Виды наследственной изменчивости их значение в эволюции. Наследственность и изменчивость — фундаментальные свойства живых организмов

1. Что такое наследственность?

Ответ. Наследственность свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивается самовоспроизведением материальных единиц наследственности - генов, локализованных в специфических структурах ядра клетки (хромосомах) и цитоплазмы. Вместе с изменчивостью наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

2. Что такое изменчивость?

Ответ. Изменчивость - разнообразие признаков и свойств у особей и групп особей любой степени родства. Изменчивость присуща всем живым организмам. Различают изменчивость: наследственную. и ненаследственную. ;индивидуальную и групповую. Наследственная изменчивость обусловлена возникновением мутаций, ненаследственная - воздействием факторов внешней среды. Явления наследственности и изменчивости лежат в основе эволюции.

Вопросы после § 46

1. Какие виды изменчивости вам известны?

Ответ. Различают два вида изменчивости: модификационную (фенотипическую) и наследственную (генотипическую).

Изменения признаков организма, которые не затрагивают его гены и не могут передаваться следующим поколениям, называются модификационными, а этот вид изменчивости – модификационной.

Можно перечислить следующие основные характеристики модификационной изменчивости:

– модификационные изменения не передаются потомкам;

– модификационные изменения возникают у многих особей вида и зависят от воздействия окружающей среды;

– модификационные изменения возможны только в пределах нормы реакции, т. е. в конечном счёте они определяются генотипом

Наследственная изменчивость обусловлена изменениями в генетическом материале и является основой разнообразия живых организмов, а также главной причиной эволюционного процесса, так как она поставляет материал для естественного отбора.

Возникновение изменений в наследственном материале, т. е. в молекулах ДНК, называют мутационной изменчивостью. Причём изменения могут происходить как в отдельных молекулах (хромосомах), так и в числе этих молекул. Мутации происходят под влиянием разнообразных факторов внешней и внутренней среды.

2. Каковы основные признаки модификационной изменчивости?

Ответ. Чаще всего модификациям подвержены количественные признаки – рост, вес, плодовитость и т. п. Классическим примером модификационной изменчивости может служить изменчивость формы листьев у растения стрелолиста, укореняющегося под водой. У одной особи стрелолиста бывают три вида листьев, в зависимости от того, где лист развивается: под водой, на поверхности или на воздухе. Эти различия в форме листьев определяются степенью их освещенности, а набор генов в клетках каждого листа одинаков.

Для различных признаков и свойств организма характерна большая или меньшая зависимость от условий окружающей среды. Например, у человека цвет радужки и группа крови определяются только соответствующими генами, и условия жизни на эти признаки влиять не могут. А вот рост, вес, физическая выносливость сильно зависят от внешних условий, например от качества питания, физической нагрузки и др.

3. Что такое норма реакции?

Ответ. Пределы модификационной изменчивости какого-либо признака называют нормой реакции. Норма реакции обусловлена генетически и наследуется.

Изменчивость признака иногда бывает очень большой, но она не может выходить за пределы нормы реакции. У одних признаков норма реакции очень широка (например, настриг шерсти с овец, молочность коров), а другие признаки характеризуются узкой нормой реакции (окрас шерсти у кроликов).

Из сказанного выше следует очень важный вывод. Наследуется не сам признак, а способность проявлять этот признак в определённых условиях, иными словами, наследуется норма реакции организма на внешние условия

4. Какие формы наследственной изменчивости вы знаете?

Ответ. Наследственная изменчивость проявляется в двух формах – комбинативной и мутационной.

Мутационная изменчивость – это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора (мутационный процесс – одна из движущих сил эволюции).

Комбинативная изменчивость возникает при перекомбинации (перемешивании) генов отца и матери. Источники:

1) Кроссинговер при мейозе (гомологичные хромосомы тесно сближаются и меняются участками).

2) Независимое расхождение хромосом при мейозе.

3) Случайное слияние гамет при оплодотворении.

5. Каковы причины комбинативной изменчивости?

Ответ. В основе комбинативной изменчивости лежит половой процесс, в результате которого возникает огромный набор разнообразных генотипов.

Рассмотрим на примере человека. В клетках каждого человека содержится 23 материнских и 23 отцовских хромосомы. При образовании гамет в каждую из них попадут лишь 23 хромосомы, и сколько из них будет от отца и сколько от матери – дело случая. В этом и кроется первый источник комбинативной изменчивости.

Вторая её причина – кроссинговер. Мало того что каждая наша клетка несёт хромосомы дедушек и бабушек, определённая часть этих хромосом получила в результате кроссинговера часть своих генов от гомологичных хромосом, принадлежавших ранее другой линии предков. Такие хромосомы называют рекомбинантными. Участвуя в формировании организма нового поколения, они приводят к неожиданным комбинациям признаков, которых не было ни у отцовского, ни у материнского организма.

Наконец, третья причина комбинативной изменчивости – случайный характер встреч тех или иных гамет в процессе оплодотворения.

Все три процесса, лежащие в основе комбинативной изменчивости, действуют независимо друг от друга, создавая огромное разнообразие всевозможнейших генотипов.

Представления о том, что для живых существ характерны наследственность и изменчивость, сложились еще в древности. Было замечено, что при размножении организмов из поколения в поколение передается комплекс признаков и свойств, присущих конкретному виду (проявление наследственности). Однако столь же очевидно и то, что между особями одного вида существуют некоторые различия (проявление изменчивости).

Знание о наличие этих свойств использовалось при выведении новых сортов культурных растений и пород домашних животных. Исстари в сельском хозяйстве применялась гибридизация, т. е. скрещивание организмов, отличающихся друг от друга по каким-либо признакам. Однако до конца XIX в. такая работа осуществлялась методом проб и ошибок, поскольку не были известны механизмы, лежащие в основе проявления подобных свойств организмов, а существовавшие на этот счет гипотезы имели чисто умозрительный характер.

