В полимеразной цепной реакции пцр используется фермент. Анализ ПЦР: что это такое? Как правильно сдавать анализ ПЦР

Однако в то время эта идея осталась невостребованной. Полимеразная цепная реакция была вновь открыта в 1983 году Кэри Маллисом. Его целью было создание метода, который бы позволил амплифицировать ДНК в ходе многократных последовательных удвоений исходной молекулы ДНК с помощью фермента ДНК-полимеразы . Через 7 лет после опубликования этой идеи, в 1993 г., Маллис получил за неё Нобелевскую премию .

В начале использования метода после каждого цикла нагревания - охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу , так как она быстро инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. она была существенно улучшена. Было предложено использовать ДНК-полимеразы из термофильных бактерий . Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3"→5" экзонуклеазная активность). Полимеразы Pfu и Pwo , выделенные из архей , обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq . Сейчас применяют смеси Taq и Pfu , чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.

В момент изобретения метода Маллис работал в компании Цетус (en:Cetus Corporation), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq -полимеразы компании Хофман-Ла Рош (en:Hoffmann-La Roche) за 300 млн долларов. Однако оказалось, что Taq -полимераза была охарактеризована русским биохимиком Алексеем Калединым в 1980 году , в связи с чем компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент . Американский патент на метод ПЦР истёк в марте 2005 г.

Проведение ПЦР

Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro ). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК . В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp ). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20-40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований .

Компоненты реакции

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица , содержащая тот участок ДНК, который требуется амплифицировать .
  • Два праймера , комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.
  • Термостабильная ДНК-полимераза - фермент , который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.
  • Дезоксинуклеозидтрифосфаты (dATP, dGTP, dCTP, dTTP).
  • Ионы Mg 2+ , необходимые для работы полимеразы.
  • Буферный раствор , обеспечивающий необходимые условия реакции - рН , ионную силу раствора . Содержит соли, бычий сывороточный альбумин.

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата , побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата . Пирофосфат может ингибировать ПЦР-реакцию .

Праймеры

Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами , короткими синтетическими олигонуклеотидами длиной 18-30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы и ограничивает начало и конец амплифицируемого участка.

После гибридизации матрицы с праймером (отжиг ), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ).

Важнейшая характеристика праймеров - температура плавления (T m) комплекса праймер-матрица. T m это температура, при которой половина ДНК-матриц образует комплекс с олигонуклеотидным праймером. Температуру плавления можно приблизительно определить по формуле , где n X - количество нуклеотидов Х в праймере. В случае неверного выбора длины и нуклеотидного состава праймера или температуры отжига возможно образование частично комплементарных комплексов с другими участками матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.

При выборе праймеров желательно придерживаться следующих критериев:

Амплификатор

Рис. 1 : Амплификатор для проведения ПЦР

ПЦР проводят в амплификаторе - приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Ход реакции

Фотография геля, содержащего маркерную ДНК (1) и продукты ПЦР-реакции (2,3). Цифрами показана длина фрагментов ДНК в парах нуклеотидов

Обычно при проведении ПЦР выполняется 20-35 циклов, каждый из которых состоит из трех стадий (рис. 2).

Денатурация

Двухцепочечную ДНК-матрицу нагревают до 94-96°C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5-2 мин., чтобы цепи ДНК разошлись. Эта стадия называется денатурацией , так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2-5 мин. для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

Отжиг

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом . Температура отжига зависит от состава праймеров и обычно выбирается на 4-5°С ниже их температуры плавления. Время стадии - 0,5-2 мин. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре).

