Как расшифровать аудиограмму — подробное руководство от врача. Исследование костной и воздушной проводимости звука (опыт Ринне) Исследование костной и воздушной проводимости звука

Исследование вестибулоокулярных рефлексов (нистагм, проба кукольных глаз, калорическая проба.

Дуга вестибулоокулярных рефлексов: вестибулярный аппарат – вестибулярные ядра (VIII пара) – ядра нервов глазодвигательных мышц (III, IV, VI пары). Нистагм – медленное движение глаз в одну сторону, сменяющееся быстрым скачком в обратную сторону. Это позволяет удерживать взор в постоянном направлении во время вращения головы. Медленная фаза нистагма представляет собой стволовой вестибуло-окулярный рефлекс; быстрая фаза –обусловлена командами из префронтальной коры. Проба кукольных глаз – один из способов проверки вестибулоокулярных рефлексов. Осуществляют медленный поворот головы в горизонтальной, затем в вертикальной плоскости. В норме глаза двигаются в направлении, противоположном повороту головы. Движения глаз рефлекторные, регулируются стволовыми центрами и обусловлены импульсацией от вестибулярного аппарата и проприорецепторов шеи. При сохраненном сознании эти рефлексы подавляются корой больших полушарий за счёт фиксации взора, и появляются лишь при отсутствии корковых влияний. Так, например, содружественное движение глаз в полном объёме при пробе кукольных глаз позволяет утверждать, что кома не связана с повреждением ствола мозга. Калорическая проба (холодовая проба)

Орошение наружного слухового прохода холодной водой вызывает движение эндолимфы. Если пути от лабиринта к ядру глазодвигательного нерва в среднем мозге не повреждены, то глазные яблоки быстро смещаются в сторону раздражаемого уха и остаются в этом положении 30-120 сек. При сохранности полушарий головного мозга, например, при истерической коме, во время холодовой пробы возникает нистагм. Отсутствие нистагма свидетельствует о поражении или угнетении полушарий головного мозга.

Путь воздушной проводимости звука: наружный слуховой проход – среднее ухо – внутреннее ухо (Кортиев орган) – слуховой нерв.

Путь костной проводимости звука: кости черепа – внутреннее ухо (Кортиев орган) – слуховой нерв.

(а) Проба Вебера. Одна из проб для сравнения восприятия звука через воздух и черепную коробку. При патологических процессах в среднем ухе звучащий камертон, поставленный на середину темени, воспринимается значительно сильнее на стороне поражения. При этом у пациента создаётся впечатление, что источник звука расположен сбоку, на стороне больного уха.

При поражения внутреннего уха или слухового нерва звук воспринимается лучше на здоровой стороне. У пациента создаётся впечатление, что источник звука расположен сбоку, на стороне здорового уха.

(б) Проба Ринне. Одна из проб для сравнения восприятия звука через воздух и черепную коробку. Ножку звучащего камертона ставят на сосцевидный отросток. Когда восприятие звука путём костной проводимости оканчивается, камертон подносят к уху пациента и отмечают продолжение восприятия звука теперь уже за счёт воздушной проводимости звука (положительный симптом Ринне). При поражении звукопроводящего аппарата (барабанная перепонка, среднее ухо, слуховые косточки) звук камертона ухом через воздух не воспринимается (отрицательный симптом Ринне).



Костная проводимость звука Воздушная проводимость звука

Речь шла об исследовании слуха при прохождении звука через воздух. Кроме того, звук воспринимается при непосредственной передаче его через кости черепа.

Механизм проведения звука через кость полностью не изучен. Считают, что он может проводиться через костный лабиринт, костнотимпанальный (через костную стенку наружного и среднего уха) и тимпанальный (через окна в лабиринт).

Костная проводимость может определяться при помощи камертонов или аудиометра - электрических вибраторов (костных телефонов).

При исследовании слуха путем костного восприятия обычно пользуются камертонами низкой частоты (128 колебаний в секунду).

Звучащий камертон устанавливают на область сосцевидного отростка или срединной линии черепа.

Исследование костной проводимости каждого уха в отдельности затруднено, так как звуковые волны распространяются по всему черепу при наложении камертона на любом его участке. Поэтому некоторые авторы считают целесообразным устанавливать камертон не на область сосцевидных отростков, а на срединной линии черепа. При этом оба уха ставятся в равноценные условия.