В 1866 г. вышел в свет труд Грегора Менделя, чешского исследователя, «Опыты над растительными гибридами». В нем были описаны закономерности наследования признаков в поколениях растений нескольких видов, которые Г. Мендель выявил в результате многочисленных и тщательно выполненных экспериментов. Но его исследование не привлекло внимания современников, не сумевших оценить новизну и глубину идей, опередивших общий уровень биологических наук того времени. Лишь в 1900 г., после открытия законов Г. Менделя заново и независимо друг от друга тремя исследователями (Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии), начинается развитие новой биологической науки - генетики, изучающей закономерности наследственности и изменчивости. Грегора Менделя справедливо считают основоположником этой молодой, но очень бурно развивающейся науки.

Основные понятия современной генетики.

Наследственностью называется свойство организмов повторять в ряду поколений комплекс признаков (особенности внешнего строения, физиологии, химического состава, характера обмена веществ, индивидуального развития и т. д.).

Изменчивость - явление, противоположное наследственности. Она заключается в изменении комбинаций признаков или появлении совершенно новых признаков у особей данного вида.

Благодаря наследственности обеспечивается сохранение видов на протяжении значительных промежутков (до сотен миллионов лет) времени. Однако условия окружающей среды меняются (иногда существенно) с течением времени, и в таких случаях изменчивость, приводящая к разнообразию особей внутри вида, обеспечивает его выживание. Какие-то из особей оказываются более приспособленными к новым условиям, это и позволяет им выжить. Кроме того, изменчивость позволяет видам расширять границы своего местообитания, осваивать новые территории.

Сочетание двух указанных свойств тесно связано с процессом эволюции. Новые признаки организмов появляются в результате изменчивости, а благодаря наследственности они сохраняются в последующих поколениях. Накапливание множества новых признаков приводит к возникновению других видов

Виды изменчивости

Различают наследственную и ненаследственную изменчивость.

Наследственная (генотипическая) изменчивост ь связана с изменением самого генетического материала. Ненаследственная (фенотипическая, модификационная) изменчивость - это способность организмов изменять свой фенотип под влиянием различных факторов. Причиной модификационной изменчивости являются изменения внешней среды обитания организма или его внутренней среды.

Норма реакции

Это границы фенотипической изменчивости признака, возникающей под действием факторов внешней среды. Норма реакции определяется генами организма, поэтому норма реакции по одному и тому же признаку у разных индивидов различна. Размах нормы реакции различных признаков также варьирует. Те организмы, у которых норма реакции шире по данному признаку, обладают более высокими адаптивными возможностями в определенных условиях среды, т. е. модификационная изменчивость в большинстве случаев носит адаптивный характер, и большинство изменений, возникших в организме при воздействии определенных факторов внешней среды, являются полезными. Однако фенотипические изменения иногда утрачивают приспособительный характер. Если фенотипическая изменчивость клинически сходна с наследственным заболеванием, то такие изменения называются фенокопией.

Комбинативная изменчивость

Связана с новым сочетанием неизменных генов родителей в генотипах потомства. Факторы комбинативной изменчивости.

1.Независимое и случайное расхождение гомологичных хромосом в анафазе I мейоза.

2.Кроссинговер.

3.Случайное сочетание гамет при оплодотворении.

4.Случайный подбор родительских организмов.

Мутации

Это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, части хромосом или отдельные гены. Они возникают под действием мутагенных факторов физического, химического или биологического происхождения.

Мутации бывают:

1) спонтанные и индуцированные;

2) вредные, полезные и нейтральные;

3) соматические и генеративные;

4) генные, хромосомные и геномные.

Спонтанные мутации - это мутации, возникшие ненаправленно, под действием неизвестного мутагена.

Индуцированные мутации - это мутации, вызванные искусственно действием известного мутагена.

Хромосомные мутации - это изменения структуры хромосом в процессе клеточного деления. Различают следующие виды хромосомных мутаций.

1.Дупликация - удвоение участка хромосомы за счет неравного кроссинговера.

2.Делеция - потеря участка хромосомы.

3.Инверсия - поворот участка хромосомы на 180°.

4.Транслокация - перемещение участка хромосомы на другую хромосому.

Геномные мутации - это изменение числа хромосом. Виды геномных мутаций.

1.Полиплоидия - изменение числа гаплоидных наборов хромосом в кариотипе. Под кариотипом понимают число, форму и количество хромосом, характерные для данного вида. Различают нуллисомию (отсутствие двух гомологичных хромосом), моносомию (отсутствие одной из гомологичных хромосом) и полисомию (наличие двух и более лишних хромосом).

2.Гетероплоидия - изменение числа отдельных хромосом в кариотипе.

Генные мутации встречаются наиболее часто.

Причины генных мутаций:

1) выпадение нуклеотида;

2) вставка лишнего нуклеотида (эта и предыдущая причины приводят к сдвигу рамки считывания);

3) замена одного нуклеотида на другой.

Передача наследственных признаков в ряду поколений особей осуществляется в процессе размножения. При половом - через половые клетки, при бесполом наследственные признаки передаются с соматическими клетками.

Единицами наследственности (ее материальными носителями) являются гены. В функциональном отношении конкретный ген отвечает за развитие какого-то признака. Это не противоречит тому определению, которое мы давали гену выше. С химической точки зрения ген - участок молекулы ДНК. Он содержит генетическую информацию о структуре синтезируемого белка (т. е. последовательности аминокислот в белковой молекуле). Совокупность всех генов в организме определяет совокупность конкретных белков, синтезируемых в нем, что в конечном счете приводит к формированию специфических признаков.

У прокариотной клетки гены входят в состав единственной молекулы ДНК, а у эукариотной - в молекулы ДНК, заключенные в хромосомах. При этом в паре гомологичных хромосом в одних и тех же участках располагаются гены, отвечающие за развитие какого-то признака (например, окраска цветка, форма семян, цвет глаз у человека). Они получили название аллельных генов. В одну пару аллельных генов могут входить либо одинаковые (по составу нуклеотидов и определяемому ими признаку), либо отличающиеся гены.

Понятие «признак» связано с каким-то отдельным качеством организма (морфологическим, физиологическим, биохимическим), по которому мы можем отличить его от другого организма. Например: глаза голубые или карие, цветки окрашенные или неокрашенные, рост высокий или низкий, группа крови I(0) или II(A) и т. д.

Совокупность всех генов у организма называется генотипом, а совокупность всех признаков - фенотипом.

