Второе правило лопиталя для вычисления пределов. Решение пределов онлайн

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является сайт.

Правило Лопиталя (п. Л.) облегчает вычисление пределов функций. Например, надо найти предел функции, которая является отношением функций стремящихся к нулю. Т.е. отношение функций это неопределенность 0/0. Раскрыть ее поможет . В пределе отношение функций можно заменить отношением производных этих функций. Т.е. надо производную числителя разделить на производную знаменателя и от этой дроби взять предел.

1. Неопределенность 0/0. Первое п.Л.

Если = 0, то , если последний существует.

2. Неопределенность вида ∞/∞ Второе п. Л.

Нахождение пределов такого типа называется раскрытием неопределенностей.

Если = ∞, то , если последний существует.

3. Неопределенности 0⋅∞, ∞- ∞, 1 ∞ и 0 0 сводятся к неопределенностям 0/0 и ∞/∞ путем преобразований. Такая запись служит для краткого указания случая при отыскании предела. Каждая неопределенность раскрывается по своему. Правило Лопиталя можно применять несколько раз, пока не избавимся от неопределенности. Применение правила Лопиталя приносит пользу тогда, когда отношение производных удается преобразовать к более удобному виду легче, чем отношение функций.

  • 0⋅∞ произведение двух функций, первая стремится к нулю, вторая к бесконечности;
  • ∞- ∞ разность функций, стремящихся к бесконечности;
  • 1 ∞ степень, ее основание стремится к единице, а показатель к бесконечности;
  • ∞ 0 степень, ее основание стремится к бесконечности, а степень к нулю;
  • 0 0 степень, ее основание стремится к 0 и показатель тоже стремятся к нулю.

Пример 1. В этом примере неопределенность 0/0

Пример 2. Здесь ∞/∞

В этих примерах производные числителя делим на производные знаменателя и подставляем предельное значение вместо х.

Пример 3. Вид неопределенности 0⋅∞ .

Неопределенность 0⋅∞ преобразуем к ∞/∞, для этого х переносим в знаменатель в виде дроби 1/x , в числителе пишем производную от числителя, а в знаменателе производную от знаменателя.

Пример 4 Вычислить предел функции

Здесь неопределенность вида ∞ 0 Сначала логарифмируем функцию, затем найдем от нее предел

Для получения ответа надо е возвести в степень -1, получим e -1 .

Пример 5. Вычислить предел от если x → 0

Решение. Вид неопределенности ∞ -∞ Приведя дробь к общему знаменателю перейдем от ∞-∞ к 0/0. Применим правило Лопиталя, однако снова получим неопределенность 0/0, поэтому п. Л. надо применить второй раз. Решение имеет вид:

= = = =
= =

Пример 6 Решить

Решение. Вид неопределенности ∞/∞, раскрыв ее получим

В случаях 3), 4), 5) сначала логарифмируют функцию и находят предел логарифма, а затем искомый предел е возводим в полученную степень.

Пример 7. Вычислить предел

Решение. Здесь вид неопределенности 1 ∞ . Обозначим A =

Тогда lnA = = = = 2.

Основание логарифма е, поэтому для получения ответа надо е возвести в квадрат, получим e 2 .

Иногда бывают случаи, когда отношение функций имеет предел, в отличие от отношения производных, которое не имеет его.

Рассмотрим пример:

Т.к. sinx ограничен, а х неограниченно растет, второй член равен 0.

Эта функция не имеет предела, т.к. она постоянно колеблется между 0 и 2, к этому примеру неприменимо п. Л.

Правило говорит, что если функции f (x ) и g (x ) обладают следующим набором условий:

тогда существует . При этом теорема верна и для других баз (для указанной будет приведено доказательство).

История

Способ раскрытия такого рода неопределённостей был опубликован Лопиталем в его сочинении «Анализ бесконечно малых», изданном в году. В предисловии к этому сочинению Лопиталь указывает, что без всякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того, чтобы они предъявили свои авторские права на все, что им угодно». Иоганн Бернулли предъявил претензии на все сочинение Лопиталя целиком и в частности после смерти Лопиталя опубликовал работу под примечательным названием «Усовершенствование моего опубликованного в „Анализе бесконечно малых“ метода для определения значения дроби, числитель и знаменатель которой иногда исчезают», .

Доказательство

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (т. н. неопределённость вида ).

Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a , мы можем непрерывным образом их доопределить в этой точке: пусть f (a ) = g (a ) = 0 . Возьмём некоторый x из рассматриваемой полуокрестности и применим к отрезку теорему Коши . По этой теореме получим:

,

но f (a ) = g (a ) = 0 , поэтому .

Src="/pictures/wiki/files/56/85e2b8bb13d6fb1ddcf88e22a4bb6ef2.png" border="0"> для конечного предела и src="/pictures/wiki/files/101/e8b2f2b8861947c8728d4d1be40366d4.png" border="0"> для бесконечного,

что является определением предела отношения функций.

Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен A . Тогда, при стремлении x к a справа, это отношение можно записать как A + α , где α - (1). Запишем это условие:

.

Зафиксируем t из отрезка и применим теорему Коши ко всем x из отрезка :

, что можно привести к следующему виду: .

Для x , достаточно близких к a , выражение имеет смысл; предел первого множителя правой части равен единице (так как f (t ) и g (t ) - константы , а f (x ) и g (x ) стремятся к бесконечности). Значит, этот множитель равен 1 + β , где β - бесконечно малая функция при стремлении x к a справа. Выпишем определение этого факта, используя то же значение , что и в определении для α :

.

Получили, что отношение функций представимо в виде (1 + β)(A + α) , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и A был меньше , значит, предел отношения функций действительно равен A .