Чтобы исследование производилось всегда в одних и тех же условиях, сила удара должна быть максимальной (для получения наибольшей длительности звучания камертона). Нажим камертона на кожу головы должен быть достаточно сильным.

Исследование костной проводимости обычно производится при открытых ушах больного; на полученные при этом результаты оказывает маскирующее влияние шумовое окружение и восприятие колебаний камертона через воздух. Чтобы избежать таких помех, Г. И. Гринберг сконструировал специально устроенные боксы - загораживатели ушей, которые представляют собой деревянные ящички, обвернутые снаружи и изнутри ватой.

В норме костная проводимость короче воздушной, так как звуковые волны встречают в костной ткани более сильное сопротивление, на что уходит часть звуковой энергии.

В начале исследования проводят три опыта: Вебера, Ринне и Швабаха.

1. Опыт Ринне заключается в сравнении воздушной и костной проводимости. Звучащий камертон С128 ставят на сосцевидный отросток исследуемого и, включив секундомер, замечают, сколько времени он звучал. По прекращении звучания на сосцевидном отростке подносят камертон к отверстию слухового прохода. У здорового человека проводимость через воздух больше проводимости через кость - это обозначают как «положительный опыт Ринне». При наличии же поражения в среднем ухе или вообще звукопроводящего аппарата опыт Ринне может быть отрицательным, т. е. звучание с кости будет продолжительнее звучания через воздух; обычно это указывает на заболевание звукопроводящего аппарата.

2. Опыт Вебера производится так. Звучащий камертон помещают на темя больного и спрашивают его, в каком ухе он слышит звучание. При здоровом состоянии ушей исследуемый слышит звучание в голове, не относя звук ни к одному из ушей. При нарушении звукопроводящего аппарата звук слышится в больном ухе, при нарушении звуковоспринимающего аппарата он слышен в здоровом ухе. Известно несколько попыток дать объяснение усилению костной проводимости при заболевании среднего уха. Некоторые указывают, что при здоровом состоянии ушей звуковые волны от звучащего камертона, беспрепятственно распространяясь по черепу, как бы выходят через уши в окружающую среду и не задерживаются в каком-либо ухе. При наличии препятствия в виде воспалительного процесса среднего уха или инородного тела (серная пробка) в слуховом проходе звуковые волны, отражаясь от препятствия, как бы снова ударяют в звуковоспринимающий аппарат внутреннего уха и звучат в больном ухе. При поражении же звуковоспринимающего аппарата звук может появиться только в здоровом ухе.
Так, Бецольд считает, что при заболеваниях звукопроводящего аппарата ограничение движений слуховых косточек создает условия для худшей передачи через воздух, чем через кость.

Г. Г. Куликовский, исследуя слуховую функцию больных в звуконепроницаемой камере, зарегистрировал незначительное укорочение костной проводимости при поражении звукопроводящего аппарата. Он считает, что наблюдающееся в обычных условиях исследования слуха удлинение костной проводимости у этого рода больных зависит от неблагоприятных в акустическом отношении условий восприятия звука.

При поражении мозга и его оболочек латеризации звука в опыте Вебера не наблюдается, если при этом нет нарушения слуховой функции.

3. Опыт Швабаха состоит в определении костной проводимости исследуемого путем сравнения с костной проводимостью здорового человека. С. этой целью звучащий камертон ставят на темя исследуемого и замечают время звучания. Получив на ряде здоровых людей длительность звучания камертона С128 на темени, сравнивают эту цифру с полученной у исследуемого и записывают в виде дроби: числитель - цифра, полученная у больного, знаменатель - цифра среднего звучания у ряда здоровых людей, например 15"/25". Эта дробь сразу укажет на состояние костной проводимости у данного больного - нормальная, удлиненная или укороченная. При нарушениях в проводящих сферах в спинномозговой жидкости, в оболочках и самих тканях мозга костная проводимость обычно укорочена. В редких случаях она удлинена - это чаще бывает при поражении в диэнцефальной области. Также она удлинена при отосклерозе , что отличает это заболевание от неврита слухового нерва. Механизм этих изменений еще не выяснен.