Фенотип формируется на базе генотипа в определенных условиях внешней среды в ходе индивидуального развития организмов.

Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, рекомендован Министерством образования и науки РФ и включен в Федеральный перечень учебников.

Учебник адресован учащимся 10 класса и рассчитан на преподавание предмета 1 или 2 часа в неделю.

Современное оформление, многоуровневые вопросы и задания, дополнительная информация и возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.

Книга:

<<< Назад
Вперед >>>

Вспомните!

Приведите примеры признаков, изменяющихся под воздействием внешней среды.

Что такое мутации?

Изменчивость – одно из важнейших свойств живого, способность живых организмов приобретать отличия от особей как других видов, так и своего вида.

Различают два вида изменчивости: ненаследственная (фенотипическая, или модификационная) и наследственная (генотипическая).

Ненаследственная (модификационная) изменчивость. Этот вид изменчивости представляет собой процесс появления новых признаков под влиянием факторов внешней среды, не затрагивающих генотип. Следовательно, возникающие при этом видоизменения признаков – модификации – по наследству не передаются (рис. 93). Два однояйцевых (монозиготных) близнеца, имеющие абсолютно одинаковые генотипы, но волею судьбы выросшие в разных условиях, могут сильно отличаться друг от друга. Классическим примером, доказывающим воздействие внешней среды на развитие признаков, является стрелолист. У этого растения развивается три вида листьев в зависимости от условий произрастания – на воздухе, в толще воды или на её поверхности.


Рис. 93. Листья дуба, выросшие при яркой освещённости (А) и в затенённом месте (Б)


Рис. 94. Изменение окраски шерсти гималайского кролика под влиянием различных температур

Под влиянием температуры окружающей среды изменяется окраска шерсти у гималайского кролика. Эмбрион, развиваясь в утробе матери, находится в условиях повышенной температуры, которая разрушает фермент, необходимый для синтеза пигмента, поэтому кролики рождаются совершенно белыми. Вскоре после рождения отдельные выступающие части тела (нос, кончики ушей и хвоста) начинают темнеть, потому что там температура ниже, чем в других местах, и фермент не разрушается. Если выщипать участок белой шерсти и охладить кожу, на этом месте вырастет чёрная шерсть (рис. 94).

В сходных условиях среды у генетически близких организмов модификационная изменчивость имеет групповой характер , например в летний период у большинства людей под влиянием УФ-лучей в коже откладывается защитный пигмент – меланин, люди загорают.

У одного и того же вида организмов под воздействием условий внешней среды изменчивость различных признаков может быть абсолютно разной. Например, у крупного рогатого скота удой молока, масса, плодовитость очень сильно зависят от условий кормления и содержания, а, например, жирность молока под влиянием внешних условий изменяется очень мало. Проявления модификационной изменчивости для каждого признака ограничены своей нормой реакции. Норма реакции – это пределы, в которых возможно изменение признака у данного генотипа. В отличие от самой модификационной изменчивости, норма реакции наследуется, и её границы различны для разных признаков и у отдельных индивидов. Наиболее узкая норма реакции характерна для признаков, обеспечивающих жизненно важные качества организма.

Благодаря тому что большинство модификаций имеют приспособительное значение, они способствуют адаптации – приспособлению организма в пределах нормы реакции к существованию в изменяющихся условиях.

Наследственная (генотипическая) изменчивость. Этот вид изменчивости связан с изменениями генотипа, и признаки, приобретённые вследствие этого, передаются по наследству следующим поколениям. Существует две формы генотипической изменчивости: комбинативная и мутационная.

Комбинативная изменчивость заключается в появлении новых признаков в результате образования иных комбинаций генов родителей в генотипах потомков. В основе этого вида изменчивости лежит независимое расхождение гомологичных хромосом в первом мейотическом делении, случайная встреча гамет у одной и той же родительской пары при оплодотворении и случайный подбор родительских пар. Также приводит к перекомбинации генетического материала и повышает изменчивость обмен участками гомологичных хромосом, происходящий в первой профазе мейоза. Таким образом, в процессе комбинативной изменчивости структура генов и хромосом не изменяется, однако новые сочетания аллелей приводят к образованию новых генотипов и, как следствие, к появлению потомков с новыми фенотипами.

Мутационная изменчивость выражается в появлении новых качеств организма в результате образования мутаций. Впервые термин «мутация» ввёл в 1901 г. голландский ботаник Гуго де Фриз. Согласно современным представлениям мутации – это внезапные естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков и свойств организма. Мутации имеют ненаправленный, т. е. случайный, характер и являются важнейшим источником наследственных изменений, без которых невозможна эволюция организмов. В конце XVIII в. в Америке родилась овца с укороченными конечностями, давшая начало новой анконской породе (рис. 95). В Швеции в начале XX в. на звероводческой ферме родилась норка с платиновой окраской меха. Огромное разнообразие признаков у собак и кошек – это результат мутационной изменчивости. Мутации возникают скачкообразно, как новые качественные изменения: из остистой пшеницы образовалась безостая, у дрозофилы появились короткие крылья и полосковидные глаза, у кроликов из естественной природной окраски агути в результате мутаций возникла белая, коричневая, чёрная окраска.

По месту возникновения различают соматические и генеративные мутации. Соматические мутации возникают в клетках тела и не передаются при половом размножении следующим поколениям. Примерами таких мутаций являются пигментные пятна и бородавки кожи. Генеративные мутации появляются в половых клетках и передаются по наследству.


Рис. 95. Овца анконской породы

По уровню изменения генетического материала различают генные, хромосомные и геномные мутации. Генные мутации вызывают изменения в отдельных генах, нарушая порядок нуклеотидов в цепи ДНК, что приводит к синтезу изменённого белка.

Хромосомные мутации затрагивают значительный участок хромосомы , нарушая функционирование сразу многих генов. Отдельный фрагмент хромосомы может удвоиться или потеряться, что вызывает серьёзные нарушения в работе организма, вплоть до гибели эмбриона на ранних стадиях развития.

