Фокальная ось эллипса. Эллипс определение свойства построение


Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек F_1 , и F_2 есть величина постоянная (2a) , бо́льшая расстояния (2c) между этими заданными точками (рис.3.36,а). Это геометрическое определение выражает фокальное свойство эллипса .

Фокальное свойство эллипса

Точки F_1 , и F_2 называются фокусами эллипса, расстояние между ними 2c=F_1F_2 - фокусным расстоянием, середина O отрезка F_1F_2 - центром эллипса, число 2a - длиной большой оси эллипса (соответственно, число a - большой полуосью эллипса). Отрезки F_1M и F_2M , соединяющие произвольную точку M эллипса с его фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки эллипса, называется хордой эллипса.


Отношение e=\frac{c}{a} называется эксцентриситетом эллипса. Из определения (2a>2c) следует, что 0\leqslant e<1 . При e=0 , т.е. при c=0 , фокусы F_1 и F_2 , а также центр O совпадают, и эллипс является окружностью радиуса a (рис.3.36,6).


Геометрическое определение эллипса , выражающее его фокальное свойство, эквивалентно его аналитическому определению - линии, задаваемой каноническим уравнением эллипса:



Действительно, введем прямоугольную систему координат (рис.3.36,в). Центр O эллипса примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось или первую ось эллипса), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную фокальной оси и проходящую через центр эллипса (вторую ось эллипса), примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).



Составим уравнение эллипса, пользуясь его геометрическим определением, выражающим фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0),~F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей эллипсу, имеем:


\vline\,\overrightarrow{F_1M}\,\vline\,+\vline\,\overrightarrow{F_2M}\,\vline\,=2a.


Записывая это равенство в координатной форме, получаем:


\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a.


Переносим второй радикал в правую часть, возводим обе части уравнения в квадрат и приводим подобные члены:


(x+c)^2+y^2=4a^2-4a\sqrt{(x-c)^2+y^2}+(x-c)^2+y^2~\Leftrightarrow ~4a\sqrt{(x-c)^2+y^2}=4a^2-4cx.


Разделив на 4, возводим обе части уравнения в квадрат:


a^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2~\Leftrightarrow~ (a^2-c^2)^2x^2+a^2y^2=a^2(a^2-c^2).


Обозначив b=\sqrt{a^2-c^2}>0 , получаем b^2x^2+a^2y^2=a^2b^2 . Разделив обе части на a^2b^2\ne0 , приходим к каноническому уравнению эллипса:


\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.


Следовательно, выбранная система координат является канонической.


Если фокусы эллипса совпадают, то эллипс представляет собой окружность (рис.3.36,6), поскольку a=b . В этом случае канонической будет любая прямоугольная система координат с началом в точке O\equiv F_1\equiv F_2 , a уравнение x^2+y^2=a^2 является уравнением окружности с центром в точке O и радиусом, равным a .


Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.49), и только они, принадлежат геометрическому месту точек, называемому эллипсом. Другими словами, аналитическое определение эллипса эквивалентно его геометрическому определению, выражающему фокальное свойство эллипса.

Директориальное свойство эллипса

Директрисами эллипса называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии \frac{a^2}{c} от нее. При c=0 , когда эллипс является окружностью, директрис нет (можно считать, что директрисы бесконечно удалены).


Эллипс с эксцентриситетом 0геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство эллипса ). Здесь F и d - один из фокусов эллипса и одна из его директрис, расположенные по одну сторону от оси ординат канонической системы координат, т.е. F_1,d_1 или F_2,d_2 .


В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.37,6) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:


\sqrt{(x-c)^2+y^2}=e\cdot\!\left(\frac{a^2}{c}-x\right)


Избавляясь от иррациональности и заменяя e=\frac{c}{a},~a^2-c^2=b^2 , приходим к каноническому уравнению эллипса (3.49). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1\colon\frac{r_1}{\rho_1}=e .


Уравнение эллипса в полярной системе координат

Уравнение эллипса в полярной системе координат F_1r\varphi (рис.3.37,в и 3.37(2)) имеет вид


r=\frac{p}{1-e\cdot\cos\varphi}

где p=\frac{b^2}{a} фокальный параметр эллипса.


В самом деле, выберем в качестве полюса полярной системы координат левый фокус F_1 эллипса, а в качестве полярной оси - луч F_1F_2 (рис.3.37,в). Тогда для произвольной точки M(r,\varphi) , согласно геометрическому определению (фокальному свойству) эллипса, имеем r+MF_2=2a . Выражаем расстояние между точками M(r,\varphi) и F_2(2c,0) (см. ):


\begin{aligned}F_2M&=\sqrt{(2c)^2+r^2-2\cdot(2c)\cdot r\cos(\varphi-0)}=\\ &=\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.\end{aligned}


Следовательно, в координатной форме уравнение эллипса F_1M+F_2M=2a имеет вид


r+\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}=2\cdot a.


Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:


r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2~\Leftrightarrow~a\cdot\!\left(1-\frac{c}{a}\cdot\cos\varphi\right)\!\cdot r=a^2-c^2.


Выражаем полярный радиус r и делаем замену e=\frac{c}{a},~b^2=a^2-c^2,~p=\frac{b^2}{a} :


r=\frac{a^2-c^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cdot\cos\varphi},


что и требовалось доказать.

Геометрический смысл коэффициентов в уравнении эллипса

Найдем точки пересечения эллипса (см. рис.3.37,а) с координатными осями (вершины зллипса). Подставляя в уравнение y=0 , находим точки пересечения эллипса с осью абсцисс (с фокальной осью): x=\pm a . Следовательно, длина отрезка фокальной оси, заключенного внутри эллипса, равна 2a . Этот отрезок, как отмечено выше, называется большой осью эллипса, а число a - большой полуосью эллипса. Подставляя x=0 , получаем y=\pm b . Следовательно, длина отрезка второй оси эллипса, заключенного внутри эллипса, равна 2b . Этот отрезок называется малой осью эллипса, а число b - малой полуосью эллипса.


Действительно, b=\sqrt{a^2-c^2}\leqslant\sqrt{a^2}=a , причем равенство b=a получается только в случае c=0 , когда эллипс является окружностью. Отношение k=\frac{b}{a}\leqslant1 называется коэффициентом сжатия эллипса.

Замечания 3.9


1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, внутри которого находится эллипс (см. рис.3.37,а).


2. Эллипс можно определить, как геометрическое место точек, получаемое в результате сжатия окружности к ее диаметру.


Действительно, пусть в прямоугольной системе координат Oxy уравнение окружности имеет вид x^2+y^2=a^2 . При сжатии к оси абсцисс с коэффициентом 0

\begin{cases}x"=x,\\y"=k\cdot y.\end{cases}


Подставляя в уравнение окружности x=x" и y=\frac{1}{k}y" , получаем уравнение для координат образа M"(x",y") точки M(x,y) :


(x")^2+{\left(\frac{1}{k}\cdot y"\right)\!}^2=a^2 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{k^2\cdot a^2}=1 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{b^2}=1,


поскольку b=k\cdot a . Это каноническое уравнение эллипса.


3. Координатные оси (канонической системы координат) являются осями симметрии эллипса (называются главными осями эллипса), а его центр - центром симметрии.


Действительно, если точка M(x,y) принадлежит эллипсу . то и точки M"(x,-y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат тому же эллипсу.


4. Из уравнения эллипса в полярной системе координат r=\frac{p}{1-e\cos\varphi} (см. рис.3.37,в), выясняется геометрический смысл фокального параметра - это половина длины хорды эллипса, проходящей через его фокус перпендикулярно фокальной оси (r=p при \varphi=\frac{\pi}{2} ).



5. Эксцентриситет e характеризует форму эллипса, а именно отличие эллипса от окружности. Чем больше e , тем эллипс более вытянут, а чем ближе e к нулю, тем ближе эллипс к окружности (рис.3.38,а). Действительно, учитывая, что e=\frac{c}{a} и c^2=a^2-b^2 , получаем


e^2=\frac{c^2}{a^2}=\frac{a^2-b^2}{a^2}=1-{\left(\frac{a}{b}\right)\!}^2=1-k^2,


где k - коэффициент сжатия эллипса, 0

6. Уравнение \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 при a

7. Уравнение \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1,~a\geqslant b определяет эллипс с центром в точке O"(x_0,y_0) , оси которого параллельны координатным осям (рис.3.38,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).


При a=b=R уравнение (x-x_0)^2+(y-y_0)^2=R^2 описывает окружность радиуса R с центром в точке O"(x_0,y_0) .

Параметрическое уравнение эллипса

Параметрическое уравнение эллипса в канонической системе координат имеет вид


\begin{cases}x=a\cdot\cos{t},\\ y=b\cdot\sin{t},\end{cases}0\leqslant t<2\pi.


Действительно, подставляя эти выражения в уравнение (3.49), приходим к основному тригонометрическому тождеству \cos^2t+\sin^2t=1 .

Пример 3.20. Изобразить эллипс \frac{x^2}{2^2}+\frac{y^2}{1^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.


Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - большая полуось, b=1 - малая полуось эллипса. Строим основной прямоугольник со сторонами 2a=4,~2b=2 с центром в начале координат (рис.3.39). Учитывая симметричность эллипса, вписываем его в основной прямоугольник. При необходимости определяем координаты некоторых точек эллипса. Например, подставляя x=1 в уравнение эллипса, получаем


\frac{1^2}{2^2}+\frac{y^2}{1^2}=1 \quad \Leftrightarrow \quad y^2=\frac{3}{4} \quad \Leftrightarrow \quad y=\pm\frac{\sqrt{3}}{2}.


Следовательно, точки с координатами \left(1;\,\frac{\sqrt{3}}{2}\right)\!,~\left(1;\,-\frac{\sqrt{3}}{2}\right) - принадлежат эллипсу.


Вычисляем коэффициент сжатия k=\frac{b}{a}=\frac{1}{2} ; фокусное расстояние 2c=2\sqrt{a^2-b^2}=2\sqrt{2^2-1^2}=2\sqrt{3} ; эксцентриситет e=\frac{c}{a}=\frac{\sqrt{3}}{2} ; фокальный параметр p=\frac{b^2}{a}=\frac{1^2}{2}=\frac{1}{2} . Составляем уравнения директрис: x=\pm\frac{a^2}{c}~\Leftrightarrow~x=\pm\frac{4}{\sqrt{3}} .

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек F_1 , и F_2 есть величина постоянная (2a) , бо́льшая расстояния (2c) между этими заданными точками (рис.3.36,а). Это геометрическое определение выражает фокальное свойство эллипса .

Фокальное свойство эллипса

Точки F_1 , и F_2 называются фокусами эллипса, расстояние между ними 2c=F_1F_2 - фокусным расстоянием, середина O отрезка F_1F_2 - центром эллипса, число 2a - длиной большой оси эллипса (соответственно, число a - большой полуосью эллипса). Отрезки F_1M и F_2M , соединяющие произвольную точку M эллипса с его фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки эллипса, называется хордой эллипса.

Отношение e=\frac{c}{a} называется эксцентриситетом эллипса. Из определения (2a>2c) следует, что 0\leqslant e<1 . При e=0 , т.е. при c=0 , фокусы F_1 и F_2 , а также центр O совпадают, и эллипс является окружностью радиуса a (рис.3.36,6).

Геометрическое определение эллипса , выражающее его фокальное свойство, эквивалентно его аналитическому определению - линии, задаваемой каноническим уравнением эллипса:

Действительно, введем прямоугольную систему координат (рис.3.36,в). Центр O эллипса примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось или первую ось эллипса), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную фокальной оси и проходящую через центр эллипса (вторую ось эллипса), примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение эллипса, пользуясь его геометрическим определением, выражающим фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0),~F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей эллипсу, имеем:

\vline\,\overrightarrow{F_1M}\,\vline\,+\vline\,\overrightarrow{F_2M}\,\vline\,=2a.

Записывая это равенство в координатной форме, получаем:

\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a.

Переносим второй радикал в правую часть, возводим обе части уравнения в квадрат и приводим подобные члены:

(x+c)^2+y^2=4a^2-4a\sqrt{(x-c)^2+y^2}+(x-c)^2+y^2~\Leftrightarrow ~4a\sqrt{(x-c)^2+y^2}=4a^2-4cx.

Разделив на 4, возводим обе части уравнения в квадрат:

A^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2~\Leftrightarrow~ (a^2-c^2)^2x^2+a^2y^2=a^2(a^2-c^2).

Обозначив b=\sqrt{a^2-c^2}>0 , получаем b^2x^2+a^2y^2=a^2b^2 . Разделив обе части на a^2b^2\ne0 , приходим к каноническому уравнению эллипса:

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.

Следовательно, выбранная система координат является канонической.

Если фокусы эллипса совпадают, то эллипс представляет собой окружность (рис.3.36,6), поскольку a=b . В этом случае канонической будет любая прямоугольная система координат с началом в точке O\equiv F_1\equiv F_2 , a уравнение x^2+y^2=a^2 является уравнением окружности с центром в точке O и радиусом, равным a .

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.49), и только они, принадлежат геометрическому месту точек, называемому эллипсом. Другими словами, аналитическое определение эллипса эквивалентно его геометрическому определению, выражающему фокальное свойство эллипса.

Директориальное свойство эллипса

Директрисами эллипса называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии \frac{a^2}{c} от нее. При c=0 , когда эллипс является окружностью, директрис нет (можно считать, что директрисы бесконечно удалены).

Эллипс с эксцентриситетом 0геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство эллипса ). Здесь F и d - один из фокусов эллипса и одна из его директрис, расположенные по одну сторону от оси ординат канонической системы координат, т.е. F_1,d_1 или F_2,d_2 .