Опыт Желле (Gelle) состоит в следующем. К темени приставляют звучащий камертон и одновременно производят сгущение воздуха в наружном слуховом проходе резиновым баллоном - больной ощущает в этот момент ослабление звука, вызванное вдавлением стремени в нишу овального окна и вследствие этого повышением внутрилабиринтного давления. В случае анкилоза стремечка изменения звука не происходит, так же как не происходит повышения внутрилабиринтного давления. Этот опыт дает возможность диагностировать анкилоз стремечка. Но может случиться, что даже при нормально подвижном стремени сгущение воздуха в слуховом проходе не вызовет изменения звучания.

Слуховое восприятие обеспечивается с помощью воздушной и костной проводимости. Звуковые волны, распространяясь по воздуху (воздушная проводимость), достигают уха, проникают в наружный слуховой проход и вызывают колебания барабанной перепонки, которая приводит в движение молоточек, наковальню и стремя. Движения основания стремени вызывают изменения давления жидкости во внутреннем ухе, приводя к распространению волны на базальную мембрану улитки. Слуховые волоски волосковых клеток спирального органа, располагающегося на базальной мембране, внедрены в покровную мембрану и колеблются под влиянием передвигающейся волны. При каждом колебании волны базальная мембрана смещается, максимум этого смещения определяется частотой раздражающего тона. О костной проводимости слуховые ощущения говорят в тех случаях, когда источник звуков, контактируя с костями черепа, вызывает их вибрацию, в том числе и в височной кости, что вызывает колебания волн в области базальной мембраны.

Потерю слуха могут вызывать поражения наружного слухового прохода, среднего уха, внутреннего уха и проводящих путей слухового анализатора. В случае поражения наружного слухового прохода и среднего уха возникает кондуктивная тугоухость, при поражениях внутреннего уха или улиткового нерва - нейросенсорная тугоухость.

Кондуктивная тугоухость возникает в результате закупорки наружного слухового прохода ушной серой, инородными телами, при набухании выстилки прохода, стенозах и новообразованиях наружного слухового прохода. Нейросенсорная тугоухость развивается в результате повреждений волосковых клеток кортиева органа, обусловленных шумовой травмой, вирусной инфекцией, применением ототоксических препаратов, переломами височной кости, менингитом, отосклерозом улитки, болезнью Меньера и возрастными изменениями.

Методы исследования слуха.

При осмотре обращают внимание на состояние наружного слухового прохода и барабанной перепонки. Тщательно осматривают полость носа, носоглотку, верхние дыхательные пути и оценивают функции черепных нервов. Кондуктивную и нейросенсорную тугоухость следует дифференцировать путем сравнения порогов слуха при воздушной и костной проводимости. Воздушную проводимость исследуют при передаче раздражении по воздуху. Адекватная воздушная проводимость обеспечивается проходимостью наружного слухового прохода, целостностью среднего и внутреннего уха, вестибулокохлеарного нерва и центральных отделов слухового анализатора. Для исследования костной проводимости к голове больного прикладывают осциллятор или камертон. В случае костной проводимости звуковые волны обходят наружный слуховой проход и среднее ухо. Таким образом, костная проводимость отражает целостность внутреннего уха, улиткового нерва и центральных проводящих путей слухового анализатора. Если имеется повышение порогов воздушной проводимости при нормальных пороговых значениях костной проводимости, то поражение, вызвавшее тугоухость, локализуется в наружном слуховом проходе или среднем ухе. Если имеется повышение порогов чувствительности воздушной и костной проводимости, то очаг поражения находится во внутреннем ухе, улитковом нерве или центральных отделах слухового анализатора. Иногда кондуктивная и нейросенсорная тугоухость наблюдаются одновременно, в этом случае будут повышены пороги как воздушной, так и костной проводимости, но пороги воздушной проводимости будут значительно выше, чем костной.