Геномные мутации приводят к изменению числа хромосом в результате нарушений расхождения хромосом в делениях мейоза. Отсутствие хромосомы или наличие лишней приводит к неблагоприятным последствиям. Наиболее известным примером геномной мутации является синдром Дауна, нарушение развития, которое возникает при появлении лишней 21-й хромосомы. У таких людей общее число хромосом равно 47.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидия (рис. 96). Возникновение полиплоидов связано, в частности, с нерасхождением гомологичных хромосом в мейозе, в результате чего у диплоидных организмов могут образовываться не гаплоидные, а диплоидные гаметы.

Мутагенные факторы. Способность мутировать – это одно из свойств генов, поэтому мутации могут возникать у всех организмов. Одни мутации несовместимы с жизнью, и получивший их эмбрион гибнет ещё в утробе матери, другие вызывают стойкие изменения признаков, в разной степени значимые для жизнедеятельности особи. В обычных условиях частота мутирования отдельного гена чрезвычайно мала (10 –5), но существуют факторы среды, значительно увеличивающие эту величину, вызывая необратимые нарушения в структуре генов и хромосом. Факторы, воздействие которых на живые организмы приводит к увеличению частоты мутаций, называют мутагенными факторами или мутагенами.


Рис. 96. Полиплоидия. Цветки хризантемы: А – диплоидная форма (2n ); Б – полиплоидная форма

Все мутагенные факторы можно разделить на три группы.

Физическими мутагенами являются все виды ионизирующих излучений (?-лучи, рентгеновские лучи), ультрафиолетовое излучение, высокая и низкая температуры.

Химические мутагены – это аналоги нуклеиновых кислот, перекиси, соли тяжёлых металлов (свинца, ртути), азотистая кислота и некоторые другие вещества. Многие из этих соединений вызывают нарушения в редупликации ДНК. Мутагенное действие оказывают вещества, используемые в сельском хозяйстве для борьбы с вредителями и сорняками (пестициды и гербициды), отходы промышленных предприятий, отдельные пищевые красители и консерванты, некоторые лекарственные препараты, компоненты табачного дыма.

В России и в других странах мира созданы специальные лаборатории и институты, проверяющие на мутагенность все новые синтезированные химические соединения.

К группе биологических мутагенов относят чужеродную ДНК и вирусы, которые, встраиваясь в ДНК хозяина, нарушают работу генов.

Вопросы для повторения и задания

1. Какие виды изменчивости вам известны?

2. Что такое норма реакции?

3. Объясните, почему фенотипическая изменчивость не передаётся по наследству.

4. Что такое мутации? Охарактеризуйте основные свойства мутаций.

5. Приведите классификацию мутаций по уровню изменений наследственного материала.

6. Назовите основные группы мутагенных факторов. Приведите примеры мутагенов, относящихся к каждой группе. Оцените, есть ли в окружающей вас среде мутагенные факторы. К какой группе мутагенов они относятся?

Подумайте! Выполните!

1. Как вы считаете, могут ли факторы внешней среды повлиять на развитие организма, несущего летальную мутацию?

2. Может ли комбинативная изменчивость проявиться в отсутствие полового процесса?

3. Обсудите в классе, какие существуют способы снижения действия мутагенных факторов на человека в современном мире.

4. Можете ли вы привести примеры модификаций, которые не имеют адаптивного характера?

5. Объясните человеку, незнакомому с биологией, чем мутации отличаются от модификаций.

6. Выполните исследование: «Изучение модификационной изменчивости у учащихся (на примере температуры тела и частоты пульса, периодически измеряемых на протяжении 3 суток)».

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

<<< Назад
Вперед >>>

Существует 2 типа наследственной изменчивости: мутационная и комбинативная.

В основе комбинативной изменчивости лежит образование рекомби­наций, т.е. таких соединений генов, каких не было у родителей. Фенотипически это может проявляться не только в том, что родительские при­знаки встречаются у части потомков в других комбинациях, но и в обра­зовании у потомков новых признаков, отсутствующих у родителей. Это случается, когда два или больше неаллельных гена, которыми отличают­ся родители, влияют на формирование одного и того же признака.

Основными источниками комбинативной изменчивости являются:

Независимое расхождение гомологичных хромосом в первом мейотическом делении;

Рекомбинация генов, основанная на явлении перекреста хромосом (рекомбинационные хромосомы, попав в зиготу, вызывают появление признаков, не типичных для родителей);

Случайная встреча гамет при оплодотворении.

В основе мутационной изменчивости лежат мутации - стойкие изме­нения генотипа, затрагивающие целые хромосомы, их части или отдель­ные гены.

1) Типы мутаций по последствиям влияния на организм делятся на полезные, вредные и нейтральные.

2) По месту возникновения мутации могут быть генеративными, если они возникают в половых клетках: они могут проявляться в том поко­лении, которое развивается из половых клеток. Соматические мутации происходят в соматических (неполовых) клетках. Потомкам такие му­тации могут передаваться только при бесполом или вегетативном раз­множении.

3) В зависимости от того, какую часть генотипа они затрагивают, мутации могут быть:

Геномные, приводящие к кратному изменению количества хромо­сом, например, полиплоидия;

Хромосомные, связанные с изменением строения хромосом, присо­единение лишнего участка вследствие перекреста, поворот определен­ного участка хромосом на 180° или со сменой количества отдельных хро­мосом. Благодаря хромосомным перестройкам происходит эволюция кариотипа, и отдельные мутанты, которые возникли вследствие таких перестроек, могут оказаться более приспособленными к условиям суще­ствования, размножиться и дать начало новому виду;

Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Это наиболее распространенный тип мутаций.

4) По способу возникновения мутации разделяются на спонтанные и индуцированные.

Спонтанные мутации возникают в естественных условиях под дей­ствием мутагенных факторов среды без вмешательства человека.

Индуцированные мутации возникают при направленном воздействии на организм мутагенных факторов. К физическим мутагенам относят раз­личные виды излучений, низкие и высокие температуры; к химическим - различные химические соединения; к биологическим - вирусы.



Итак, мутации являются основным источником наследственной измен­чивости - фактора эволюции организмов. Благодаря мутациям появляют­ся новые аллели (их называют мутантными). Однако большинство мута­ций вредны для живых существ, поскольку они снижают их приспособлен­ность, возможность давать потомство. Природа допускает много ошибок, создавая, благодаря мутациям, множество видоизмененных генотипов, но вместе с тем она всегда безошибочно и автоматически отбирает те геноти­пы, которые дают наиболее приспособленный к определенным условиям среды фенотип.

