов подвергались критике сторонников теории самозарождения: они считали, что именно укупорка сосудов препятствует проникновению внутрь некой «жизненной силы». Пастером был проведен изящный эксперимент, поставивший точку в этой дискуссии. Прогретый питательный бульон был помещен в открытый стеклянный сосуд, горлышко которого было вытянуто трубкой и S-образно изогнуто. Воздух мог беспрепятственно проникать внутрь колбы, а клетки микроорганизмов оседали в нижнем изгибе горлышка и не попадали в бульон. В этом случае бульон оставался стерильным неопределенно долго. Если же колбу наклоняли так, что жидкость заполняла нижний изгиб, а затем бульон возвращали обратно в сосуд, то внутри быстро начинали развиваться микроорганизмы.

Работы по изучению «болезней» вина позволили ученому предположить, что возбудителями инфекционных заболеваний животных и человека также могут быть микроорганизмы. Пастер выделил возбудителей ряда болезней и изучил их свойства. Опыты с патогенными микроорганизмами показали, что при определенных условиях они становились менее агрессивными и не убивали зараженный организм. Пастер сделал вывод о возможности прививать ослабленных возбудителей здоровым и зараженным людям и животным, чтобы стимулировать защитные силы организма в борьбе с инфекцией. Ученый назвал материал для прививок вакциной, а сам процесс - вакцинацией. Пастер разработал способы прививок против ряда опасных заболеваний животных и человека, в том от бешенства.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

Эти правила получили в дальнейшем название «триада Коха». При исследовании возбудителя сибирской язвы ученый наблюдал образование клетками особых плотных телец (спор). Кох пришел к выводу, что устойчивость этих бактерий в окружающей среде связана со способностью к спорообразованию. Именно споры в течение длительного времени способны заражать скот и в тех местах, где ранее находились больные животные или устраивались скотомогильники.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

И.И.Мечников разработал фагоцитарную теорию иммунитета, рассматривавшую процесс поглощения лейкоцитами животных чужеродных агентов как защитную реакцию макроорганизма. Инфекционное заболевание представлялось в этом случае как противостояние патогенных микроорганизмов и фагоцитов организма-хозяина, а выздоровление означало «победу» фагоцитов. В дальнейшем, работая в бактериологических лабораториях сначала в Одессе, а потом в Париже, И.И.Мечников продолжал изучение фагоцитоза, а также принимал участие в исследовании возбудителей сифилиса, холеры и других инфекционных заболеваний и разработке ряда вакцин. На склоне лет И.И.Мечников заинтересовался проблемами старения человека и обосновал полезность использования в пище больших количеств кисломолочных продуктов, содержащих «живые» закваски. Он пропагандировал использование суспензии молочнокислых микроорганизмов, утверждая, что такие бактерии и образуемые ими молочнокислые продукты способны подавлять гнилостные микроорганизмы, производящие вредные шлаки в кишечнике человека.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества - антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов - углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В 1929 г. английским бактериологом и иммунологом Александром Флемингом (1881-1955) был открыт первый антибиотик пенициллин. Ученый интересовался вопросами развития инфекционных болезней и действия на них различных химических препаратов (сальварсана, антисептиков). Во время Первой мировой войны в госпиталях раненые сотнями умирали от заражения крови. Повязки с антисептиками лишь немного облегчали состояние больных. Флеминг поставил опыт, создав модель рваной раны из стекла и заполнив ее питательной средой. В качестве «микробного загрязнения» он использовал навоз. Промывая стеклянную «рану» раствором сильного антисептика и затем заполняя ее чистой средой Флеминг показал, что антисептики не убивают микроорганизмы в неровностях «раны» и не останавливают инфекционный процесс. Осуществляя множество посевов на твердые среды в чашках Петри, ученый проверял антимикробный эффект различных выделений человека (слюны, слизи, слезной жидкости) и открыл лизоцим, убивающий некоторые болезнетворные бактерии. Чашки с посевами сохранялись Флемингом длительное время и многократно просматривались. В тех чашках, куда случайно попали споры грибов и выросли колонии плесени, ученый заметил отсутствие роста бактерий вокруг этих колоний. Специально поставленные эксперименты показали, что вещество, выделяемое плесневым грибом из рода Penicillium губительно для бактерий, но не опасно для подопытных животных. Флеминг назвал это вещество пенициллином. Использование пенициллина в качестве лекарства стало возможным только после выделения его из питательного бульона и получения в химически чистом виде (в 1940 г.), что в дальнейшем привело к разработке целого класса лекарственных препаратов, названных антибиотиками. Начались активные поиски новых продуцентов антимикробных веществ и выделение новых антибиотиков. Так, в 1944 г. американский микробиолог Зельман Ваксман (1888-1973) получил с помощью ветвящихся бактерий рода Streptomyces широко применяемый антибиотик стрептомицин.