При дифференциальной диагностике кондуктивной и нейросенсорной тугоухости используют пробы Вебера и Ринне. Проба Вебера заключается в том, что ножку камертона устанавливают на голове больного по средней линии и спрашивают его, слышит ли он звучание камертона равномерно с обеих сторон, или же на одной из сторон звук воспринимается сильнее. При односторонней кондуктивной тугоухости звук сильнее воспринимается на стороне поражения. При односторонней нейросенсорной тугоухости звук сильнее воспринимается на здоровой стороне. Пробой Ринне сравнивают восприятие звука посредством воздушной и костной проводимости. Бранши камертона подносят к слуховому проходу, а затем ножку звучащего камертона устанавливают на сосцевидном отростке. Больного просят определить, в каком случае звук передается сильнее, посредством костной или воздушной проводимости. В норме звучание ощущается громче при воздушной проводимости, чем при костной. При кондуктивной тугоухости лучше воспринимается звучание камертона, установленного на сосцевидном отростке; при нейросенсорной тугоухости нарушены оба вида проводимости, однако в ходе исследования воздушной проводимости звук воспринимается громче, чем в норме. Результаты проб Вебера и Ринне вместе позволяют сделать вывод о наличии кондуктивной или нейросенсорной тугоухости.

Количественную оценку тугоухости проводят с помощью аудиометра - электрического прибора, позволяющего исследовать воздушную и костную проводимость с использованием звуковых сигналов различной частоты и интенсивности. Исследования проводят в специальной комнате со звукоизоляционным покрытием. Для того чтобы ответы больного основывались только на ощущениях со стороны исследуемого уха, другое ухо экранируют с помощью широкоспектральных шумов. Используют частоты от 250 до 8000 Гц. Аудиограмма - это кривая, отображающая отклонения слуховых порогов от нормальных (в дБ) для разных звуковых частот.

Дополнительные данные позволяет получить речевая аудиометрия. Этим методом с использованием двусложных слов с равномерным ударением на каждом слоге исследуют спондеический порог, т. е. интенсивность звука, при которой речь становится разборчивой. Интенсивность звука, при которой больной может понять и повторигь 50% слов, называют спондеическим порогом, он обычно приближается к среднему порогу речевых частот (500, 1000, 2000 Гц). После определения спондеического порога исследуют дискриминационную способность с помощью односложных слов с громкостью звука на 25-40 дБ выше спондеического порога. Люди с нормальным слухом могут правильно повторить от 90 до 100% слов. Больные с кондуктивной тугоухостью также хорошо выполняют дискриминационную пробу. Больные с нейросенсорной тугоухостью не способны различать слова вследствие повреждения периферического отдела слухового анализатора на уровне внутреннего уха или улиткового нерва.

При тимпанометрии оценивают акустический импеданс среднего уха. Источник звука и микрофон вводят в слуховой проход и герметично закрывают его клапаном. Звук, проходящий через среднее ухо или отражающийся от него, измеряют с помощью микрофона. При кондуктивной тугоухости звук отражается интенсивнее, чем в норме. Тимпанометрия бывает особенно информативна при диагностике заболеваний среднего уха, сопровождающихся выделением значительного количества транссудата, у детей.

В дополнение к этим пробам существенную помощь в дифференциальной диагностике сенсорной и невральной тугоухости могут оказать исследование феномена выравнивания громкости звука, тест определения чувствительности к быстрому малому приращению интенсивности звука, тест исчезновения порогового юна, аудиометрия Бекеши и слуховые стволовые вызванные потенциалы.

Большинству больных с кондуктивной и односторонней, или асимметричной, нейросенсорной тугоухостью необходимо проводить КТ исследования височной кости. У больных с нейросенсорной тугоухостью следует обследовать вестибулярную систему с помощью электронистагмографии и калорических проб.

Импедансометрия - метод исследования, основанный на измерении акустического сопротивления (или акустической податливости) звукопроводящих структур периферической части слухового анализатора. В клинической практике чаще всего используются две методики импедансометрии – тимпанометрия и акустическая рефлексометрия.

Тимпанометрия позволяет оценить подвижность барабанной перепонки и слуховых косточек. Это быстрый и неинвазивный метод диагностики таких заболеваний как экссудативный (секреторный) средний отит, отосклероз и др.

С помощью акустической рефлексометрии можно зарегистрировать сокращение внутриушных мышц в ответ на звуковую стимуляцию. Метод используется для дифференциальной диагностики заболеваний среднего и внутреннего уха, а также для определения порогов дискомфорта, используемых при подборе и настройке слуховых аппаратов.

Многочастотная акустическая импедансометрия – прецизионная методика, позволяющая измерить резонансную частоту среднего уха. С успехом применяется в комплексной диагностике аномалий развития слуховых косточек, дифференциальной диагностике. Результаты многочастотной импедансометрии используются в процессе выполнения операции кохлеарной имплантации.