Если же предел A бесконечен (допустим, он равен плюс бесконечности), то

(x)}{g"(x)}>2M)" src="/pictures/wiki/files/101/e46c5113c49712376d1c357b5b202a65.png" border="0">.

В определении β будем брать ; первый множитель правой части будет больше 1/2 при x , достаточно близких к a , а тогда src="/pictures/wiki/files/50/2f7ced4a9b4b06f7b9085e982250dbcf.png" border="0">.

Для других баз доказательства аналогичны приведённым.

Примеры

(Только если числитель и знаменатель ОБА стремятся или к 0 ; или к ; или к .)


Wikimedia Foundation . 2010 .

Смотреть что такое "Лопиталя правило" в других словарях:

    Исторически неправильное наименование одного из основных правил раскрытия неопределённостей. Л. п. было найдено И. Бернулли и сообщено им Г. Лопиталю (См. Лопиталь), опубликовавшему это правило в 1696. См. Неопределённые выражения … Большая советская энциклопедия

    Раскрытие неопределенностей вида сведением предела отношения функций к пределу отношения производных рассматриваемых функций. Так, для случая, когда действительные функции f и gопределены в проколотой правосторонней окрестности точки ачисловой… … Математическая энциклопедия

    Правило Бернулли Лопиталя метод нахождения пределов функций, раскрывающий неопределённости вида и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.… … Википедия

    В математическом анализе правилом Лопиталя называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу… … Википедия

    В математическом анализе правилом Лопиталя называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу… … Википедия

Инструкция

Неопределенность вида [∞-∞], раскрывается, если имеется в виду разность каких-либо дробей. Приведя эту разность к общему знаменателю, получите некоторое отношение функций.

Неопределенности типа 0^∞, 1^∞, ∞^0 возникают при вычислении типа p(x)^q(x). В этом случае применяют предварительное дифференцирование. Тогда искомого предела А примет вид произведения, возможно, что с готовым знаменателем. Если нет, то можно использовать методику примера 3. Главное не забыть записать окончательный ответ в виде е^А (см. рис.5).

Видео по теме

Источники:

  • вычислить предел функции не пользуясь правилом лопиталя в 2019

Инструкция

Пределом называется некоторое число, к которому стремится переменная переменная или значение выражения. Обычно переменные или функции стремятся либо к нулю, либо к бесконечности. При пределе, нулю, величина считается бесконечно малой. Иными словами, бесконечно малыми называются величины, которые переменны и приближаются к нулю. Если стремится к бесконечности, то его называют бесконечным пределом. Обычно он записывается в виде:
lim x=+∞.

У есть ряд свойств, некоторые из которых представляют собой . Ниже представлены основные из них.
- одна величина имеет только один предел;

Предел постоянной величины равен величине этой постоянной;

Предел суммы равен сумме пределов: lim(x+y)=lim x + lim y;

Предел произведения равен произведению пределов: lim(xy)=lim x * lim y

Постоянный множитель может быть вынесен за знак предела: lim(Cx) = C * lim x, где C=const;

Предел частного равен частному пределов: lim(x/y)=lim x / lim y.

В задачах с пределами встречаются как числовые выражения, так и этих выражений. Это может выглядеть, в частности, следующим образом:
lim xn=a (при n→∞).
Ниже представлен несложного предела:
lim 3n +1 /n+1

n→∞.
Для решения этого предела поделите все выражение на n единиц. Известно, что если единица делится на некоторую величину n→∞, то предел 1/n равен нулю. Справедливо и обратное: если n→0, то 1/0=∞. Поделив весь пример на n, запишите его в представленном ниже виде и получите :
lim 3+1/n/1+1/n=3

При решении на пределы могут возникать результаты, которые называются неопределенностями. В таких случаях применяют правила Лопиталя. Для этого производят повторное функции, которое приведет пример в такую форму, в которой его можно было решить. Существуют два типа неопределенностей: 0/0 и ∞/∞. Пример c неопределенностью может выглядеть, в частности, следующим обращом:
lim 1-cosx/4x^2=(0/0)=lim sinx/8x=(0/0)=lim cosx/8=1/8

Видео по теме

Расчет пределов функций - фундамент математического анализа, которому посвящено немало страниц в учебниках. Однако подчас не понятно не только определение, но и сама суть предела. Говоря простым языком, предел - это приближение одной переменной величины, которая зависит от другой, к какому-то конкретному единственному значению по мере изменения этой другой величины. Для успешного вычисления достаточно держать в уме простой алгоритм решения.

  • Правило Лопиталя и раскрытие неопределённостей
  • Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"
  • Раскрытие неопределённостей вида "ноль умножить на бесконечность"
  • Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"
  • Раскрытие неопределённостей вида "бесконечность минус бесконечность"

Правило Лопиталя и раскрытие неопределённостей

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей значительно упрощается с помощью правила Лопиталя.

Суть правила Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Вообще, под правилами Лопиталя понимаются несколько теорем, которые могут быть переданы в следующей одной формулировке.

Правило Лопиталя . Если функции f (x ) и g (x ) дифференцируемы в некоторой окрестности точки , за исключением, может быть, самой точки , причём в этой окрестности

(1)

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

В равенстве (1) величина , к которой стремится переменная, может быть либо конечным числом, либо бесконечностью, либо минус бесконечностью.

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1. Вычислить

x =2 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 2. Вычислить

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Если предел отношения производных представляет собой неопределённость вида 0/0 или ∞/∞, то можно снова применить правило Лопиталя, т.е. перейти к пределу отношения вторых производных, и т.д.

Пример 5. Вычислить

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

Похожие публикации