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.37,6) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:

\sqrt{(x-c)^2+y^2}=e\cdot\!\left(\frac{a^2}{c}-x\right)

Избавляясь от иррациональности и заменяя e=\frac{c}{a},~a^2-c^2=b^2 , приходим к каноническому уравнению эллипса (3.49). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1\colon\frac{r_1}{\rho_1}=e .

Уравнение эллипса в полярной системе координат

Уравнение эллипса в полярной системе координат F_1r\varphi (рис.3.37,в и 3.37(2)) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi}

где p=\frac{b^2}{a} фокальный параметр эллипса.

В самом деле, выберем в качестве полюса полярной системы координат левый фокус F_1 эллипса, а в качестве полярной оси - луч F_1F_2 (рис.3.37,в). Тогда для произвольной точки M(r,\varphi) , согласно геометрическому определению (фокальному свойству) эллипса, имеем r+MF_2=2a . Выражаем расстояние между точками M(r,\varphi) и F_2(2c,0) (см. пункт 2 замечаний 2.8):

\begin{aligned}F_2M&=\sqrt{(2c)^2+r^2-2\cdot(2c)\cdot r\cos(\varphi-0)}=\\ &=\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.\end{aligned}

Следовательно, в координатной форме уравнение эллипса F_1M+F_2M=2a имеет вид

R+\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}=2\cdot a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

R^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2~\Leftrightarrow~a\cdot\!\left(1-\frac{c}{a}\cdot\cos\varphi\right)\!\cdot r=a^2-c^2.

Выражаем полярный радиус r и делаем замену e=\frac{c}{a},~b^2=a^2-c^2,~p=\frac{b^2}{a} :

R=\frac{a^2-c^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cdot\cos\varphi},

что и требовалось доказать.

Геометрический смысл коэффициентов в уравнении эллипса

Найдем точки пересечения эллипса (см. рис.3.37,а) с координатными осями (вершины зллипса). Подставляя в уравнение y=0 , находим точки пересечения эллипса с осью абсцисс (с фокальной осью): x=\pm a . Следовательно, длина отрезка фокальной оси, заключенного внутри эллипса, равна 2a . Этот отрезок, как отмечено выше, называется большой осью эллипса, а число a - большой полуосью эллипса. Подставляя x=0 , получаем y=\pm b . Следовательно, длина отрезка второй оси эллипса, заключенного внутри эллипса, равна 2b . Этот отрезок называется малой осью эллипса, а число b - малой полуосью эллипса.

Действительно, b=\sqrt{a^2-c^2}\leqslant\sqrt{a^2}=a , причем равенство b=a получается только в случае c=0 , когда эллипс является окружностью. Отношение k=\frac{b}{a}\leqslant1 называется коэффициентом сжатия эллипса.

Замечания 3.9

1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, внутри которого находится эллипс (см. рис.3.37,а).

2. Эллипс можно определить, как геометрическое место точек, получаемое в результате сжатия окружности к ее диаметру.

Действительно, пусть в прямоугольной системе координат Oxy уравнение окружности имеет вид x^2+y^2=a^2 . При сжатии к оси абсцисс с коэффициентом 0

\begin{cases}x"=x,\\y"=k\cdot y.\end{cases}

Подставляя в уравнение окружности x=x" и y=\frac{1}{k}y" , получаем уравнение для координат образа M"(x",y") точки M(x,y) :

(x")^2+{\left(\frac{1}{k}\cdot y"\right)\!}^2=a^2 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{k^2\cdot a^2}=1 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{b^2}=1,

поскольку b=k\cdot a . Это каноническое уравнение эллипса.

3. Координатные оси (канонической системы координат) являются осями симметрии эллипса (называются главными осями эллипса), а его центр - центром симметрии.

Действительно, если точка M(x,y) принадлежит эллипсу . то и точки M"(x,-y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат тому же эллипсу.

4. Из уравнения эллипса в полярной системе координат r=\frac{p}{1-e\cos\varphi} (см. рис.3.37,в), выясняется геометрический смысл фокального параметра - это половина длины хорды эллипса, проходящей через его фокус перпендикулярно фокальной оси ( r=p при \varphi=\frac{\pi}{2} ).

5. Эксцентриситет e характеризует форму эллипса, а именно отличие эллипса от окружности. Чем больше e , тем эллипс более вытянут, а чем ближе e к нулю, тем ближе эллипс к окружности (рис.3.38,а). Действительно, учитывая, что e=\frac{c}{a} и c^2=a^2-b^2 , получаем

E^2=\frac{c^2}{a^2}=\frac{a^2-b^2}{a^2}=1-{\left(\frac{a}{b}\right)\!}^2=1-k^2,

где k - коэффициент сжатия эллипса, 0

6. Уравнение \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 при a

7. Уравнение \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1,~a\geqslant b определяет эллипс с центром в точке O"(x_0,y_0) , оси которого параллельны координатным осям (рис.3.38,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).

