Все химические свойства оснований. Получение и свойства оснований


Нерастворимое основание: гидроксид меди

Основания - называют электролиты, в растворах которых отсутствуют анионы, кроме гидроксид-ионов (анионы - это ионы, которые имеют отрицательный заряд, в данном случае - это ионы OH -). Названия оснований состоят из трёх частей: слова гидроксид , к которому добавляют название металла (в родительном падеже). Например, гидроксид меди (Cu(OH) 2). Для некоторых оснований могут используются старые названия, например гидроксид натрия (NaOH) - натриевая щелочь .

Едкий натр , гидроксид натрия , натриевая щелочь , каустическая сода - всё это одно и тоже вещество, химическая формула которого NaOH. Безводный гидроксид натрия - это белое кристаллическое вещество. Раствор - прозрачная жидкость, на вид ничем не отличимая от воды. При использовании будьте осторожны! Едкий натр сильно обжигает кожу!

В основу классификации оснований положена их способность растворяться в воде. От растворимости в воде зависят некоторые свойства оснований. Так, основания , растворимые в воде, называют щелочью . К ним относятся гидроксиды натрия (NaOH), гидроксид калия (KOH), лития (LiOH), иногда к их числу прибавляют и гидроксид кальция (Ca(OH) 2)), хотя на самом деле - это малорастворимое вещество белого цвета (гашенная известь).

Получение оснований

Получение оснований и щелочей может производиться различными способами. Для получения щелочи можно использовать химическое взаимодействие металла с водой. Такие реакции протекают с очень большим выделением тепла, вплоть до воспламенения (воспламенение происходит по причине выделения водорода в процессе реакции).

2Na + 2H 2 O → 2NaOH + H 2

Негашенная известь - CaO

CaO + H 2 O → Ca(OH) 2

Но в промышленности эти методы не нашли практического значения, конечно кроме получения гидроксида кальция Ca(OH) 2 . Получение гидроксида натрия и гидроксида калия связано с использованием электрического тока. При электролизе водного раствора хлорида натрия или калия на катоде выделяются водород, а на аноде - хлор , при этом в растворе, где происходит электролиз, накапливается щелочь !

KCl + 2H 2 O →2KOH + H 2 + Cl 2 (эта реакция проходит при пропускании электрического тока через раствор).

Нерастворимые основания осаждают щелочами из растворов соответствующих солей.

CuSO 4 + 2NaOH → Cu(OH) 2 + Na 2 SO 4

Свойства оснований

Щелочи устойчивы к нагреванию. Гидроксид натрия можно расплавить и расплав довести до кипения, при этом он разлагаться не будет. Щелочи легко вступают в реакцию с кислотами, в результате которого образуется соль и вода. Эта реакция ещё носит название - реакция нейтрализации

KOH + HCl → KCl + H 2 O

Щёлочи взаимодействуют с кислотными оксидами, в результате которой образуется соль и вода.

2NaOH + CO 2 → Na 2 CO 3 + H 2 O

Нерастворимые основания , в отличии от щелочей, термически не стойкие вещества. Некоторые из них, например, гидроксид меди , разлагаются при нагревании,

Cu(OH) 2 + CuO → H 2 O
другие - даже при комнатной температуре (например, гидроксид серебра - AgOH).

Нерастворимые основания взаимодействуют с кислотами, реакция происходит лишь в том случае, если соль, которая образуется при реакции, растворяется в воде.

Cu(OH) 2 + 2HCl → CuCl 2 + 2H 2 O

Растворение щелочного металла в воде с изменение цвета индикатора на ярко-красный

Щелочные металлы - такие металлы, которые при взаимодействии с водой образуют щелочь . К типичному представителю щелочных металлов относится натрий Na. Натрий легче воды, поэтому его химическая реакция с водой происходит на её поверхности. Активно растворяясь в воде, натрий вытесняет из неё водород, при этом образуя натриевую щелочь (или гидроксид натрия) - едкий натр NaOH. Реакция протекает следующим образом:

2Na + 2H 2 O → 2NaOH + H 2

Подобным образом ведут себя все щелочные металлы. Если перед началом реакцией в воду добавить индикатор фенолфталеин, а затем опустить в воду кусочек натрия, то натрий будет скользить по воде, оставляя за собой ярко розовый след образовавшейся щелочи (щелочь окрашивает фенолфталеин в розовый цвет)

Гидроксид железа

Гидроксид железа является основанием. Железо, в зависимости от степени его окисления, образует два разных основания: гидроксид железа, где железо может иметь валентности (II) - Fe(OH) 2 и (III) - Fe(OH) 3 . Как и основания, образованные большинством металлов, оба основания железа не растворимы в воде.