Ко второй половине XIX века микробиологами был накоплен огромный материал, свидетельствующий о чрезвычайном разнообразии типов микробного обмена веществ. Изучению многообразия жизненных форм и выявлению их общих черт посвящены работы голландского микробиолога и биохимика Алберта Яна Клюйвера (1888-1956) и его учеников. Под его руководством было проведено сравнительное изучение биохимии далеко отстоящих друг от друга систематических и физиологических групп микроорганизмов, а также анализ данных физиологии и генетики. Эти работы позволили делать вывод об однотипности макромолекул, составляющих все живое, и об универсальности биологической «энергетической валюты» - молекул АТФ. Разработка общей схемы метаболических путей в значительной степени базируется на исследованиях фотосинтеза высших растений и бактерий, проведенных учеником А.Я.Клюйвера Корнелиусом ван Нилем (1897-1985). К. ван Ниль изучил обмен веществ различных фотосинтезирующих прокариот и предложил обобщающее суммарное уравнение фотосинтеза: CO 2 +H 2 A+ һν → (CH 2 O) n +A, где H 2 A - либо вода, либо другое окисляемое вещество. Такое уравнение предполагало, что именно вода, а не углекислый газ, разлагается при фотосинтезе с выделением кислорода. К середине XX века выводы А.Я.Клюйвера и его учеников (в частности, К. ван Ниля) легли в основу принципа биохимического единства жизни.

Развитие отечественной микробиологии представлено различными направлениями и деятельностью многих известных ученых. Целый ряд научных учреждений нашей страны носит имена многих из них. Так, Лев Семенович Ценковский (1822-1877) изучил большое число простейших, микроводорослей, низших грибов и сделал вывод об отсутствии четкой границы между одноклеточными животными и растениями. Он также разработал способ прививки против сибирской язвы с применением «живой вакцины Ценковского» и организовал пастеровскую станцию вакцинации в Харькове. Георгий Норбертович Габричевский (1860-1907) предложил способ лечения дифтерии с помощью сыворотки и участвовал в создании производства бактериальных препаратов в России. Ученик С.Н.Виноградского Василий Леонидович Омелянский (1867-1928) исследовал микроорганизмы, участвующие в превращениях соединений углерода, азота, серы и в процессе анаэробного разложения целлюлозы. Его работы расширили представления о деятельности микроорганизмов почвы. В.Л.Омелянский предложил схемы круговоротов биогенных элементов в природе. Георгий Адамович Надсон (1867-1939) сначала занимался микробной геохимической деятельностью и воздействием различных повреждающих факторов на микробные клетки. В дальнейшем его работы были посвящены изучению наследственности и изменчивости микроорганизмов и получению устойчивых искусственных мутантов низших грибов под действием излучений. Одним из основоположников морской микробиологии является Борис Лаврентьевич Исаченко (1871-1948). Им была высказана гипотеза о биогенном происхождении месторождений серы и кальция. Владимир Николаевич Шапошников (1884-1968) является основателем отечественной технической микробиологии. Его работы по физиологии микроорганизмов посвящены изучению различных видов брожения. Им открыто явление двухфазности ряда микробиологических процессов и разработка способов управления ими. Исследования В.Н.Шапошникова стали основой для организации в СССР микробиологических производств органических кислот и растворителей. Работы Зинаиды Виссарионовны Ермольевой (1898-1974) внесли существенный вклад в физиологию и биохимию микроорганизмов, медицинскую микробиологию, а также способствовали становлению микробиологического производства ряда отечественных антибиотиков. Так, она исследовала возбудители холеры и другие холероподобные вибрионы, их взаимодействие с организмом человека и предложила санитарные нормы хлорирования водопроводной воды в качестве средства профилактики этого опасного заболевания. Ею был создан и применен для профилактики препарат холерного бактериофага, а в дальнейшем - и комплексный препарат против холеры, дифтерии и брюшного тифа. Применение лизоцима в медицинской практике основано на работах З.В.Ермольевой по обнаружению новых растительных источников лизоцима, установлению его химической природы, разработке метода выделения и концентрирования. Получение отечественного штамма продуцента пенициллина и организация промышленного производства препарата пенициллина-крустозина в годы Великой Отечественной войны - это неоценимая заслуга З.В.Ермольевой. Эти исследования явились импульсом для поиска и селекции отечественных продуцентов других антибиотиков (стрептомицина, тетрациклина, левомицетина, экмолина). Работы Николая Александровича Красильникова (1896-1973) посвящены изучению мицелиальных прокариотических микроорганизмов - актиномицетов. Подробное исследование свойств этих микроорганизмов позволило Н.А.Красильникову создать определитель актиномицетов. Ученый был одним из первых исследователей явления антагонизма в мире микробов, что позволило ему выделить актиномицетный антибиотик мицетин. Н.А.Красильников изучал также взаимодействие актиномицетов с другими бактериями и высшими растениями. Его работы по почвенной микробиологии посвящены роли микроорганизмов в почвообразовании, распределению их в почвах и влиянию на плодородие. Ученица В.Н.Шапошникова, Елена Николаевна Кондратьева (1925-1995) возглавляла изучение физиологии и биохимии фотосинтезирующих и хемолитотрофных микроорганизмов. Ею подробно проанализированы особенности метаболизма таких прокариот и выявлены общие закономерности фотосинтеза и углеродного обмена. Под руководством Е.Н.Кондратьевой был открыт новый путь автотрофной фиксации СО 2 у зеленых несерных бактерий, проведено выделение и подробное изучение штаммов фототрофных бактерий нового семейства. В ее лаборатории была создана уникальная коллекция бактерий-фототрофов. Е.Н.Кондратьева была инициатором исследований метаболизма микроорганизмов-метилотрофов, использующих в своем метаболизме одноуглеродные соединения.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX - начала XXI веков будут кратко изложены в соответствующих разделах учебника.

Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии - выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология - это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

Дальнейшее развитие микробиологии в XXI веке наряду с накоплением фундаментальных знаний призвано помочь решению ряда глобальных проблем человечества. В результате варварского отношения к природе и повсеместного загрязнения окружающей среды антропогенными отходами возник значительный дисбаланс в круговоротах веществ на нашей планете. Только микроорганизмы, обладая широчайшими метаболическими возможностями, высокой пластичностью обмена веществ и значительной устойчивостью к повреждающим факторам, могут преобразовать стойкие и токсичные загрязнения в безвредные для природы соединения, а в ряде случаев и в пригодные для дальнейшего использования человеком продукты. Тем самым понизится выброс так называемых «парниковых газов» и стабилизируется газовый состав атмосферы Земли. Осуществляя защиту окружающей среды от загрязнений, микроорганизмы одновременно будут способствовать постоянству глобального круговорота элементов. Микроорганизмы, развиваясь на отходах промышленности и сельского хозяйства, могут служить альтернативными источниками топлива (биогаза, биоэтанола и других спиртов, биоводорода и т.д.). Это позволит решить энергетические проблемы человечества, связанные с истощением полезных ископаемых (нефти, угля, природного газа, торфа). Восполнение продовольственных ресурсов (особенно белковых) возможно путем введения в рацион питания дешевой микробной биомассы быстрорастущих штаммов, полученной на отходах пищевой промышленности или на очень простых средах. Сохранению здоровья человеческой популяции будут способствовать не только тщательное изучение свойств патогенных микроорганизмов и выработка методов защиты от них, но и переход на «природные лекарства» (пробиотики), повышающие иммунный статус человеческого организма.

Наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. - наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы.- наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения , анаэробного дыхания , аэробного дыхания и фотосинтеза .

  • Экология микроорганизмов - наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах.
  • Прикладная микробиология и биотехнология микроорганизмов - наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.
  • Рекомендуемая литература

    Поль де Крюи. Охотники за микробами. Научно-популярное издание.

    Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

    Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

    Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

    Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

    Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

    Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.

    Микробиология изучает строение, жизнедеятельность, условия жизни и развития мельчайших организмов, называемых микробами, или микроорганизмами.

    «Невидимые, они постоянно сопровождают человека, вторгаясь в его жизнь то как друзья, то как враги», — сказал академик В. Л. Омельянский. Действительно, микробы есть везде: в воздухе, в воде и в почве, в организме человека и животных. Они могут быть полезны, и их используют в производстве многих пищевых продуктов. Они могут быть вредны, вызывать заболевания людей, порчу продуктов и др.