При a=b=R уравнение (x-x_0)^2+(y-y_0)^2=R^2 описывает окружность радиуса R с центром в точке O"(x_0,y_0) .

Параметрическое уравнение эллипса

Параметрическое уравнение эллипса в канонической системе координат имеет вид

\begin{cases}x=a\cdot\cos{t},\\ y=b\cdot\sin{t},\end{cases}0\leqslant t<2\pi.

Действительно, подставляя эти выражения в уравнение (3.49), приходим к основному тригонометрическому тождеству \cos^2t+\sin^2t=1 .


Пример 3.20. Изобразить эллипс \frac{x^2}{2^2}+\frac{y^2}{1^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - большая полуось, b=1 - малая полуось эллипса. Строим основной прямоугольник со сторонами 2a=4,~2b=2 с центром в начале координат (рис.3.39). Учитывая симметричность эллипса, вписываем его в основной прямоугольник. При необходимости определяем координаты некоторых точек эллипса. Например, подставляя x=1 в уравнение эллипса, получаем

\frac{1^2}{2^2}+\frac{y^2}{1^2}=1 \quad \Leftrightarrow \quad y^2=\frac{3}{4} \quad \Leftrightarrow \quad y=\pm\frac{\sqrt{3}}{2}.

Следовательно, точки с координатами \left(1;\,\frac{\sqrt{3}}{2}\right)\!,~\left(1;\,-\frac{\sqrt{3}}{2}\right) - принадлежат эллипсу.

Вычисляем коэффициент сжатия k=\frac{b}{a}=\frac{1}{2} ; фокусное расстояние 2c=2\sqrt{a^2-b^2}=2\sqrt{2^2-1^2}=2\sqrt{3} ; эксцентриситет e=\frac{c}{a}=\frac{\sqrt{3}}{2} ; фокальный параметр p=\frac{b^2}{a}=\frac{1^2}{2}=\frac{1}{2} . Составляем уравнения директрис: x=\pm\frac{a^2}{c}~\Leftrightarrow~x=\pm\frac{4}{\sqrt{3}} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка . Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической , если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат , поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой») , причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой , которая представляет собой линию первого порядка .

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

Например:

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка . Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка , и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат .

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду .

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим . Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Пример 1

Построить эллипс, заданный уравнением

Решение : сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса , которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :


Отрезок называют большой осью эллипса;
отрезок малой осью ;
число называют большой полуосью эллипса;
число малой полуосью .
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы . И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат . И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:


Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса .

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

В нашем случае:

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат .

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на … смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю .

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем , интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Пример 2

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Добавим экшена:

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

Каноническое уравнение эллипса имеет вид

где a – большая полуось; b – малая полуось. Точки F1(c,0) и F2(-c,0) − c называются

a, b - полуоси эллипса.

Нахождение фокусов, эксцентриситета, директрис эллипса, если известно его каноническое уравнение.

Определение гиперболы. Фокусы гиперболы.

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

По определению |r1 – r2|= 2a. F1, F2 – фокусы гиперболы. F1F2 = 2c.

Каноническое уравнение гиперболы. Полуоси гиперболы. Построение гиперболы, если известно ее каноническое уравнение.

Каноническое уравнение:

Большая полуось гиперболы составляет половину минимального расстояния между двумя ветвями гиперболы, на положительной и отрицательной сторонах оси (слева и справа относительно начала координат). Для ветви расположенной на положительной стороне, полуось будет равна:

Если выразить её через коническое сечение и эксцентриситет, тогда выражение примет вид:

Нахождение фокусов, эксцентриситета, директрис гиперболы, если известно ее каноническое уравнение.

Эксцентриситет гиперболы

Определение. Отношение называется эксцентриситетом гиперболы, где с –

половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с2 – а2 = b2:

Если а = b, e = , то гипербола называется равнобочной (равносторонней).

Директрисы гиперболы

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: .

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r/d – величина постоянная, равная эксцентриситету.

Определение параболы. Фокус и директриса параболы.

Парабола. Параболой называется геометрическое место точек, каждая из которых одинаково удалена от заданной фиксированной точки и от заданной фиксированной прямой. Точка, о которой идет речь в определении, называется фокусом параболы, а прямая - ее директрисой.

Каноническое уравнение параболы. Параметр параболы. Построение параболы.

Каноническое уравнение параболы в прямоугольной системе координат: (или , если поменять местами оси).