Гидроксид железа (II) - белое студенистое вещество (осадок в растворе), которое обладает сильными восстановительными свойствами. К тому же, гидроксид железа (II) очень не стойкий. Если к раствору гидроксида железа (II) добавить немного щёлочи, то выпадет зелёный осадок, который достаточно быстро темнеет о превращается в бурый осадок железа (III).

Гидроксид железа (III) имеет амфотерные свойства, но кислотные свойства у него выражены значительно слабее. Получить гидроксид железа (III) можно в результате химической реакции обмена между солью железа и щёлочью. Например

Fe 2 (SO 4) 3 + 6 NaOH → 3 Na 2 SO 4 +2 Fe(OH) 3

Разделение оснований на группы по различным признакам представлено в таблице 11.

Таблица 11
Классификация оснований

Все основания, кроме раствора аммиака в воде, представляют собой твёрдые вещества, имеющие различную окраску. Например, гидроксид кальция Са(ОН) 2 белого цвета, гидроксид меди (II) Сu(ОН) 2 голубого цвета, гидроксид никеля (II) Ni(OH) 2 зелёного цвета, гидроксид железа (III) Fe(OH) 3 красно-бурого цвета и т. д.

Водный раствор аммиака NH 3 Н 2 O, в отличие от других оснований, содержит не катионы металла, а сложный однозарядный катион аммония NH - 4 и существует только в растворе (этот раствор вам известен под названием нашатырного спирта). Он легко разлагается на аммиак и воду:

Однако, какими бы разными ни были основания, все они состоят из ионов металла и гидроксогрупп, число которых равно степени окисления металла.

Все основания, и в первую очередь щёлочи (сильные электролиты), образуют при диссоциации гидроксид-ионы ОН - , которые и обусловливают ряд общих свойств: мылкость на ощупь, изменение окраски индикаторов (лакмуса, метилового оранжевого и фенолфталеина), взаимодействие с другими веществами.

Типичные реакции оснований

Первая реакция (универсальная) была рассмотрена в § 38.

Лабораторный опыт № 23
Взаимодействие щелочей с кислотами

    Запишите два молекулярных уравнения реакций, сущность которых выражается следующим ионным уравнением:

    H + + ОН - = Н 2 O.

    Проведите реакции, уравнения которых вы составили. Вспомните, какие вещества (кроме кислоты и щёлочи) необходимы для наблюдения за этими химическими реакциями.

Вторая реакция протекает между щелочами и оксидами неметаллов, которым соответствуют кислоты, например,

Соответствует

и т.д.

При взаимодействии оксидов с основаниями образуются соли соответствующих кислот и вода:


Рис. 141.
Взаимодействие щёлочи с оксидом неметалла

Лабораторный опыт № 24
Взаимодействие щелочей с оксидами неметаллов

Повторите опыт, который вы проделывали раньше. В пробирку налейте 2-3 мл прозрачного раствора известковой воды.

Поместите в неё соломинку для сока, которая выполняет роль газоотводной трубки. Осторожно пропускайте через раствор выдыхаемый воздух. Что наблюдаете?

Запишите молекулярное и ионное уравнения реакции.

Рис. 142.
Взаимодействие щелочей с солями:
а - с образованием осадка; б - с образованием газа

Третья реакция является типичной реакцией ионного обмена и протекает только в том случае, если в результате образуется осадок или выделяется газ, например:

Лабораторный опыт № 25
Взаимодействие щелочей с солями

    В трёх пробирках слейте попарно по 1-2 мл растворов веществ: 1-я пробирка - гидроксида натрия и хлорида аммония; 2-я пробирка - гидроксида калия и сульфата железа (III); 3-я пробирка - гидроксида натрия и хлорида бария.

    Нагрейте содержимое 1-й пробирки и определите по запаху один из продуктов реакции.

    Сформулируйте вывод о возможности взаимодействия щелочей с солями.

Нерастворимые основания разлагаются при нагревании на оксид металла и воду, что нехарактерно для щелочей, например:

Fe(OH) 2 = FeO + Н 2 O.

Лабораторный опыт № 26
Получение и свойства нерастворимых оснований

В две пробирки налейте по 1 мл раствора сульфата или хлорида меди (II). В каждую пробирку добавьте по 3-4 капли раствора гидроксида натрия. Опишите образовавшийся гидроксид меди (II).