Дает примерно 13% информации об окружающей среде.

Орган чувств слухового анализатора – ухо. Рецепторы слухового анализатора – волосковые клетки кортиева органа (остальные структуры уха– вспомогательные и защитные). Первые нейроны слухового тракта расположены в спиральном ганглии улитки.

Наружное ухо (ушная раковина, наружный слуховой проход) улавливает, усиливает и проводит звуковые волны. Участвует также в определении расположения источника звука.

Среднее ухо – барабанная полость, которая отделена от наружного уха барабанной перепонкой, а от внутреннего уха – мембранами овального и круглого окна.Звуковые колебания передаются с помощью сочлененных слуховых косточек (молоточек, наковальня, стремечко). Происходит усиление звука за счет (1) меньшей площади мембраны овального окна по сравнению с площадью барабанной перепонки; (2) соотношения длины рычагов слуховых косточек. В результате амплитуда колебаний уменьшается, а давление на мембрану овального окна увеличивается в десятки раз. Мышцы среднего уха (а) натягивающая барабанную перепонку и (б) фиксирующая стремечко в области овального окна) рефлекторно сокращаются при действии слишком сильного звука и предохраняют структуры внутреннего уха от разрушения. Полость среднего уха соединена с носоглоткой с помощью евстахиевой трубы (открывается при глотании) – для того чтобы давление по обе стороны от барабанной перепонки было одинаковым.

Внутреннее ухо – улитка: спирально закрученный костный канал, разделенный мембранами на три лестницы. Тонкая мембрана отделяет вестибулярную лестницу от срединной; толстая (базальная) мембрана отделяет срединную лестницу от барабанной. Вестибулярная и барабанная лестницы заполнены перилимфой и сообщаются на вершине улитки (геликотрема). Перилимфа имеет такой же состав, как и спинно-мозговая жидкость (ликвор). Срединная лестница заполнена эндолимфой , состав которой зависит от секреторной функции эпителиальных клеток, расположенных на латеральной стенке срединной лестницы («сосудистая полоска»). Главное отличие эндолимфы – высокая концентрация ионов калия. Эндолимфа омывает рецепторные волосковые клетки, расположенные на толстой базальной мембране («кортиев орган»). Колебания стремечка в области овального окна передаются на перилимфу вестибулярной лестницы, а также на эндолимфу. Волна распространяется до вершины улитки, передается на перилимфу барабанной лестницы и затухает за счет колебаний мембраны круглого окна. Во время колебаний волоски рецепторных клеток деформируются и в клетках возникает рецепторный потенциал. В периферическом отделе слухового анализатора кодируется информация о частоте (тон) и амплитуде (громкость) звуковой волны. Частотное кодирование : частота ПД в волокнах слухового нерва соответствует частоте звуковой волны (от 20 до 1000 гц). Пространственное кодирование : звуки высокой частоты (до 20000 гц) воспринимаются клетками, расположенными у основания улитки; звуки низкой частоты воспринимаются клетками, расположенными у вершины улитки; звуки средних частот воспринимаются клетками кортиева органа средних завитков улитки. Электрические явления в улитке: (1) потенциал покоя рецепторных клеток (равен -70 мв), (2) потенциал эндолимфы (равен +70 мв за счет ионов калия), (3) микрофонный эффект улитки (возникает под действием звукового раздражителя; частота потенциалов соответствует частоте действующего звука; регистрируется с помощью электродов, подведенных к мембране круглого окна; если рядом с ухом подопытного животногопроизносить слова, то их можно услышать из громкоговорителя в соседней комнате).



Определение местоположения источника звука происходит за счет (а) сравнения времени распространения звуковой волны до рецепторов правого и левого уха и (б) сравнения громкости звука, воспринимаемого правым и левым ухом. Точность определения очень высокая (например, определяем смещение источника звука на 1-2 градуса от срединной линии). Опыт : если удлинить одну из трубок фонендоскопа, то возникает ощущение, что источник звука смещен в сторону более короткой трубки, т.к. по ней звук быстрее достигает рецепторов внутреннего уха.