Элонгация

Разновидности ПЦР

  • «Вложенная» ПЦР (Nested PCR(англ.) ) - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
  • «Инвертированная» ПЦР (Inverse PCR(англ.) ) - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов (лигирование). В результате известные фрагменты оказываются на обоих концах неизвестного участка, после чего можно проводить ПЦР как обычно.
  • ПЦР с обратной транскрипцией (Reverse Transcription PCR, RT-PCR (англ.) ) - используется для амплификации, выделения или идентификации известной последовательности из библиотеки РНК. Перед обычной ПЦР проводят на матрице мРНК синтез одноцепочечной молекулы ДНК с помощью ревертазы и получают одноцепочечную кДНК , которая используется в качестве матрицы для ПЦР. Этим методом часто определяют, где и когда экспрессируются данные гены.
  • Асимметричная ПЦР (англ. Asymmetric PCR ) - проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке.
  • Количественная ПЦР (Quantitative PCR, Q-PCR(англ.) ) - используется для быстрого измерения количества определенной ДНК, кДНК или РНК в пробе.
  • Количественная ПЦР в реальном времени (Quantitative real-time PCR) - в этом методе используют флуоресцентно меченые реагенты для точного измерения количества продукта реакции по мере его накопления.
  • Touchdown (Stepdown) ПЦР (Touchdown PCR(англ.) ) - с помощью этого метода уменьшают влияние неспецифического связывания праймеров на образование продукта. Первые циклы проводят при температуре выше температуры отжига, затем каждые несколько циклов температуру снижают. При определённой температуре система пройдёт через полосу оптимальной специфичности праймеров к ДНК.
  • Метод молекулярных колоний (ПЦР в геле, англ. Polony - PCR Colony ) - акриламидный гель полимеризуют со всеми компонентами ПЦР на поверхности и проводят ПЦР. В точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
  • ПЦР с быстрой амплификацией концов кДНК (англ. Rapid amplification of cDNA ends, RACE-PCR )
  • ПЦР длинных фрагментов (англ. Long-range PCR ) - модификация ПЦР для амплификации протяженных участков ДНК (10 тысяч оснований и больше). Используют две полимеразы, одна из которых - Taq-полимераза с высокой процессивностью (то есть, способная за один проход синтезировать длинную цепь ДНК), а вторая - ДНК полимераза с 3"-5" эндонуклеазной активностью. Вторая полимераза необходима для того, чтобы корректировать ошибки, внесенные первой.
  • RAPD PCR (англ. Random Amplification of Polymorphic DNA PCR , ПЦР со случайной амплификацией полиморфной ДНК - используется тогда, когда нужно различить близкие по генетической последовательности организмы, например, разные сорта культурных растений, породы собак или близкородственные микроорганизмы. В этом методе обычно используют один праймер небольшого размера (20 - 25 п.н.). Этот праймер будет частично комплементарен случайным участкам ДНК исследуемых организмов. Подбирая условия (длину праймера, его состав, температуру и пр.), удается добиться удовлетворительного отличия картины ПЦР для двух организмов.

Если нуклеотидная последовательность матрицы известна частично или неизвестна вовсе, можно использовать вырожденные праймеры , последовательность которых содержит вырожденные позиции, в которых могут располагаться любые основания. Например, последовательность праймера может быть такой: …ATH… , где Н - А, Т или С.

Применение ПЦР

ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью ДНК электрофореза . Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев (англ. genetic fingerprint ).

Установление отцовства

Рис. 3 : Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. (1) Отец. (2) Ребенок. (3) Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций . Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Известно, что большинство лекарств действуют не на всех пациентов, для которых они предназначены, а лишь на 30-70 % их числа. Кроме того, многие лекарства оказываются токсичными или аллергенными для части пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием (англ. prospective genotyping ).

Клонирование генов

Клонирование генов (не путать с клонированием организмов) - это процесс выделения генов и, в результате генноинженерных манипуляций , получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Рис. 4 : Клонирование гена с использованием плазмиды. .
(1) Хромосомная ДНК организма A. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В.

Секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Метод полимеразной цепной реакции был открыт почти тридцать лет назад американским учёным по имени Кэрри Мюллис . Методика широко распространена в медицине в качестве диагностического инструмента, и суть её состоит в копировании участка ДНК при помощи специального фермента (полимеразы ) искусственным путём в пробирке.

В каких областях медицины применяется этот метод?

Для чего выполняется копирование ДНК и как это может послужить медицине?
Данная методика позволяет:
  • Выделять и клонировать гены.
  • Диагностировать генетические и инфекционные заболевания.
  • Определять отцовство. Ребенок частично наследует от своих биологических родителей генетические особенности, однако имеет при этом свою собственную уникальную генетическую идентификацию. Наличие у него некоторых генов, идентичных родительским генам – позволяет говорить об установлении родства.
Полимеразная цепная реакция применяется также в криминалистической практике.

На месте преступления судмедэксперты собирают образцы генетических материалов. К ним относятся: волосы, слюна, кровь. Впоследствии, благодаря методике полимеразной реакции, можно амплифицировать ДНК и сравнить идентичность взятой пробы с генетическим материалом подозреваемого человека.