Примечание . Оставьте пробирки с полученным гидроксидом меди (II) для проведения следующих опытов.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции».

Добавьте в одну из пробирок с полученным в предыдущем опыте гидроксидом меди (II) 1-2 мл соляной кислоты. Что наблюдаете?

Используя пипетку, поместите 1-2 капли полученного раствора на стеклянную или фарфоровую пластину и, используя тигельные щипцы, осторожно выпарьте его. Рассмотрите образующиеся кристаллы. Отметьте их цвет.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции», «участие катализатора» и «обратимость химической реакции».

Нагрейте одну из пробирок с полученным ранее или выданным учителем гидроксидом меди () (рис. 143). Что наблюдаете?

Рис. 143.
Разложение гидроксида меди (II) при нагревании

Составьте уравнение проведённой реакции, укажите условие её протекания и тип реакции по признакам «число и состав исходных веществ и продуктов реакции», «выделение или поглощение теплоты» и «обратимость химической реакции».

Ключевые слова и словосочетания

  1. Классификация оснований.
  2. Типичные свойства оснований: взаимодействие их с кислотами, оксидами неметаллов, солями.
  3. Типичное свойство нерастворимых оснований: разложение при нагревании.
  4. Условия протекания типичных реакций оснований.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания


Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Один из классов сложных неорганических веществ - основания. Это соединения, включающие атомы металла и гидроксильную группу, которая может отщепляться при взаимодействии с другими веществами.

Строение

Основания могут содержать одну или несколько гидроксо-групп. Общая формула оснований - Ме(ОН) х. Атом металла всегда один, а количество гидроксильных групп зависит от валентности металла. При этом валентность группы ОН всегда I. Например, в соединении NaOH валентность натрия равна I, следовательно, присутствует одна гидроксильная группа. В основании Mg(OH) 2 валентность магния - II, Al(OH) 3 валентность алюминия - III.

Количество гидроксильных групп может меняться в соединениях с металлами с переменной валентностью. Например, Fe(OH) 2 и Fe(OH) 3 . В таких случаях валентность указывается в скобках после названия - гидроксид железа (II), гидроксид железа (III).

Физические свойства

Характеристика и активность основания зависит от металла. Большинство оснований - твёрдые вещества белого цвета без запаха. Однако некоторые металлы придают веществу характерную окраску. Например, CuOH имеет жёлтый цвет, Ni(OH) 2 - светло-зелёный, Fe(OH) 3 - красно-коричневый.

Рис. 1. Щёлочи в твёрдом состоянии.

Виды

Основания классифицируются по двум признакам:

  • по количеству групп ОН - однокислотные и многокислотные;
  • по растворимости в воде - щёлочи (растворимые) и нерастворимые.

Щёлочи образуются щелочными металлами - литием (Li), натрием (Na), калием (K), рубидием (Rb) и цезием (Cs). Кроме того, к активным металлам, образующим щёлочи, относят щелочноземельные металлы - кальций (Ca), стронций (Sr) и барий (Ba).

Эти элементы образуют следующие основания:

  • LiOH;
  • NaOH;
  • RbOH;
  • CsOH;
  • Ca(OH) 2 ;
  • Sr(OH) 2 ;
  • Ba(OH) 2 .

Все остальные основания, например, Mg(OH) 2 , Cu(OH) 2 , Al(OH) 3 , относятся к нерастворимым.

По-другому щёлочи называются сильными основаниями, а нерастворимые - слабыми основаниями. При электролитической диссоциации щёлочи быстро отдают гидроксильную группу и быстрее вступают в реакцию с другими веществами. Нерастворимые или слабые основания менее активные, т.к. не отдают гидроксильную группу.

Рис. 2. Классификация оснований.

Особое место в систематизации неорганических веществ занимают амфотерные гидроксиды. Они взаимодействуют и с кислотами, и с основаниями, т.е. в зависимости от условий ведут себя как щёлочь или как кислота. К ним относятся Zn(OH) 2 , Al(OH) 3 , Pb(OH) 2 , Cr(OH) 3 , Be(OH) 2 и другие основания.

Получение

Основания получают различными способами. Самый простой - взаимодействие металла с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 .

Щёлочи получают в результате взаимодействия оксида с водой:

Na 2 O + H 2 O → 2NaOH.

Нерастворимые основания получаются в результате взаимодействия щелочей с солями:

CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 .

Химические свойства

Основные химические свойства оснований описаны в таблице.