Тональная аудиометрия – определение порогов ощущения (порогов слышимости) для звуков разной частоты. Аудиограмма отражает зависимость слуховых порогов от высоты подаваемых в ухо тонов. Наименьшие пороги ощущения (наибольшая чувствительность) характеризует восприятие звуков частотой 1000-3000 гц, что соответствует частотам человеческой речи. Проводится исследование не только воздушной, но и костной проводимости звука. Воздушная проводимость звука: звуковые колебания передаются через наружное ухо, среднее ухо – к рецепторам внутреннего уха. Костная проводимость звука: звуковые колебания передаются по костям черепа прямо к рецепторам внутреннего уха. Сравнение воздушной и костной проводимости звука (проба Ринне ): звучащий камертон прикладывают к голове в области сосцевидного отростка и определяют время, в течение которого слышен звук (костная проводимость). Как только звук перестает быть слышимым, камертон переносят к наружному слуховому проходу – и звук опять становится слышимым (воздушная проводимость). Если этого не происходит, значит воздушная проводимость нарушена (чаще всего из-за повреждения среднего уха). Пробы Вебера: звучащий камертон прикладывается к темени строго по срединной линии (а) если у больного повреждено внутреннее ухо или волокна слухового нерва, то ему кажется, что источник звука смещен в сторону здорового уха; (б) если у больного повреждено среднее ухо, то ему кажется, что источник звука смещен в сторону больного уха (т.к. по мере развития глухоты компенсаторно увеличилась чувствительность рецепторов больного уха и при костной проводимости это ухо воспринимает звук как более громкий).

Для исследования костной проводимости костный телефон приставляется либо к срединной линии черепа, либо к области сосцевидного отростка. Следует по возможности прижимать вибратор с одинаковой силой с таким расчетом, чтобы получить оптимальное звучание.

Для исследования костной проводимости с сосцевидного отростка выбирают участок в области проекции антрума, откуда звук проводится лучше всего, но при этом следует избегать соприкосновения телефона с ушной раковиной. Ввиду множества возможных ошибок получение правильной костной аудиограммы представляет собой сложную задачу. Первое затруднение возникает при необходимости изолированного исследования одного уха; звук костного телефона практически всегда достигает противоположного лабиринта, и в результате получается суммация эффекта. Установлено, что звук костного телефона, приставленного к одному сосцевидному отростку, проводится к противоположному лабиринту очень мало изменившимся в силе (интенсивность звука падает обычно на 5 -8 дб).

Обычно при определении костной проводимости маскирующей звук (проведенный при помощи воздушной проводимости в неисследуемое ухо) должен иметь интенсивность на 20 дб больше, чем звук, которым исследуют. Некоторые авторы предпочитают индивидуально подбирать силу маскирующего звука, усиливая его до такой степени, чтобы звук костного телефона слышался в исследуемом ухе.

В этих условиях маскирующий звук, как правило, не искажает данные, получаемые от исследуемого уха. При некоторых формах тугоухости, однако, очень трудно получить вполне надежные результаты.

Наиболее неблагоприятны условия в тех случаях, когда неисследуемое ухо обладает хорошей костной и плохой воздушной проводимостью (поражение звукопроводящего аппарата). Тогда маскировочный тон должен иметь очень большую интенсивность, а это, как указывалось выше, может искажать костные пороги исследуемого уха.

При исследовании костной проводимости, кроме того, всегда нужно помнить, что звук от костного телефона (особенно при высоких частотах) может проводиться через воздух как к исследуемому, так и к неисследуемому уху (переслушивание через воздух). Переслушивание неисследуемым ухом устраняют путем заглушения его маскирующим звуком; труднее бороться с проведением звука костного телефона через воздух в одноименное (исследуемое) ухо можно на момент закрывать слуховой проход исследуемого уха. Целесообразно также во время опыта приподнимать костный телефон над поверхностью сосцевидного отростка, и если нет переслушивания через воздух, то звук должен замирать.

Необходимо иметь в виду, что при исследовании костной проводимости уровень окружающего шума имеет большее значение, чем при исследовании воздушной проводимости. В последнем случае закрывание уха подушкой воздушного телефона защищает его от окружающего шума. Так как слух на исследуемое ухо понижен, то им плохо воспринимается и окружающий шум; поэтому не требуется, чтобы воздушная аудиометрия обязательно проводилась в звукоизолированной камере - она может быть выполнена в тихом помещении, где уровень шумового фона не превышает 25 дб.