Построение параболы при заданной величине параметра p выполняется в следующей последовательности:

Проводят ось симметрии параболы и откладывают на ней отрезок KF=p;

Через точку K перпендикулярно оси симметрии проводят директрису DD1;

Отрезок KF делят пополам получают вершину 0 параболы;

От вершины отмеряют ряд произвольных точек 1, 2, 3, 5, 6 с постепенно увеличивающемся расстоянием между ними;

Через эти точки проводят вспомогательные прямые перпендикулярные оси параболы;

На вспомогательных прямых делают засечки радиусом равным расстоянию от прямой до директрисы;

Полученные точки соединяют плавной кривой.

11.1. Основные понятия

Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат

Коэффициенты уравнения - действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Ниже будет установлено, что уравнение (11.1) определяет на плоскости окружность, эллипс, гиперболу или параболу. Прежде, чем переходить к этому утверждению, изучим свойства перечисленных кривых.

11.2. Окружность

Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке называется множе­ство всех точек Μ плоскости, удовлетворяющих условию . Пусть точка в прямоугольной системе координат имеет координаты x 0 , y 0 а - произвольная точка окружности (см. рис. 48).

Тогда из условия получаем уравнение

(11.2)

Уравнению (11.2) удовлетворяют координаты любой точки данной окружности и не удовлетворяют координаты никакой точки, не лежащей на окружности.

Уравнение (11.2) называется каноническим уравнением окружности

В частности, полагая и , получим уравнение окружности с центром в начале координат .

Уравнение окружности (11.2) после несложных преобразований примет вид . При сравнении этого уравнения с общим уравнением (11.1) кривой второго порядка легко заметить, что для уравнения окружности выполнены два условия:

1) коэффициенты при x 2 и у 2 равны между собой;

2) отсутствует член, содержащий произведение xу текущих координат.

Рассмотрим обратную задачу. Положив в уравнении (11.1) значения и , получим

Преобразуем это уравнение:

(11.4)

Отсюда следует, что уравнение (11.3) определяет окружность при условии . Ее центр находится в точке , а радиус

.

Если же , то уравнение (11.3) имеет вид

.

Ему удовлетворяют координаты единственой точки . В этом случае говорят: “окружность выродилась в точку” (имеет нулевой радиус).

Если , то уравнение (11.4), а следовательно, и равносильное уравнение (11.3), не определят никакой линии, так как правая часть уравнения (11.4) отрицательна, а левая – не отрицательная (говорять: “окружность мнимая”).

11.3. Эллипс

Каноническое уравнение эллипса

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами , есть величина постоянная, большая, чем расстояние между фокусами.

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2c , а сумму расстояний от произ­вольной точки эллипса до фокусов - через 2a (см. рис. 49). По определению 2a > 2c , т. е. a > c .

Для вывода уравнения эллипса выберем систему координат так, чтобы фокусы F 1 и F 2 лежали на оси , а начало координат совпадало с серединой отрезка F 1 F 2 . Тогда фокусы будут иметь следующие координаты: и .

Пусть - произвольная точка эллипса. Тогда, согласно определению эллипса, , т. е.

Это, по сути, и есть уравнение эллипса.

Преобразуем уравнение (11.5) к более простому виду следующим образом:

Так как a >с , то . Положим

(11.6)

Тогда последнее уравнение примет вид или

(11.7)

Можно доказать, что уравнение (11.7) равносильно исходному уравнению. Оно называется каноническимуравнением эллипса .

Эллипс - кривая второго порядка.

Исследование формы эллипса по его уравнению

Установим форму эллипса, пользуясь его каноническим уравнением.

1. Уравнение (11.7) содержит х и у только в четных степенях, поэтому если точка принадлежит эллипсу, то ему также принадлежат точки ,,. Отсюда следует, что эллипс симметричен относительно осей и , а также относительно точки , которую называют центром эллипса.

2. Найдем точки пересечения эллипса с осями координат. Положив , находим две точки и , в которых ось пересекает эллипс (см. рис. 50). Положив в уравнении (11.7) , находим точки пересечения эллипса с осью : и . Точки A 1 , A 2 , B 1 , B 2 называются вершинами эллипса . Отрезки A 1 A 2 и B 1 B 2 , а также их длины 2a и 2b называются соответственно большой и малой осями эллипса. Числа a и b называются соответственно боль­шой и малой полуосями эллипса.

3. Из уравнения (11.7) следует, что каждое слагаемое в левой части не превосходит единицы, т.е. имеют место неравенства и или и . Следовательно, все точки эллипса.лежаї внутри прямоугольника, образованного прямыми .

4. В уравнении (11.7) сумма неотрицательных слагаемых и равна единице. Следовательно, при возрастании одного слагаемого другое будет уменьшаться, т. е. если возрастает, то уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму, изображенную на рис. 50 (овальная замкнутая кривая).