В медицине эффективно используется полимеразная цепная реакция:

  • В пульмонологической практике – для дифференциации бактериальных и вирусных видов пневмонии , туберкулёза .
  • В гинекологической и урологической практике – для определения уреаплазмоза , хламидиоза , микоплазменной инфекции , гарднереллеза , герпеса , гонореи .
  • В гастроэнтерологической практике.
  • В гематологии – для определения онковирусов и цитомегаловирусной инфекции .
  • В экспресс-диагностике таких инфекционных заболеваний как вирусные гепатиты , дифтерия , сальмонеллёз .


В настоящее время наиболее распространен данный метод в диагностике инфекционных болезней (гепатитов вирусной этиологии, ВИЧ , венерических заболеваний , туберкулёза, клещевого энцефалита ).

Что происходит во время протекания реакции?


Сама реакция является химически несложной. Источником ДНК для реакции может послужить капля крови, волос, кусочек кожи, и т.д. В теории, для проведения реакции требуются нужные реагенты, пробирка, проба из биологического материала и источник тепла.

Полимеразная реакция позволяет выявить инфекцию, даже если в пробе с биологическим материалом находится всего одна или несколько ДНК-молекул возбудителя.

Во время протекания реакции, благодаря ферменту ДНК-полимеразы, происходит удвоение (репликация ) участка ДНК. Сама же дезоксирибонуклеиновая кислота (сокращенно ДНК ) важна для нас тем, что обеспечивает хранение и передачу дочерним клеткам генетической информации. ДНК имеет вид спирали, которая состоит из повторяющихся блоков. Эти блоки составляют нуклеотиды, которые являются наименьшей частицей ДНК. Нуклеотиды образуются из аминокислот.

Процесс репликации участков ДНК происходит во время повторяющихся циклов. В каждый такой цикл копируется и удваивается не только исходный фрагмент ДНК, но и те фрагменты, которые уже удвоились в прошлый цикл амплификации. Все это напоминает процесс геометрической прогрессии.

Существует:

  • Естественная амплификация (то есть процесс копирования и размножения ДНК ), которая происходит в нашем организме и является детерминированным, предопределённым процессом.
  • Искусственная амплификация, которая происходит благодаря полимеразной цепной реакции. В этом случае процесс копирования является управляемым и позволяет удвоить даже короткие участки нуклеиновой кислоты.
После завершения каждого цикла копирования, количество фрагментов нуклеиновой кислоты возрастает в геометрической прогрессии. Именно поэтому сам процесс называют «цепной реакцией».

Спустя тридцать - сорок циклов число фрагментов достигает нескольких миллиардов.

Для амплификации in vitro (в пробирке ) необходимо, чтобы в биосреде, взятой для диагностики, присутствовал специфический чужеродный фрагмент ДНК (то есть ДНК не пациента, а возбудителя ). Если в созданном растворе не будет находиться специфический фрагмент – цепная реакция под действием полимеразы не пойдет. Этим и объясняется факт высокой специфичности ПЦР.

Этапы ПЦР-диагностики

1. Из исследуемого материала выделяют ДНК.
2. Добавляют ДНК в специальный раствор из нуклеотидов.
3. Нагревают раствор до температуры 90 - 95 градусов Цельсия, для того, чтобы белок ДНК свернулся.
4. Снижают температуру до 60 градусов.
5. При повторении циклов повышения-понижения температуры количество участков нуклеиновой кислоты возрастает.

6. Путём проведения электрофореза подводится итог, и подсчитываются результаты удвоения.

Какие преимущества имеет данная диагностика?


  • Универсальность: для этого метода подходят любые образцы нуклеиновой кислоты.
  • Высокая специфичность: возбудитель имеет уникальные последовательности цепочек ДНК, которые свойственны именно ему. Поэтому результаты проведённой ПЦР будут достоверными, в них невозможно спутать ген одного возбудителя с геном другого возбудителя.
  • Чувствительность к наличию даже единичной молекулы возбудителя.

  • Маленький объем материала, нужного для исследования. Подойдет даже капля крови. Возможность получить результат, использовав минимальный объём пробы, очень важна для педиатрических, неонатологических, неврологических исследований, а также в практике судебной медицины.
  • Возможность определения вялотекущей, хронической инфекции, а не только острой.
  • Многие болезнетворные культуры очень сложно культивировать в пробирке другими методиками, а полимеразная реакция позволяет размножить культуру в нужном количестве.

Какие недостатки имеет данная диагностика?