Исследование же костной проводимости нормального уха в такой обстановке приведет к искусственному повышению порогов вследствие маскирующего действия окружающего шума. Это доказывается тем, что в заглушенной камере пороги костной проводимости для здорового уха оказываются ниже. Целесообразно поэтому исследовать костную проводимость либо в заглушенной камере, либо в обычной обстановке, но при открытых ушах и с закрытыми ушами.

Сравнение кривых костной проводимости при открытых и закрытых ушах имеет диагностическое значение, так как в норме и при поражении звуковоспринимающего аппарата между ними имеется известное расхождение, особенно в области низких частот, при поражении же звукопроводящего аппарата они совпадают друг с другом (Бинг - Bing, А. А. Князева и др.). При исследовании костной проводимости суммарно со средины черепа Г. И. Гринберг предлагает закрывать уши коробками-боксами объемом в 3000 см 3 . По его мнению, они создают достаточную изоляцию от окружающего шума и исключают переслушивание через воздух. Относительно большой объем боксов в очень малой степени меняет акустическое сопротивление и поэтому не сказывается на величине костных порогов. Для костной аудиометрии пользуются тем же аудиометром, что и для воздушной. После включения телефона костной проводимости определяют пороги для частот от 100 до 4000 гц и более в зависимости от качества и характеристики костного телефона.

Нулевая линия аудиограмм для костной проводимости соответствует средней норме слышимости нормальных ушей при исследовании костным телефоном с «оптимального» участка сосцевидного отростка (при открытых ушах). Нормальные пороги костной проводимости примерно на 40 дб выше воздушных. Разница на аудиограмме между высотой кривой костной проводимости и нулевой линией соответствует данным опыта Швабаха, а сравнение воздушной и костной кривых - результатам опыта Ринне.

Наконец, производится опыт с костной латерализацией (опыт Вебера). При помещении костного телефона на средней линии черепа в норме звук слышен посредине головы, не латерализован; если имеется заболевание одного уха, звук латерализуется, т. е. он будет слышен в одном из ушей. Латерализация в здоровое или, лучше, слышащее ухо говорит, как правило, о поражении звуковоспринимающего аппарата; при нарушении звукопроведения звук обычно латерализуется в больное ухо.

Очень большое значение имеет уровень кривой костной проводимости по отношению к нулевой линии и к кривой воздушной проводимости. Пороги костной проводимости при поражении звуковоспринимающего аппарата повышены особенно в области высоких частот. Поэтому при этой форме тугоухости обе кривые как воздушной, так и костной проводимости идут параллельно друг другу и сильно отходят от нулевой линии на уровне высоких частот. Наоборот, при поражении звукопроводящего аппарата костная проводимость обычно страдает мало, и кривая ее находится близ нулевой линии; в тех случаях, когда отмечается понижение костной проводимости, ее кривая оказывается все же выше кривой воздушной проводимости (отрицательный опыт Ринне). Таким образом, перцептивная глухота всегда сопровождается падением костной проводимости; при поражении же звукопроводящего аппарата мы обычно наблюдаем малоизмененную костную проводимость.

Однако следует помнить, что некоторые формы поражения звукопроводящего аппарата также могут повести к понижению костной проводимости. Решающим здесь является состояние лабиринтных окон. Так, при сильной тугоподвижности обоих окон, а также при малой разнице в их подвижности костная проводимость нарушается.

Поэтому по костной проводимости не всегда можно судить о состоянии нервного аппарата уха. Бывают случаи, когда костная проводимость резко понижена, а возбудимость нервного аппарата еще сохранена (резерв сохранен).

РЕЧЕВАЯ АУДИОМЕТРИЯ

Обычная методика исследования речью имеет ряд недостатков. Главный из них состоит в невозможности стандартизировать речь в отношении силы и качества. Речь представляет собой очень сложное сочетание быстро сменяющихся звуков различной частоты и силы. Пользование шепотной речью несколько уравнивает интенсивность звуков, но зато мы здесь сталкиваемся с новым обстоятельством: в обычной жизни (особенно тугоухому) приходится разбирать разговорную речь, которая в фонетическом отношении сильно отличается от шепотной. Измерение остроты речевого слуха по расстоянию также является нередко источником ошибок, так как в комнате, благодаря отражению звуков от стен, сила звука падает не пропорционально квадрату расстояния. Наконец, при этом способе не определяется степень разборчивости, что особенно важно для речевого слуха. Принимая во внимание указанные недостатки исследования слуха разговорной и шепотной речью, новой методике речевой аудиометрии в настоящее время придается большое значение.