Реакции

Что образуется

Примеры

С кислотами

Соль и вода. Нерастворимые основания взаимодействуют только с растворимыми кислотами

Cu(OH) 2 ↓ + H 2 SO 4 → CuSO 4 +2H 2 O

Разложение при высокой температуре

Оксид металла и вода

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

С кислотными оксидами (реагируют щёлочи)

NaOH + CO 2 → NaHCO 3

С неметаллами (вступают щёлочи)

Соль и водород

2NaOH + Si + H 2 O → Na 2 SiO 3 +H 2

Обмена с солями

Гидроксид и соль

Ba(OH) 2 + Na 2 SO 4 → 2NaOH + BaSO 4 ↓

Щелочей с некоторыми металлами

Сложная соль и водород

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

С помощью индикатора проводится тест на определение класса основания. При взаимодействии с основанием лакмус становится синим, фенолфталеин - малиновым, метилоранж - жёлтым.

Рис. 3. Реакция индикаторов на основания.

Что мы узнали?

Из урока 8 класса химии узнали об особенностях, классификации и взаимодействии оснований с другими веществами. Основания - сложные вещества, состоящие из металла и гидроксильной группы ОН. Они делятся на растворимые или щёлочи и нерастворимые. Щёлочи - более агрессивные основания, быстро реагирующие с другими веществами. Основания получают при взаимодействии металла или оксида металла с водой, а также в результате реакции соли и щёлочи. Основания реагируют с кислотами, оксидами, солями, металлами и неметаллами, а также разлагаются при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 135.

Гидроксиды щелочных металлов – при обычных усло­виях представляют собой твердые белые кристаллические вещества, гигроско­пичные, мылкие на ощупь, очень хорошо растворимы в воде (их растворение – экзотермический процесс), легкоплавки. Гидроксиды щелочноземельных металлов Са(ОН) 2 , Sr(OH) 2 , Ва(ОН) 2) – белые порошкообразные вещества, гораздо менее растворимы в воде по сравнению с гидроксидами щелочных металлов. Нерастворимые в воде основания обычно образу­ются в виде гелеобразных осадков, разлагающихся при хра­нении. Например, Сu(ОН) 2 – синий студенистый осадок.

3.1.4 Химические свойства оснований.

Свойства оснований обусловлены наличием ионов ОН – . В свойствах щелочей и нерастворимых в воде оснований имеются отличия, однако общим свойством является реак­ция взаимодействия с кислотами. Химические свойства оснований представ­лены в таблице 6.

Таблица 6 – Химические свойства оснований

Щелочи

Нерастворимые основания

Все основания реагируют с кислотами (реакция нейтрализации )

2NaOH + H 2 SО 4 = Na 2 SО 4 + 2H 2 О

Сr(ОН) 2 + 2НС1 = СrС1 2 + 2Н 2 O

Основания реагируют с кислотными оксидами с образованием соли и воды:

6КОН + Р 2 O 5 = 2К 3 РO 4 + 3Н 2 O

Щелочи реагируют с растворами солей , если один из продуктов реакции выпадает в осадок (т. е. если образу­ется нерастворимое соединение):

CuSO 4 + 2KOH = Cu(OH) 2 + K 2 SO 4

Na 2 SO 4 + Ba(OH) 2 = 2NaOH + BaSO 4 

Нерастворимые в воде основания и амфотерные гидроксиды разлагаются при на­гревании на соответствующий оксид и воду:

Мn(ОН) 2  МnО + Н 2 O

Сu(ОН) 2  СuО + Н 2 O

Щелочи можно обнаружить индикатором. В щелочной сре­де: лакмус – синий, фенолфталеин – малиновый, мети­ловый оранжевый – желтый

3.1.5 Важнейшие основания.

NaOH – едкий натр, каустическая сода. Легкоплавкие (t пл = 320 °С) белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. NaOH – один из важней­ших продуктов химической промышленности. В больших количествах требуется для очистки нефтепро­дуктов, широко применяется в мыловаренной, бумажной, текстильной и других отраслях промышленности, а также для производства искусственного волокна.

КОН – едкое кали. Белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. СвойстваКОН аналогичны свойствам NaOH, но применяется гидроксид калия гораздо реже ввиду его более высокой стоимости.

Са(ОН) 2 – гашеная известь. Белые кристаллы, мало ра­створимы в воде. Раствор называется «известковой водой», суспензия – «известковым молоком». Известковая вода применяется для распознавания углекислого газа, она мут­неет при пропускании СO 2 . Гашеная известь широко используется в строительном деле в качестве основы для изготовления вяжущих веществ.

Похожие публикации