  • Если в материале, предназначенном для проведения ПЦР, находится ДНК не только живого возбудителя, но и погибшего – будет происходить амплификация обеих ДНК. Соответственно, лечение после диагностики может быть назначено не совсем верное. Через некоторое время лучше пройти контроль эффективности проведённого лечения.
  • Повышенная чувствительность к наличию микроорганизмов тоже может считаться, в некотором роде, недостатком. Ведь в норме в человеческом организме присутствует условно-патогенная микрофлора, то есть это микроорганизмы, которые живут в кишечнике , желудке , других внутренних органах. Эти микроорганизмы могут принести вред человеку только при определенных неблагоприятных условиях – несоблюдение гигиенических требований, загрязненная питьевая вода и т.д. ПЦР-методика амплифицирует ДНК даже этих микроорганизмов, хотя они и не приводят к патологии.
  • ПЦР разных тест-систем может показывать результаты, которые будут разниться между собой. Существует много модификаций данной методики: «вложенная », «ассиметричная », «инвертированная », «количественная » ПЦР и другие.

ПРИНЦИП МЕТОДА (молекулярно-биологическая основа)

Среди большого многообразия гибридизационных методов анализа ДНК, метод ПЦР наиболее широко используется в клинической лабораторной диагностике.

Принцип метода полимеразной цепной реакции (ПЦР) (Polymerase chain reaction (PCR)) был разработан Кэри Мюллисом (фирма “Cetus”, США) в 1983г. и в настоящее время широко используется как для научных исследований, так и для диагностики в практическом здравоохранении и службе Госсанэпиднадзора (генотипирование, диагностика инфекционных заболеваний).

В основе метода ПЦР лежит природный процесс - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы. Эта реакция носит название репликации ДНК.

Естественная репликация ДНК включает в себя несколько стадий:

1) Денатурация ДНК (расплетение двойной спирали, расхождение нитей ДНК);

2) Образование коротких двухцепочечных участков ДНК (затравок, необходимых для инициации синтеза ДНК);

3) Синтез новой цепи ДНК (комплементарное достраивание обеих нитей)

Данный процесс можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей инфекционных заболеваний.

Открытие термостабильной ДНК-полимеразы (Taq-полимеразы) из термофильных бактерий Thermis aquaticus , оптимум работы которой находится в области 70-72°С, позволило сделать процесс репликации ДНК циклическим и использовать его для работы in vitro. Создание программируемых термостатов (амплификаторов), которые по заданной программе осуществляют циклическую смену температур , создало предпосылки для широкого внедрения метода ПЦР в практику лабораторной клинической диагностики. При многократном повторении циклов синтеза происходит экспоненциальное увеличение числа копий специфического фрагмента ДНК, что позволяет из небольшого количества анализируемого материала, который может содержать единичные клетки микроорганизмов получить достаточное количество ДНК копий для идентификации их методом электрофореза.

Комплементарное достраивание цепи начинается не в любой точке последовательности ДНК, а только в определеннных стартовых блоках- коротких двунитевых участках. При присоединении таких блоков к специфическим участкам ДНК можно направить процесс синтеза новой цепи только в этом участке, а не по всей длине ДНК цепи. Для создания стартовых блоков в заданных участках ДНК используют две олигонуклеотидные затравки (20 нуклеотидных пар), называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними.

Таким образом, ПЦР представляет собой многократное увеличение числа копий (амплификация) специфического участка ДНК катализируемое ферментом ДНК- полимеразой.

Для проведения амплификации необходимы следующие компоненты:

Смесь дезоксинуклеотидтрифосфатов (дНТФ) (смесь четырех дНТФ, являющихся материалом для синтеза новых комплементарных цепей ДНК)

Фермент Taq-полимераза (термостабильная ДНК-полимераза, катализирующая удлиннение цепей праймеров путем последовательного присоединения нуклеотидных оснований к растущей цепи синтезируемой ДНК).

Буферный раствор
(реакционная среда, содержащая ионы Mg2+, необходимые для поддержания активности фермента)
Для определения специфических участков генома РНК-содержащих вирусов, сначала получают ДНК-копию с РНК-матрицы, используя реакцию обратной транскрипции (RT), катализируемую ферментом ревертазой (обратной транскриптазой).

Для получения достаточного количества копий искомого характеристического фрагмента ДНК амплификация включает несколько (20-40) циклов.



Каждый цикл амплификации включает 3 этапа, протекающих в различных температурных режимах

1 этап: Денатурация ДНК (расплетение двойной спирали). Протекает при 93-95°C в течение 30-40 сек.