    Микробы были открыты голландцем А. Левенгуком (1632-1723) в конце XVII в., когда он изготовил первые линзы, дававшие увеличение в 200 и более раз. Увиденный микромир поразил его, Левенгук описал и зарисовал микроорганизмы, обнаруженные им на различных объектах. Он положил начало описательному характеру новой науки. Открытия Луи Пастера (1822-1895) доказали, что микроорганизмы отличаются не только формой и строением, но и особенностями жизнедеятельности. Пастер установил, что дрожжи вызывают спиртовое брожение, а некоторые микробы способны вызывать заразные болезни людей и животных. Пастер вошел в историю как изобретатель метода вакцинации против бешенства и сибирской язвы. Всемирно известен вклад в микробиологию Р. Коха (1843-1910) — открыл возбудителей туберкулеза и холеры, И. И. Мечникова (1845-1916) — разработал фагоцитарную теорию иммунитета, основоположника вирусологии Д. И. Ивановского (1864-1920), Н. Ф. Гамалея (1859-1940) и многих других ученых.

    Классификация и морфология микроорганизмов

    Микробы - это мельчайшие, преимущественно одноклеточные живые организмы, видимые только в микроскоп. Размер микроорганизмов измеряется в микрометрах — мкм (1/1000 мм) и нанометрах — нм (1/1000 мкм).

    Микробы характеризуются огромным разнообразием видов, отличающихся строением, свойствами, способностью существовать в различных условиях среды. Они могут быть одноклеточными, многоклеточными и неклеточными.

    Микробы подразделяют на бактерии, вирусы и фаги, грибы, дрожжи. Отдельно выделяют разновидности бактерий — риккетсии, микоплазмы, особую группу составляют простейшие (протозои).

    Бактерии

    Бактерии — преимущественно одноклеточные микроорганизмы размером от десятых долей микрометра, например микоплазмы, до нескольких микрометров, а у спирохет — до 500 мкм.

    Различают три основные формы бактерий — шаровидные (кокки), палочковидные (бациллы и др.), извитые (вибрионы, спирохеты, спириллы) (рис. 1).

    Шаровидные бактерии (кокки) имеют обычно форму шара, но могут быть немного овальной или бобовидной формы. Кокки могут располагаться поодиночке (микрококки); попарно (диплококки); в виде цепочек (стрептококки) или виноградных гроздьев (стафилококки), пакетом (сарцины). Стрептококки могут вызывать ангину и рожистое воспаление, стафилококки — различные воспалительные и гнойные процессы.

    Рис. 1. Формы бактерий: 1 — микрококки; 2 — стрептококки; 3 — сардины; 4 — палочки без спор; 5 — палочки со спорами (бациллы); 6 — вибрионы; 7- спирохеты; 8 — спириллы (с жгутиками); стафилококки

    Палочковидные бактерии самые распространенные. Палочки могут быть одиночными, соединяться попарно (диплобактерии) или в цепочки (стрептобактерии). К палочковидным относятся кишечная палочка, возбудители сальмонеллеза, дизентерии, брюшного тифа, туберкулеза и др. Некоторые палочковидные бактерии обладают способностью при неблагоприятных условиях образовывать споры. Спорообразующие палочки называют бациллами. Бациллы, напоминающие по форме веретено, называют клостридиями.

    Спорообразование представляет собой сложный процесс. Споры существенно отличаются от обычной бактериальной клетки. Они имеют плотную оболочку и очень малое количество воды, им не требуются питательные вещества, а размножение полностью прекращается. Споры способны длительно выдерживать высушивание, высокие и низкие температуры и могут находиться в жизнеспособном состоянии десятки и сотни лет (споры сибирской язвы, ботулизма, столбняка и др.). Попав в благоприятную среду, споры прорастают, т. е. превращаются в обычную вегетативную размножающуюся форму.

    Извитые бактерии могут быть в виде запятой — вибрионы, с несколькими завитками — спириллы, в виде тонкой извитой палочки — спирохеты. К вибрионам относится возбудитель холеры, а возбудитель сифилиса — спирохета.

    Бактериальная клетка имеет клеточную стенку (оболочку), часто покрытую слизью. Нередко слизь образует капсулу. Содержимое клетки (цитоплазму) отделяет от оболочки клеточная мембрана. Цитоплазма представляет собой прозрачную белковую массу, находящуюся в коллоидном состоянии. В цитоплазме находятся рибосомы, ядерный аппарат с молекулами ДНК, различные включения запасных питательных веществ (гликогена, жира и др.).

    Микоплазмы - бактерии, лишенные клеточной стенки, нуждающиеся для своего развития в ростовых факторах, содержащихся в дрожжах.

    Некоторые бактерии могут двигаться. Движение осуществляется с помощью жгутиков — тонких нитей разной длины, совершающих вращательные движения. Жгутики могут быть в виде одиночной длинной нити или в виде пучка, могут располагаться по всей поверхности бактерии. Жгутики есть у многих палочковидных бактерий и почти у всех изогнутых бактерий. Шаровидные бактерии, как правило, не имеют жгутиков, они неподвижны.