Дополнительные сведения об эллипсе

Форма эллипса зависит от отношения . При эллипс превращается в окружность, уравнение эллипса (11.7) принимает вид . В качестве характеристики формы эллипса чаще пользуются отношением . Отношение половины расстояния между фокусами к большой полуоси эллипса называется эксцентриситетом эллипса и o6oзначается буквой ε («эпсилон»):

причем 0<ε< 1, так как 0<с<а. С учетом равенства (11.6) формулу (11.8) можно переписать в виде

Отсюда видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным; если положить ε = 0, то эллипс превращается в окружность.

Пусть М(х;у) -- произвольная точка эллипса с фокусами F 1 и F 2 (см. рис. 51). Длины отрезков F 1 M=r 1 и F 2 M = r 2 называются фокальными радиусами точ­ки Μ. Очевидно,

Имеют место формулы

Прямые называются

Теорема 11.1. Если - расстояние от произвольной точки эллипса до какого-нибудь фокуса, d - расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение есть постоянная величина, равная эксцентриситету эллипса:

Из равенства (11.6) следует, что . Если же , то уравнение (11.7) определяет эллипс, большая ось которого лежит на оси Оу, а малая ось - на оси Ох (см. рис. 52). Фокусы такого эллипса находятся в точках и , где .

11.4. Гипербола

Каноническое уравнение гиперболы

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами , есть величина постоянная, меньшая, чем расстояние между фокусами.

Обозначим фокусы через F 1 и F 2 расстояние между ними через , а модуль разности расстоя­ний от каждой точки гиперболы до фокусов через 2a . По определению 2a < , т. е. a < c .

Для вывода уравнения гиперболы выберем си­стему координат так, чтобы фокусы F 1 и F 2 лежали на оси , а начало координат совпало с серединой отрезка F 1 F 2 (см. рис. 53). Тогда фокусы будут иметь координаты и

Пусть - произвольная точка гиперболы. Тогда согласно опре­делению гиперболы или , т.е.. После упрощений, как это было сделано при выводе уравнения эллипса, получим каноническое уравнение гиперболы

(11.9)

(11.10)

Гипербола есть линия второго порядка.

Исследование формы гиперболы по ее уравнению

Установим форму гиперболы, пользуясь ее каконическим уравнением.

1. Уравнение (11.9) содержит x и у только в четных степенях. Сле­довательно, гипербола симметрична относительно осей и , а также относительно точки , которую называют центром гиперболы.

2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (11.9), находим две точки пересечения гиперболы с осью : и . Положив в (11.9), получаем , чего быть не может. Следовательно, гипербола ось Оу не пересекает.

Точки и называются вершинами гиперболы, а отрезок

действительной осью , отрезок - действительной полуосью гиперболы.

Отрезок , соединяющий точки и называется мнимой осью , число b - мнимой полуосью . Прямоугольник со сторонами 2a и 2b называется основным прямоугольником гиперболы .

3. Из уравнения (11.9) следует, что уменьшаемое не меньше единицы т. е. что или . Это означает, что точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и слева от прямой (левая ветвь гиперболы).

4. Из уравнения (11.9) гиперболы видно, что когда возрастает, то и воз­растает. Это следует из того, что разность сохраняет постоянное значение, равное единице.

Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).

Асимптоты гиперболы

Прямая L называется асимптотой неограниченной кривой K, если расстояние d от точки M кривой K до этой прямой стремится к ну­лю при неограниченном удалении точки M вдоль кривой K от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой К.

Покажем, что гипербола имеет две асимптоты:

(11.11)

Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти.

Возьмем на прямой точку N имеющей ту же абсциссу х, что и точка на гиперболе (см.рис. 56), и найдем разность ΜΝ между ордина­тами прямой и ветви гиперболы:

Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель - есть постоянная величина. Стало быть, длина отрезка ΜΝ стремится к нулю. Так как ΜΝ больше расстояния d от точки Μ до прямой, то d и подавно стремится к ну­лю. Итак, прямые являются асимптотами гиперболы (11.9).

При построении гиперболы (11.9) целесообразно сначала построить ос­новной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, - асимптоты гиперболы и отметить вершины и , гиперболы.

Уравнение равносторонней гиперболы.

асимптотами которой служат оси координат

Гипербола (11.9) называется равносторонней, если ее полуоси равны (). Ее каноническое уравнение

(11.12)

Асимптоты равносторонней гиперболы имеют уравнения и и, следовательно, являются биссектрисами координатных углов.

Рассмотрим уравнение этой гиперболы в новой си­стеме координат (см. рис. 58), полученной из старой поворотом осей координат на угол . Используем формулы поворота осей координат:

Подставляем значения х и у в уравнение (11.12):

Уравнение равносторонней гиперболы, для которой оси Ох и Оу являются асимптотами, будет иметь вид .