2 этап: Присоединение праймеров (отжиг). Присоединение праймеров происходит комплементарно к соответствующим последовательностям на противоположных цепях ДНК на границах специфического участка. Для каждой пары праймеров существет своя температура отжига, значения которой располагаются в интервале 50-65°С. Время отжига -20-60 сек.

3 этап: Достраивание цепей ДНК. Комплементарное достраивание цепей ДНК происходит от 5’-конца к 3’-концу цепи в противоположных направлениях, начиная с участков присоединения праймеров. Материалом для синтеза новых цепей ДНК служат добавляемые в раствор дезоксирибонуклеотидтрифосфаты (дНТФ). Процесс синтеза катализируется ферментом термостабильной ДНК-полимеразой (Taq-полимеразой) и проходит при температуре 70-72°С. Время протекания синтеза - 20-40 сек.






Образовавшиеся в первом цикле амплификации новые цепи ДНК служат матрицами для второго цикла амплификации, в котором происходит образование искомого специфического фрагмента ДНК (ампликона). (см.рис.2). В последующих циклах амплификации ампликоны служат матрицей для синтеза новых цепей. Таким образом происходит накопление ампликонов в растворе по формуле 2n, где n-число циклов амлификации. Поэтому, даже если в исходном растворе первоначально находилась только одна двухцепочечная молекула ДНК, то за 30-40 циклов в растворе накапливается около 108 молекул ампликона. Этого количества достаточно для достоверной визуальной детекции этого фрагмента методом электрофореза в агарозном геле. Процесс амплификации проводится в специальном программируемом термостате (амплификаторе), который по заданной программе автоматчески осуществляет смену температур согласно числу циклов амплификации.

СТАДИИ ПРОВЕДЕНИЯ ПЦР - АНАЛИЗА


В основе метода ПЦР, как инструмента лабораторной диагностики инфекционных заболеваний лежит обнаружение небольшого фрагмента ДНК возбудителя (несколько сот пар оснований), специфичного только для данного микроорганизма, с использованием полимеразной цепной реакции для накопления искомого фрагмента.
Методика проведения анализа с использованием метода ПЦР включает три этапа:

1. Выделение ДНК (РНК) из клинического образца


2. Амплификация специфических фрагментов ДНК
3. Детекция продуктов амплификации

Выделение ДНК (РНК)
На данной стадии проведения анализа клиническая проба подвергается специальной обработке, в результате которой происходит лизис клеточного материала, удаление белковых и полисахаридных фракций , и получение раствора ДНК или РНК, свободной от
ингибиторов и готовой для дальнейшей амплификации.
Выбор методики выделения ДНК(РНК) в основном определяется характером обрабатываемого клинического материала.

Амплификация специфических фрагментов ДНК
На данной стадии происходит накопление коротких специфических фрагментов ДНК в количестве, необходимом для их дальнейшей детекции. В большинстве методик определения специфических фрагментов генома используется т.н. “классический вариант направленной ПЦР. Для повышения специфичности и чувствительности анализа в некоторых методиках используется метод “гнездной” (nested) ПЦР, в котором используются 2 пары праймеров (“внешние” - для 1 стадии, и “внутренние” - для 2-ой стадии).

Детекция продуктов амплификации
В большинстве методик на данном этапе проводится разделение смеси продуктов амплификации, полученной на 2-ой стадии, методом горизонтального электрофореза в агарозном геле. До проведения электрофоретического разделения, к амплификационной смеси добавляется раствор бромистого этидия, образущий с двухцепочечными фрагментами ДНК прочные соединения внедрения. Эти соединения под действием УФ-облучения способны флуоресцировать, что регистрируется в виде оранжево-красных светящихся полос после электрофоретического разделения амплификационной смеси в агарозном геле.

В качестве альтернативы электрофоретическому методу детекции, имеющему некоторые недостатки: субъективность чтения результатов, ограничения по определению ДНК различных микроорганизмов в одной реакции, могут быть предложены гибридизационные схемы детекции. В этих схемах образующийся в результате амплификации фрагмент ДНК гибридизуется (образует 2-х цепочечные комплексы - "гибриды") со специфическим олигонуклеотидным зондом. Регистрация таких комплексов может быть проведена колориметрически или флуориметрически. В НПФ "Литех" созданы наборы для детекции на основе гибридизации с флуориметрической регистрацией результатов

ПРЕИМУЩЕСТВА МЕТОДА ПЦР как метода диагностики инфекционных заболеваний:

- Прямое определение наличия возбудителей

Многие традиционные методы диагностики, например иммуноферментный анализ, выявляют белки-маркеры, являющиеся прдуктами жизнедеятельности инфекционных агентов, что дает лишь опосредованное свидетельство наличия инфекции. Выявление специфического участка ДНК возбудителя методом ПЦР дает прямое указание на присутствие возбудителя инфекции.