Таким образом, мутационный процесс является основным источни­ком эволюционных изменений.

2. Дайте общую характеристику класса Двудольные растения. Каково значение двудольных растений в природе, жизни человека?

Класс двудольные растения – растения, в зародыше семени которых присутствует

две семядоли.

Класс двудольных – 325 семейств.

Рассмотрим крупные семейства двудольных растений .

Семейство Особенности цветка, соцветие Формула цветка Плод Представители
Сложноцветные Цветки – мелкие, трубчатой и язычковой формы – ассиметричные Соцветие – корзинка. Ч (5) Л 5 Тn П 1 – цветки трубчатые Ч (5) Л 5 Тn П 1 – цветки язычковые Семянка, орешек Травянистые растения (лекарственные и масличные) – одуванчик, цикорий, василек, ромашка, астра и мн.др.
Крестоцветные Околоцветник – четырехчленный. Соцветие кисть, реже в виде щитка. Ч 4 Л 4 Т 4+2 П 1 Стручок, стручочек Однолетние и многолетние травянистые растения – репа, редис, турнепс, редька, брюква, капуста и мн.др.
Розоцветные Цветки – одиночные Ч (5) Л 5 Тn П 1 Ч 5+5 Л 5 Тn П 1 Костянка, костянка сложная, многоорешек, яблоко Травы, кустарники, деревья. Шиповник, малина, земляника, слива, яблоня, груша и мн.др.
Бобовые Кисть, головка Ч 5 Л 1+2+(2) Т (9)+1 П 1 Боб Кустарники. Травянистые растения – фасоль, горох, чечевица, арахис, клевер, люцерна, люпин и мн.др.
Пасленовые Одиночные цветки или соцветия – кисть, завиток Ч (5) Л (5) Т (5) П 1 Ягода, коробочка Деревья. Травянистые растения – баклажаны, томаты, перец, картофель, паслен, дурман, белена и мн. др.

ЗНАЧЕНИЕ В ПРИРОДЕ: - растения этого класса являются продуцентами в экосистемах, т. е. фотосинтезируют органические вещества; - эти растения являются началом всех пищевых цепочек; - эти растения определяют вид биогеоценоза (берёзовый лес, кипрейная степь) ; - это активные участники круговорота веществ и воды.



ЗНАЧЕНИЕ В ЖИЗНИ ЧЕЛОВЕКА: - среди растений класса Двудольные много культурных растений, органы которых используются в пищу человеком (семейство Розоцветные -вишня, яблоня, слива, малина, сем. Сложноцветные - подсолнечник, сем. Паслёновые - томат, картофель, перец, сем. Крестоцветные - различные сорта капусты, сем. Бобовые - горох, соя, фасоль) - многие растения используются на корм скоту; - при производстве натуральных нитей (лён, хлопок); - как культурно-декоративные (акация, розы); - лекарственные (горчица, ромашка, крапива, термопсис). Также среди этого класса много пряностей, из них производят табак, кофе, чай, какао, красители, канаты, верёвки, бумагу, деревянную посуду, мебель, музыкальные инструменты; - бесценна для строительства древесина некоторых двудольных (дуб, граб, липа).

ЛЕКЦИЯ

ТЕМА: Наследственность и изменчивость

ПЛАН ЛЕКЦИИ:

    Наследственность

    Изменчивость

    1. Наследственная изменчивость

      Ненаследственная изменчивость

1. Наследственность

Развитие органического мира, во многом зависит от таких факторов как наследственность и изменчивость. Наследственностью называют общее свойство всех организмов хранить и передавать потомству свои признаки. Благодаря наследственности из поколения в поколение сохраняются специфические качества каждого биологического вида.

Связь родителей с потомками у организмов осуществляется в основном через размножение. Хотя потомство подобно родителям и предкам, но оно не является их точной копией. Механизм наследственности давно интересовал человечество. В 1866г. Г.Мендель выразил мнение, что признаки организмов определяются наследуемыми единицами, которые он назвал «элементами». Позже их стали называть наследственными факторами и, наконец, генами . Гены находятся в хромосомах и они передаются от одного поколения другому.

Несмотря на то, что теперь о хромосомах и структуре ДНК известно многое, дать точное определение гена все еще трудно. В результате изучения природы гена, его можно определить, как единицу рекомбинации, мутации и функции. Ген – это фактор наследственности, функционально неделимая единица генетического материала в виде участка молекулы нуклеиновой кислоты (ДНК или РНК). Он кодирует определенную структуру белка, молекулы т-РНК или р-РНК, или взаимодействует с биологически активными веществами (например, ферментами). Ген является целостной функциональной единицей, и любые нарушения его структуры изменяют закодированную в нем информацию или приводят к ее потере.

В результате наследственности, организм получает от родителей совокупность генов, что принято называть генотипом . Геном эукариотов сложнее, чем у прокариотов, потому что имеет большее количество ядерной ДНК, структурных и регуляторных генов. Кроме наследственного материала, расположенного в ядре, существует также цитоплазматическая наследственность , или внеядерная . Она заключается в способности определенных структур цитоплазмы хранить и передавать потомкам часть наследственной информации родителей. Хотя ведущая роль в наследовании большинства признаков организма принадлежит ядерным генам, роль цитоплазматической наследственности тоже значительна. Она связана с двумя видами генетических явлений:

    Наследованием признаков, которые кодируются внеядерными генами , расположенными в определенных органеллах (митохондриях, пластидах);

    Проявлением у потомков признаков, предопределенных ядерными генами, на формирование которых влияет цитоплазма яйцеклетки .

О существовании генов в органеллах (митохондриях, пластидах), способных к самоудвоению, стало известно в начале ХХ в. во время изучения зеленых и бесцветных пластид у некоторых цветковых растений с мозаичной расцветкой листьев. Внеядерные гены, взаимодействуя с ядерными, оказывают влияние на формирование признака. Например, цитоплазматическая наследственность, связанная с генами пластид, влияет на такой признак как пестролистность у растений (бегония, львиный зев и др.). И этот признак передается по материнской линии.