Дополнительные сведения о гиперболе

Эксцентриситетом гиперболы (11.9) называется отношение расстояния между фокусами к величине действительной оси гиперболы, обозначается ε:

Так как для гиперболы , то эксцентриситет гиперболы больше единицы: . Эксцентриситет характеризует форму гиперболы. Дей­ствительно, из равенства (11.10) следует, что т.е. и .

Отсюда видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение - ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет равносторонней гиперболы равен . Действительно,

Фокальные радиусы и для то­чек правой ветви гиперболы имеют вид и , а для левой - и .

Прямые - называются директрисами гиперболы. Так как для гиперболы ε > 1, то . Это значит, что правая директриса расположена между центром и правой вершиной гиперболы, левая - между центром и левой вершиной.

Директрисы гиперболы имеют то же свойство , что и директрисы эллипса.

Кривая, определяемая уравнением также есть гипербола, действительная ось 2b которой расположена на оси Оу, а мнимая ось 2a - на оси Ох. На рисунке 59 она изображена пунктиром.

Очевидно, что гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.

11.5. Парабола

Каноническое уравнение параболы

Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой. Расстояние от фокуса F до директрисы называется параметром параболы и обозначается через p (p > 0).

Для вывода уравнения параболы выберем систему координат Оху так, чтобы ось Ох проходила через фокус F перпендикулярно директрисе в направлении от директрисы к F, а начало координат О расположим посередине между фокусом и директри­сой (см. рис. 60). В выбранной системе фокус F имеет координаты , а уравнение директрисы имеет вид , или .

1. В уравнении (11.13) переменная у входит в четной степени, значит, парабола симметрична относительно оси Ох; ось Ох является осью сим­метрии параболы.

2. Так как ρ > 0, то из (11.13) следует, что . Следовательно, парабола рас­положена справа от оси Оу.

3. При имеем у = 0. Следователь­но, парабола проходит через начало коор­динат.

4. При неограниченном возрастании x модуль у также неограниченно возраста­ет. Парабола имеет вид (форму), изображенный на рисунке 61. Точ­ка О(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.

Уравнения , , (p>0 ) также определяют параболы, они изображены на рисунке 62

Нетрудно показать, что график квадратного трехчлена , где , B и С любые действительные числа, представляет собой параболу в смысле приведенного выше ее определения.

11.6. Общее уравнение линий второго порядка

Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям

Найдем сначала уравнение эллипса с центром в точке , оси симметрии которого параллельны координатным осям Ох и Оу и полуоси соответственно равны a и b . Поместим в центре эллипса O 1 начало новой системы координат , оси которой и полуосями a и b (см. рис. 64):

И, наконец, параболы, изображенные на рисунке 65, имеют соответству­ющие уравнения.

Уравнение

Уравнения эллипса, гиперболы, параболы и уравнение окружности после преобразований (раскрыть скобки, перенести все члены уравнения в одну сторону, привести подобные члены, ввести новые обозначения для коэффициентов) можно записать с помощью единого уравнения вида

где коэффициенты А и С не равны нулю одновременно.

Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка? Ответ дает следующая теорема.

Теорема 11.2 . Уравнение (11.14) всегда определяет: либо окружность (при А = С), либо эллипс (при А · С > 0), либо гиперболу (при А · С < 0), либо параболу (при А×С= 0). При этом возможны случаи вырождения: для эллипса (окружности) - в точку или мнимый эллипс (окружность), для гиперболы - в пару пересекающихся прямых, для параболы - в пару параллельных прямых.

Общее уравнение второго порядка

Рассмотрим теперь общее уравнение второй степени с двумя неизвест­ными:

Оно отличается от уравнения (11.14) наличием члена с произведением координат (B¹ 0). Можно, путем поворота координатных осей на угол a , преобразовать это уравнение, чтобы в нем член с произведением координат отсутствовал.

Используя формулы поворота осей

выразим старые координаты через новые:

Выберем угол a так, чтобы коэффициент при х" · у" обратился в нуль, т. е. чтобы выполнялось равенство

Таким образом, при повороте осей на угол а, удовлетворяющий условию (11.17), уравнение (11.15) сводится к уравнению (11.14).

Вывод : общее уравнение второго порядка (11.15) определяет на плоскости (если не считать случаев вырождения и распадения) следующие кривые: окружность, эллипс, гиперболу, параболу.

Замечание: Если А = С, то уравнение (11.17) теряет смысл. В этом случае cos2α = 0 (см. (11.16)), тогда 2α = 90°, т. е. α = 45°. Итак, при А = С систему координат следует повернуть на 45°.

Похожие публикации