- Высокая специфичность

Высокая специфичность метода ПЦР обусловлена тем, что в исследуемом материале выявляется уникальный, характерный только для данного возбудителя фрагмент ДНК. Специфичность задается нуклеотидной последовательностью праймеров, что исключает
возможность получения ложных результатов, в отличие от метода иммуноферментного анализа, где нередки ошибки в связи с перекрестно-реагирующими антигенами.

- Высокая чувствительность

Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими,
микроскопическими) это сделать невозможно. Чувствительность ПЦР-анализа составляет 10-1000 клеток в пробе (чувствительность иммунологических и микроскопических тестов - 103-105 клеток).

-Универсальность процедуры выявления различных возбудителей

Материалом для исследования методом ПЦР служит ДНК возбудителя. Метод основан на выявлении фрагмента ДНК или РНК, являющегося специфичным для конкретного организма. Сходство химического состава всех нуклеиновых кислот позволяет применять унифицированные методы проведения лабораторных исследований. Это дает возможность диагносцировать несколько возбудителей из одной биопробы. В качестве исследуемого материала могут использоваться различные биологические выделения (слизь, моча, мокрота), соскобы эпителиальных клеток, кровь, сыворотка.

- Высокая скорость полученоя результата анализа
Для проведения ПЦР-анализа не требуется выделение и выращивание культуры возбудителя, что занимает большое количество времени. Унифицированный метод обработки биоматериала и детекции продуктов реакции, и автоматизация процесса амплификации дают возможность провести полный анализ за 4-4.5 часа.

Следует отметить, что методом ПЦР возможно выявление возбудителей не только в клиническом материале, полученном от больного, но и в материале, получаемом из объектов внешней среды (вода, почва и т.д.)

ПРИМЕНЕНИЕ МЕТОДА ПЦР В ПРАКТИЧЕСКОМ ЗДРАВООХРАНЕНИИ

Использование метода ПЦР для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы имеет колоссальное значение для решения многих проблем микробиологии и эпидемиологии. Применение этого метода также способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний.

Наиболее эффективно и экономически обоснованно использование метода в:

урогинекологической практике - для выявления хламидиоза, уреаплазмоза, гонореи, герпеса, гарднереллеза, микоплазменной инфекции;

в пульмонологии - для дифференциальной диагностики вирусных и бактериальных пневмоний, туберкулеза;

в гастроэнтерологии - для выявления геликобактериоза;

в клинике инфекционных заболеваний - в качестве экспресс-метода диагностики сальмонеллеза, дифтерии, вирусных гепатитов В,С и G;

в гематологии - для выявления цитомегаловирусной инфекции, онковирусов.

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

"Карельская государственная педагогическая академия"


Курсовая работа на тему:

Полимеразная цепная реакция (ПЦР) и её применение


Выполнила: студентка Корягина Валерия Александровна

Проверила: Карпикова Наталья Михайловна


Петрозаводск 2013


Введение

Глава 1. Литературный обзор

1.5.4 Эффект "Плато"

1.5.6 Амплификация

Заключение


Введение


Последнее двадцатилетие ознаменовалось широким внедрением в биологические, медицинские и сельскохозяйственные науки молекулярно-генетических методов.

К началу 70-х годов казалось, что молекулярная биология достигла определенной степени завершенности. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам поставил перед исследователями совершенно новые проблемы, которые не могли быть решены с использованием существовавших в то время методов генетического анализа. Прорыв в развитии молекулярной генетики стал возможен благодаря появлению нового экспериментального инструмента - рестрикационных эндонуклеаз. В последующие годы количество методов непосредственного анализа ДНК, основанных на качественно различающихся подходах, начало стремительно увеличиваться.

Современные технологии во многих случаях позволили на более глубоком уровне начать изучение тонкой структурно-функциональной организации ядерных и внеядерных геномов различных организмов. Особое значение это имело для разработки новых методов диагностики и лечения различных заболеваний. Не менее важным оказалась возможность использования достижения молекулярной генетики в популяционной биологии и в селекции для выявления и анализа генетической изменчивости популяций, сортов и штаммов, идентификации и паспортизации хозяйственно ценных особей, создания генетически модифицированных организмов и для решения других вопросов.