Причиной пестролистности является утрата способности некоторых пластид образовывать пигмент хлорофилл. После деления клеток с бесцветными пластидами в листьях возникают белые пятна, которые чередуются с зелеными участками. Передача такого признака по материнской линии объясняется тем, что во время образования гамет пластиды попадают к яйцеклеткам, а не к спермиям. При образовании новых пластид зеленые пластиды дают начало зеленым, а бесцветные – бесцветным. Во время деления клетки пластиды распределяются случайно, в результате чего образуются клетки с бесцветными, зелеными или обоими типами пластид одновременно .

Явление цитоплазматической наследственности, связанное с генами митохондрий, можно наблюдать у дрожжей. У этих микроорганизмов в митохондриях обнаружены гены, которые предопределяют отсутствие или наличие дыхательных ферментов, а также устойчивость к действию определенных антибиотиков. Влияние ядерных генов материнского организма через цитоплазму яйцеклетки на формирование признаков можно проследить и на примере прудовика. У этого пресноводного моллюска есть формы с разным направлением закручивания раковины – левого или правого. Аллель, которая определяет закручивание раковины вправо, доминирует над аллелью левозакрученности, но при этом указанный признак предопределяется генами материнской особи. Например, особи, гомозиготные по рецессивному гену (левозакрученность), могут иметь правозакрученную раковину, если доминантную аллель имел материнский организм.

2. Изменчивость

Изменчивостью называют всю совокупность расхождений по тому или иному признаку между организмами, которые относятся к одной и той же популяции или виду. Различают две основных формы изменчивости: наследственную и ненаследственную .

2.1. Наследственная изменчивость

Наследственной изменчивостью называют изменчивость, которая передается от родителей потомству, т.е. наследуется. Такая изменчивость связана с изменением генетического материала, причиной которого являются мутации. А потому наследственную изменчивость еще называют генотипической , генетической или мутационной .

Мутация – это изменение в хромосомах, которое происходит под воздействием факторов окружающей среды. Понятие о мутациях было введено в науку голландским ботаником Гуго где Фризом. Им же была сформулирована и мутационная теория , ряд положений которой принадлежит известному русскому ботанику С.И. Коржинскому.

Основные положения современной мутационной теории :

    Мутации возникают внезапно, скачкообразно и проявляются в виде дискретных признаков;

    Мутации не теряются и передаются из поколения в поколение;

    Мутации проявляются по-разному и могут быть доминантными или рецессивными, полезными и вредными, отличаться силой своего влияния на организм, вызывать незначительные изменения в работе организма или задевать жизненно важные признаки и быть летальными;

    Вероятность выявления мутаций зависит от количества исследованных особей;

    Мутации могут возникать повторно;

    Мутации можно вызывать влиянием на организм сильнодействующих физических или химических агентов, но при этом появление той или иной мутации не связано с видом агента;

    Мутации всегда спонтанны, не зависимы одна от другой, не имеют групповой направленности. Мутировать может любой участок хромосомы.

Мутационная изменчивость, в отличие от модификационной, является важным источником эволюционных превращений. Благодаря генетической изменчивости образуются организмы с новыми свойствами и признаками, поддерживается высокий уровень и фенотипической изменчивости.

В зависимости от характера влияния на жизнеспособность организмов различают летальные , сублетальные и нейтральные мутации . Летальные, как правило, влекут гибель организмов еще до момента рождения или до наступления половозрелости. Сублетальные – снижают жизнеспособность, приводя к гибели некоторой части (от 10 до 50%). Нейтральные мутации в обычных для организмов условиях существования на их жизнеспособность не влияют. И в некоторых случаях такие мутации могут стать даже полезными, особенно при изменениях условий существования организма.

По характеру наследственных изменений генетического материала выделяют три типа мутации: генные, хромосомные, геномные.

Генные ( точечные ) мутации являют собой качественные изменения отдельных генов. Эти мутации происходят на уровне первичной цепи ДНК, и приводят к нарушению аминокислотной последовательности в белках. Такие изменения могут иметь негативные последствия для организма. Ведь аминокислотная последовательность в каждом белке строго специфична, и замена даже одной из них может привести к нарушению пространственной структуры белка и, соответственно, функций.

Самый распространенный случай точечной мутации – замещение пары нуклеотида ГА на ГЦ или наоборот. Если эти изменения происходят в пределах структурных генов, то в результате вместо триплета АГА может появиться триплет АГЦ и в полипептидной цепи, соответственно, вместо негативно заряженной аминокислоты аргинина окажется незаряженная аминокислота серин . Такая мутация может привести к изменению заряда белка, нарушению его конформации, а если это фермент, – то и к снижению скорости химической реакции, которую он катализирует. В итоге могут начаться сбои в метаболизме всего организма.

Замены могут быть и нейтральными, например, замены аминокислот с одинаковыми свойствами. К крайне негативным последствиям приводят мутации стоп-кодона или мутации выпадения или встраивания одного из нуклеотидов. В результате изменяется часть или вся последовательность триплетов, которая способствует серьезным нарушением аминокислотной структуры белка и это почти всегда несовместимо с нормальным функционированием организма.

Хромосомные мутации – мутации, связанные с видимыми превращениями хромосом. Это могут быть перемещения одной части хромосомы на другую, поворот участка хромосомы на 180°, встраивание лишних частей хромосомы или, напротив, выпадение каких-либо участков. В большинстве случаев хромосомные перестройки не проходят для организма без последствий. Чаще всего они приводят к летальному исходу еще на очень ранних стадиях развития зародыша. Если же хромосомные изменения не касаются генов, которые отвечают за важные функции организма, то обычно они приводят к нарушениям мейоза, а значит к бесплодию особи. Однако бывают и совсем нейтральные хромосомные мутации (хромосомные полиморфизмы).

Геномные мутации связаны с изменением количества хромосом. Их причиной являются грубые нарушения мейоза. Одним из видов хромосомных мутаций есть анеуплоидия – увеличение гомологических хромосом на одну и больше или, напротив, недостаток чаще всего одной хромосомы. Обычно у животных такие нарушения несовместимы с нормальной жизнедеятельностью организма и приводят или к летальному исходу на ранних стадиях, или к многочисленным нарушениям в развитии. Наследственное заболевание человека, так называемый синдром Дауна, вызван появлением третьей дополнительной хромосомы в 21-й паре. А появление третьей хромосомы в 15-й паре вызывает другую наследственную аномалию человека – полидактилии – появления шестого пальца на конечностях.