С усовершенствованием техники записи и воспроизведения звуков человеческой речи разработана речевая аудиометрия, которая позволяет устранить недостатки, свойственные шепотной и разговорной речи.

Речевая аудиометрия обеспечивает постоянство речевого материала и дикции; возможность регулировки и регистрации интенсивности передаваемых слов; определение потери слуха в сравнимых единицах (децибелах). Этот метод дает возможность количественного определения слуховой функции по степени разборчивости речи, которая связана с поражением тех или иных звеньев звукового анализатора.

Речевая аудиометрия заключается в том, что разговорная речь или отдельные слова записывают с помощью высококачественной звукозаписывающей аппаратуры (например, магнитофона), а затем без искажения передают на динамический телефон, надетый на ухо испытуемого. Группы слов должны быть фонетически однородными и соответствовать словесной и ритмико-динамической структуре русского языка. Все слова при записи на магнитофон произносятся диктором одинаково громко, что контролируется при помощи вольтметра. Каждая запись - таблица - содержит 50 слов. Сила, с которой слова передаются к уху испытуемого, регулируется при помощи аттенюатора.

В настоящее время для речевой аудиометрии предложены различные виды артикуляционных таблиц: слоговые (составленные из звуков, лишенных смысла), словесные и фразовые. Попытки исследовать слуховую функцию больных слоговыми таблицами не увенчались успехом, так как использование лишенных смысла звукосочетаний затрудняет и усложняет методику исследования. Фразовые артикуляционные таблицы тоже не получили применения в речевой аудиометрии, так как их составление затруднено из-за бесчисленного множества всевозможных фраз в языке и отсутствия возможности конкретно представить с их помощью фонетические особенности данного языка. При исследовании слуха у больных наиболее пригодными оказались артикуляционные таблицы, составленные из отдельных 30-50 слов.

В настоящее время метод речевой аудиометрии разработан на английском, русском, немецком, финском, шведском, французском, итальянском, грузинском, туркменском и некоторых других языках.

Для исследования слуха речью составлены словесные артикуляционные таблицы, отражающие реальную речь. Группы слов фонетически однородны и соответствуют словесной и ритмико-динамической структуре русского языка.

Целью речевой аудиометрии является получение кривой разборчивости. Для этого необходимо определить по крайней мере три точки (уровня). Первая точка получается, когда интенсивность переданных магнитофоном слов достигает такой величины, что испытуемый слышит появление какого-то звука вообще. Этот уровень почти совпадает с уровнем слуха на чистые тона в диапазоне частот 300-3000 гц или превышает его на 3-8 дб.

Вторая точка получается при усилении речи до такой интенсивности, что испытуемый начинает правильно повторять (записывать) 50% переданных слов, т. е. 25 слов из таблицы. Обычно этот уровень находится примерно на 25-30 дб выше первого. Таким образом, чтобы понять половину слов, интенсивность их должна быть приблизительно на 30 дб выше порога слышимости слуховых частот (т. е. 300-3000 гц).

Третья точка определяется при такой интенсивности, когда будет достигнута уже максимальная разборчивость. В норме этот уровень соответствует интенсивности 40-45 дб выше тонального порога.

Максимальной разборчивостью считается такая, когда испытуемый повторяет 90% слов и больше, так как при этом он полностью воспринимает обычную разборчивую речь.

Таким образом, при речевой аудиометрии определяются в основном три величины:

1) порог речевого слуха - та интенсивность, при которой испытуемый слышит 50% поданных слов (порог отсчитывается по оси абсцисс);

2) максимальная разборчивость (отсчитывается по оси ординат);

3) потеря различения (дискриминация), что может быть при некоторых формах нарушения звуковосприятия, когда при усилении интенсивности звукового раздражителя разборчивость не достигает 100%.

Наконец, устанавливается разборчивость при максимальных интенсивностях (например, при 100 дб). При этом у больных невритом слухового нерва процент разборчивости не только не увеличивается, а даже уменьшается. При различных формах тугоухости кривые разборчивости имеют характерные особенности, и поэтому они имеют большое диагностическое значение.

Похожие публикации