Каждый метод имеет свои преимущества и недостатки. Нет универсального метода, который мог бы позволить решить все возникающие проблемы. Поэтому выбор конкретного метода для проводимого исследования является одним из важнейших этапов любой научной работы.

Глава 1. Литературный обзор


1.1 История открытия Полимеразной цепной реакции (ПЦР)


В 1983 г. К.Б. Мюллис и др. опубликовали и запатентовали метод полимеразной цепной реакции (ПЦР), которому суждено было оказать глубочайшее влияние на все области исследования и прикладного использования нуклеиновых кислот. Значение этого метода для молекулярной биологии и генетики оказалось столь велико и очевидно, что уже через семь лет автору была присуждена Нобелевская премия по химии.

В начале использования метода после каждого цикла нагревания-охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура проведения реакции была сравнительно неэффективной, требовала много времени и фермента. В 1986 году метод полимеразной цепной реакции был существенно улучшен. Было предложено использовать ДНК-полимеразы из термофильных бактерий. Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой.

Возможность амплификации любого сегмента ДНК, последовательность нуклеотидов которого известна, и получение его по завершении ПЦР в гомогенном виде и препаративном количестве делают ПЦР альтернативным методом молекулярного клонирования коротких фрагментов ДНК. При этом не возникает необходимости в применении сложных методических приемов, которые используют в генной инженерии при обычном клонировании. Разработка метода ПЦР во многом расширила методические возможности молекулярной генетики, и, в частности, генной инженерии, причем настолько, что это кардинально изменило и усилило научный потенциал многих её направлений.


1.2 Разновидности полимеразной цепной реакции (ПЦР)


·Вложенная ПЦР - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.

·Инвертированная ПЦР - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК - рестриктазами <#"justify">полимеразная цепная реакция праймер

·Групп-специфическая ПЦР - ПЦР для родственных <#"center">1.3 Полимеразная цепная реакция


Открытая в середине 80-х годов, полимеразная цепная реакция (ПЦР) способна увеличить количество копий исходной пробы в миллионы раз в течение нескольких часов. В ходе каждого цикла реакции из исходной молекулы образуются две копии. Каждая из синтезированных копий ДНК может служить матрицей для синтеза новых копий ДНК в следующем цикле. Таким образом, многократное повторение циклов, приводит к возрастанию количества копий в геометрической прогрессии. Из расчетов следует, что даже при наличии 30 циклов, число копий исходной молекулы составит более 1 миллиарда. Даже если учесть, что в ходе каждого цикла дуплицируются не все ампликоны, то общее количество копий, несмотря на это, составляет достаточно большую цифру.

Каждый цикл полимеразной цепной реакции (ПЦР) состоит из следующих этапов:

·Денатурация - Повышение температуры вызывает раскручивание и расщепление двухцепочечной молекулы ДНК на две одноцепочечные;

·Отжиг - Снижение температуры позволяет праймерам присоединиться к комплементарным участкам молекулы ДНК;

·Элонгация - Фермент ДНК-полимераза достраивает комплементарную цепь.

Для амплификации избранного фрагмента используют два олигонуклеотидных праймера (затравки), фланкирующих определенный участок ДНК. Праймеры ориентированы 3-концами навстречу друг другу и в сторону той последовательности, которую необходимо амплифицировать. ДНК-полимераза осуществляет синтез (достройку) взаимно комплементарных цепей ДНК, начиная с праймеров. При синтезе ДНК праймеры физически встраиваются в цепь новосинтезирующихся молекул ДНК. Каждая цепь молекулы ДНК, образующаяся с помощью одного из праймеров, может служить матрицей для синтеза комплементарной цепи ДНК с помощью другого праймера.


1.4 Проведение полимеразной цепной реакции (ПЦР)


Полимеразную цепную реакцию проводят в специальных тонкостенных полипропиленовых пробирках, совместимых по размеру с используемым термоциклером (амплификатором) - прибором, который контролирует температурные и временные характеристики этапов полимеразной цепной реакции (ПЦР).


1.5 Принцип метода полимеразной цепной реакции


Полимеразная цепная реакция (ПЦР) - метод амплификации ДНК in vitro, с помощью которого в течение нескольких часов можно выделить и размножить определённую последовательность ДНК в миллиарды раз. Возможность получения огромного количества копий одного строго определённого участка генома значительно упрощает исследование имеющегося образца ДНК.