Геномные мутации, связанные с кратным увеличением количества хромосомного набора, называют полиплоидией (от греч. polyploethia – множество, большое количество). Если количество хромосомных наборов увеличивается на один, то это триплоид, если на два – тетраплоид и т.д. Наибольшее увеличение количества хромосомного набора обнаруженное у организмов – это организмы с десятикратным хромосомным набором.

Полиплоидия способствует увеличению размеров организма, ускоряет процессы жизнедеятельности, может вызывать нарушения в процессе размножения. Особенно это касается полиплоидных форм с непарным набором хромосом, которые могут размножаться лишь путем партеногенеза или вегетативно.

Полиплоидность очень часто встречается в природе. По большей части она представлена парноплоидными (тетра- или октоплоидными) формами, у которых нормально происходит мейоз. Очень много полиплоидных видов среди растений и намного меньше их среди животных. Достаточно часто они встречаются среди беспозвоночных (ракообразных, моллюсков, червей). Есть полиплоиды и среди позвоночных. У рыб, например, существуют даже целые семейства (осетровые) и отряды (лососеобразные), виды которых исключительно полиплоидные. Реже случаются полипоиды у амфибий и рептилий, а у птиц и млекопитающих такие особи погибают на ранних этапах развития.

Соматические мутации – мутации, которые происходят только в отдельных соматических клетках. У организмов, размножающихся половым путем (большинство животных), такие мутации не наследуются. Другое дело у растений – вегетативное размножение позволяет сохранить возникшее изменение и сделать его наследственным.

Большинство мутаций, которые происходят в организме, как правило, являются рецессивными, а дикий тип (так называют обычный фенотип, свойственный особям, которые живут в естественных условиях) – доминантным. Например, альбинизм (от лат. albus – белый) – рецессивный признак, который проявляется в гомозиготном (аа) состоянии в виде отсутствия пигмента кожи, волос, в радужной оболочке глаз. Как выяснилось, у особей-альбиносов не функционирует фермент тирозиназа, который катализирует реакцию образования пигмента меланина. Гетерозиготные особи (Аа) имеют дикий окрас.

Доминантные мутации проявляются и в гетерозиготном состоянии, но они случаются намного реже рецессивных. Следствием таких мутаций являются, например, большинство случаев появления животных-меланистов, у которых, в отличие от не мутированных особей, синтезируется очень много меланина. Обычно такие организмы имеют более темный окрас .

Еще одним важным фактором генетической изменчивости является рекомбинация (от лат. re – префикс, который указывает на повторное действие и combinare, – соединение) – перераспределение генетического материала в потомстве. Основными причинами рекомбинации генов оказываются :

    Соединение гамет от разных родителей в случае случайного скрещивания у животных и перекрестного опыления у растений ;

    Независимое распределение хромосом после первого деления мейоза ;

    Кроссинговер – обмен участками гомологических хромосом во время конъюгации в метафазе І мейоза.

В результате полового размножения рекомбинация приводит к образованию потомков с самыми разнообразными генотипическими комбинациями. В результате в одной популяции невозможно встретить двух генетически одинаковых особей. Рекомбинация играет важную роль в эволюции организмов. Ее свойства используют в процессе выведения новых сортов растений и пород животных .

2.2. Ненаследственная изменчивость

Развитие фенотипа организма происходит при взаимодействии его наследственной основы – генотипа – с условиями окружающей среды. Признаки организма в разной степени варьируют под воздействием различных факторов среды. Одни из них очень пластичные и переменчивые, другие менее переменчивые, третьи практически не изменяются под воздействием условий среды. Например, удой рогатого скота во многом зависит от условий содержания (кормления, ухода). В то время как жирность молока в большей степени зависит от породы и ее трудно изменить, хотя можно добиться некоторых результатов, изменив пищевой рацион. Еще более постоянным признаком является масть. При всевозможных условиях она почти не изменяется.

Модификационная (от лат. modulus – мера, вид и facies – форма, внешность) изменчивость это изменения признаков организма (его фенотипа), вызванные изменениями условий среды существования и не связанные с изменениями генотипа. В силу того, что модификационная изменчивость не связана с изменением генотипа, то она и не наследуется.

Фактически модификационные изменения (модификации) – это реакции организмов на смену интенсивности действия определенных факторов окружающей среды. Они одинаковы для всех генотипов близкородственных организмов. Например, у всех растений стрелолиста, погруженных в воду, образуются длинные и тонкие листья, а у тех, что растут на суходоле, – они стреловидные. У растений стрелолиста, погруженных в воду частично, формируются листья обоих типов.

У дневной бабочки пестрокрылки переменчивой окрас крыльев зависит от температуры, при которой развивались куколки. Из тех куколок, которые перезимовали, выходят бабочки с кирпично-красным окрасом, а из тех, которые развивались летом в условиях повышенных температур, – черным фоном крыльев. Степень выраженности модификаций прямо зависит от интенсивности и длительности действия на организм определенного фактора. Так, у мелкого рачка-артемии степень мохнатости задней части брюшка зависит от солености воды: она тем больше, чем ниже концентрация солей.

Как показали многочисленные исследования, модификации могут исчезать в течение жизни одной особи, если прекращается действие фактора, который их вызывал. Например, загар, приобретенный человеком летом, постепенно исчезает в течение осенне-зимнего периода. Если растение стрелолист пересадить из воды на суходол, то новые листья будут иметь не удлиненную, а стреловидную форму. Возникшие модификации могут сохраняться в течение всей жизни особи, особенно те, что возникли на ранних этапах индивидуального развития. Но потомкам они не передаются. Например, искривление костей нижних конечностей в результате рахита сохраняется в течение всей жизни. Но у родителей, которые в детстве переболели на рахит, дети рождаются нормальными, если во время своего развития они получают необходимое количество витамина D. Другой пример модификаций, которые сохраняются в течение жизни, – это дифференциация личинок медоносной пчелы на цариц и рабочих особей. Личинки, которые развиваются в особых больших ячейках сот и питаются лишь «маточкиным молочком», которое производят особые железы рабочих пчел, развиваются в цариц. А те, которых выкармливают пергой (смесью меда и пыльцы), впоследствии становятся рабочими особями – недоразвитыми самками, неспособными к размножению. Следовательно, дифференциация личинок женского пола медоносной пчелы зависит от еды, которую они получают во время своего развития. Если на ранних этапах развития поменять местами личинок, из которых в дальнейшем должны развиться царица и рабочая пчела, то соответственно изменится характер их питания и последующая дифференциация. Однако на более поздних этапах развития это становится невозможным.