    Размножаются бактерии делением на две части. Скорость деления может быть очень высокой (каждые 15-20 мин), при этом количество бактерий быстро возрастает. Такое быстрое деление наблюдается на пищевых продуктах и других субстратах, богатых питательными веществами.

    Вирусы

    Вирусы — особая группа микроорганизмов, не имеющих клеточного строения. Размеры вирусов измеряются нанометрами (8-150 нм), поэтому их можно увидеть только с помощью электронного микроскопа. Некоторые вирусы состоят только из белка и одной из нуклеиновых кислот (ДНК или РНК).

    Вирусы вызывают такие распространенные болезни человека, как грипп, вирусный гепатит, корь, а также болезни животных — ящур, чуму животных и многие другие.

    Вирусы бактерий называют бактериофагами , вирусы грибов - микофагами и т. п. Бактериофаги встречаются повсюду, где есть микроорганизмы. Фаги вызывают гибель микробной клетки и могут использоваться для лечения и профилактики некоторых инфекционных заболеваний.

    Грибы являются особыми растительными организмами, которые не имеют хлорофилла и не синтезируют органические вещества, а нуждаются в готовых органических веществах. Поэтому грибы развиваются на различных субстратах, содержащих питательные вещества. Некоторые грибы способны вызывать болезни растений (рак и фитофтора картофеля и др.), насекомых, животных и человека.

    Клетки грибов отличаются от бактериальных наличием ядер и вакуолей и похожи на растительные клетки. Чаще всего они имеют форму длинных и ветвящихся или переплетающихся нитей - гифов. Из гифов образуется мицелий, или грибница. Мицелий может состоять из клеток с одним или несколькими ядрами или быть неклеточным, представляя собой одну гигантскую многоядерную клетку. На мицелии развиваются плодовые тела. Тело некоторых грибов может состоять из одиночных клеток, без образования мицелия (дрожжи и др.).

    Грибы могут размножаться разными путями, в том числе вегетативным путем в результате деления гиф. Большинство грибов размножаются бесполым и половым путями при помощи образования специальных клеток размножения - спор. Споры, как правило, способны длительно сохраняться во внешней среде. Созревшие споры могут переноситься на значительные расстояния. Попадая в питательную среду, споры быстро развиваются в гифы.

    Обширную группу грибов представляют плесневые грибы (рис. 2). Широко распространенные в природе, они могут расти на пищевых продуктах, образуя хорошо видные налеты разной окраски. Причиной порчи продуктов часто являются мукоровые грибы, образующие пушистую белую или серую массу. Мукоровый гриб ризопус вызывает «мягкую гниль» овощей и ягод, а гриб ботритис покрывает налетом и размягчает яблоки, груши и ягоды. Возбудителями плесневения продуктов могут быть грибы из рода пениииллиум.

    Отдельные виды грибов способны не только приводить к порче продуктов, но и вырабатывать токсические для человека вещества — микотоксины. К ним относятся некоторые виды грибов рода аспергиллус, рода фузариум и др.

    Полезные свойства отдельных видов грибов используют в пищевой и фармацевтической промышленности и других производствах. Например, грибы рода пениииллиум применяются для получения антибиотика пенициллина и в производстве сыров (рокфора и камамбера), грибы рода аспергиллус — в производстве лимонной кислоты и многих ферментных препаратов.

    Актиномицеты — микроорганизмы, имеющие признаки и бактерий, и грибов. По строению и биохимическим свойствам актиномицеты аналогичны бактериям, а по характеру размножения, способности образовывать гифы и мицелий похожи на грибы.

    Рис. 2. Виды плесневых грибов: 1 — пениииллиум; 2- аспергиллус; 3 — мукор.

    Дрожжи

    Дрожжи — одноклеточные неподвижные микроорганизмы размером не более 10-15 мкм. Форма клетки дрожжей бывает чаще круглой или овальной, реже палочковидной, серповидной или похожей на лимон. Клетки дрожжей своим строением похожи на грибы, они также имеют ядро и вакуоли. Размножение дрожжей происходит почкованием, делением или спорами.

    Дрожжи широко распространены в природе, их можно обнаружить в почве и на растениях, на пищевых продуктах и различных отходах производства, содержащих сахара. Развитие дрожжей в пищевых продуктах может приводить к их порче, вызывая брожение или закисание. Некоторые виды дрожжей обладают способностью превращать сахар в этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением и широко используется в пищевой промышленности и виноделии.

    Некоторые виды дрожжей кандида вызывают заболевание человека — кандидоз.

    Похожие публикации