Модификационная изменчивость играет исключительную роль в жизни организмов, обеспечивая их приспособленность к изменениям условий среды. Так, изменение формы листьев стрелолиста из стреловидной на лентовидную (линейную) при погружении этого растения в воду, защищает ее от повреждения течением. Изменение шерсти млекопитающих во время осенней линьки на более густую обеспечивает защиту от действия низких температур, а загар человека – от вредного воздействия солнечной радиации. Все это дает основание считать, что подобные модификации возникли в процессе исторического развития вида как определенные приспособительные реакции на смену условий среды существования, с которыми постоянно сталкиваются организмы. Однако не все модификации имеют приспособительный характер. Например, если затенить нижнюю часть стебля картофеля, то на ней начнут образовываться надземные клубни. Модификации, лишенные приспособительного значения, возникают тогда, когда организмы оказываются в необычных для себя условиях, с которыми не приходилось сталкиваться их предкам.

Модификационная изменчивость подчиняется определенным статистическим закономерностям . В частности, любой признак может изменяться лишь в определенных пределах. Такие пределы модификационной изменчивости (от min до mах) признаков предопределены генотипом организма и называются нормой реакции . Следовательно, конкретный аллельный ген предопределяет не развитие определенного, кодируемого им состояния признака, а лишь пределы, в которых тот может изменяться в зависимости от интенсивности действия тех или иных факторов окружающей среды. Среди признаков есть такие, разные состояния которых почти полностью определяются генотипом (например, расположение глаз, количество пальцев на конечностях, группа крови, характер жилкования листьев и т.п.). Но на степень проявления состояний других признаков (рост и масса организмов, размеры слоеной пластинки и т.п.) значительно влияют условия окружающей среды. Например, развитие расцветки шерсти некоторых животных (например, горностаевых кролей, сиамских котов) зависит от температуры. Если у таких животных выбрить участок тела, покрытый белой шерстью, и приложить к нему лед, то в условиях низкой температуры на этом участке вырастет черная шерсть.

Норма реакции для разных признаков имеет собственные пределы. Весьма узкой нормой реакции обладают признаки, определяющие жизнеспособность организмов (например, взаиморасположение внутренних органов), а для признаков, которые не несут важного жизненного значения, она может быть значительно шире (масса тела, рост, цвет волос).

Обычно единичное проявление признака принято называть вариантой . Для изучения изменчивости определенного признака, т.е. вариант, составляют вариационный (от лат. variatio – изменение) ряд последовательность количественных показателей проявлений состояний определенного признака (вариант), расположенных в порядке их возрастания или убывания .

Длина вариационного ряда свидетельствует о размахе модификационной изменчивости (норме реакции). Она предопределена генотипом организма, но зависит от условий окружающей среды: чем они будут более стабильными, тем более короткий будет вариационный ряд, и наоборот. Если проследить распределение отдельных вариант внутри вариационного ряда, то можно заметить, что наибольшее их количество расположено в средней его части, т.е. они имеют среднее значение данного признака.

Такое распределение объясняется тем, что минимальные и максимальные значения развития признака формируются тогда, когда большинство факторов окружающей среды действуют в одном направлении: наиболее или наименее благоприятном. Но организм, как правило, чувствует на себе разное их влияние: одни факторы содействуют развитию признака, другие, напротив, тормозят. Именно поэтому степень развития определенного признака у большинства особей одного вида усредненные. Так, большинство людей имеет средний рост, и только незначительная часть среди них – великаны или карлики. Распределение вариант внутри вариационного ряда можно графически изобразить в виде вариационной кривой. Вариационная кривая – это графическое изображение зависимости возможных вариант признака от частоты встречаемости. С помощью вариационной кривой можно установить средние показатели и норму реакции определенного признака.

ОБОБЩЕНИЕ

Проявление фенотипа каждого организма зависит от наследственности и изменчивости. Благодаря наследственности особь получает генетический набор от родительских форм, сохраняя таким образом специфические особенности каждого вида, а изменчивость нарушает эту закономерность – благодаря изменчивости в мире невозможно встретить двух генетически одинаковых особей.

Различают два типа изменчивости: ненаследственную (фенотипическую, модификационную) и наследственную (генотипическую, генетическую). Факторами генетической изменчивости являются мутации и рекомбинации генетического материала. А посему наследственную изменчивость еще называют мутационной. Модификационную изменчивость вызывают реакции организма на факторы окружающей среды. А поскольку условия формирования каждого организма во многом различны, то и особи, даже если они являются представителями одного вида, имеют свой уникальный фенотип.

Наследственность и изменчивость играют важную роль в эволюции организмов. Их свойства используют и в процессе выведения новых сортов растений и пород животных.

ВОПРОСЫ ДЛЯ КОНТРОЛЯ

1. Что собой представляет ген с биохимической и генетической точек зрения?

2. Почему наследственность и изменчивость называют альтернативными явлениями? Дайте определение наследственности и изменчивости.

3. Что такое цитоплазматическая наследственность и чем она вызвана?

4. Что такое мутации? Какие виды мутаций вам известны?

5. Что такое анеуплоидия и полиплоидия?

6. Почему мутации, связанные с кратным уменьшением хромосомного набора, негативно влияют на жизнеспособность организмов по сравнению с теми, которые вызваны кратным увеличением генома?

7. Большинство мутаций рецессивно или доминантно?

8. В чем заключается различие между модификационной и мутационной изменчивостью?

9. Что называют нормой реакции модификационной изменчивости?

10. Что входит в статистическую обработку данных модификационной изменчивости?

Похожие публикации