Для проведения полимеразной цепной реакции необходимо соблюдение ряда условий:


1.5.1 Наличие в реакционной смеси ряда компонентов

Основными компонентами реакционной (ПЦР) смеси являются: Трис-HCl, KCl, MgCl2, смесь нуклеотидтрифосфатов (АТФ, ГТФ, ЦТФ, ТТФ), праймеры (олигонуклеотиды), препарат анализируемой ДНК, термостабильная ДНК-полимераза. Каждый из компонентов реакционной смеси непосредственно участвует в полимеразной цепной реакции (ПЦР), а концентрация реагентов напрямую влияет на ход амплификации.

·Трис-HCl - определяет pH реакционной смеси, создает буферную емкость. Активность ДНК-полимеразы зависит от pH среды, поэтому значение водородного показателя напрямую влияет на ход полимеразной цепной реакции. Обычно значение pH находится в пределах 8 - 9,5. Высокое значение pH берется из-за того, что при повышении температуры pH Трил-HCl буфера падает.

·KCl - концентрация хлорида калия до 50 мМ влияет на протекание процессов денатурации и отжига, концентрация свыше 50 мМ ингибирует ДНК-полимеразу.

·MgCl2 - поскольку ДНК-полимераза является Mg2+ - зависимым ферментом, то концентрация ионов магния влияет на активность фермента (Mg2+ образует комплексы с НТФ - именно эти комплексы являются субстратом для полимеразы). Высокая концентрация приводит к увеличению неспецифической амплификации, а низкая ведет - к ингибированию реакции, оптимум (для различных полимераз) находится в области 0,5 - 5мМ. Кроме того, концентрация солей магния влияет на протекание процессов денатурации и отжига - повышение концентрации Mg2+ вызывает повышение температуры плавления ДНК (т.е. температуры, при корой 50% двухцепочечных нитей ДНК разъединяются на одноцепочечные).

·НТФ - нуклеотидтрифосфаты являются непосредственными мономерами нуклеиновых кислот. Для предотвращения цепной терминации рекомендуется равноколличественное соотношение всех четырех нуклеотидтрифосфатов. Низкая концентрация данных компонентов в реакционной смеси увеличивает вероятность ошибки при построении комплементарной цепи ДНК.

·Праймеры - Наиболее оптимальным является использование праймеров с разницей температур плавления не более 2 - 4oС. Иногда при длительном хранении при температуре 4oС, или после большого количества замораживаний - оттаиваний праймеры образуют вторичные структуры - димеры, снижая эффективность протекания ПЦР. Устранение данной проблемы сводится к инкубации на водяной бане (Т=95oС) в течение 3 минут и последующему резкому охлаждению до 0oС.

·Препараты ДНК - количество и качество препарата ДНК (матрицы) непосредственно влияет на ход и параметры полимеразной цепной реакции. Избыточное количество образца ДНК ингибирует полимеразную цепную реакцию (ПЦР). Примеси различных веществ, находящихся в препарате ДНК, могут также уменьшить эффективность протекания полимеразной цепной реакции (ПЦР): ацетат натрия, хлорид натрия, изопропанол, этанол, гепарин, фенол, мочевина, гемоглобин и др.

·ДНК-полимераза - при использовании малого количества ДНК-полимеразы наблюдается уменьшение синтеза конечного продукта прямо пропорционально размеру фрагментов. Избыток полимеразы в 2 - 4 раза приводит к появлению диффузных спектров, а в 4 - 16 раз - низкомолекулярных неспецифических спектров. Диапазон используемых концентраций - 0,5 - 1,5 единиц активности в перерасчете на 25 мкл ПЦР смеси.

Кроме основных компонентов ПЦР смеси, используют ряд дополнительных веществ, улучшающих качественные и количественные показатели ПЦР: ацетамид (5%) - увеличение растворимости основных компонентов; бетаин (натриевая соль) - стабилизация ДНК-полимеразы, понижение температуры плавления ДНК, выравнивание температуры плавления; альбумин бычий (10-100 мкг/мл) - стабилизация ДНК-полимеразы; диметилсульфоксид (1-10%) - повышение растворимости основных компонентов; формамид (2-10%) - увеличение специфичности отжига; глицерин (15-20%) - увеличение термостабильности фермента, понижение температуры денатурации образца ДНК; сульфат аммония - снижение температуры денатурации и отжига.


1.5.2 Циклический и температурный режим

Общий вид программы полимеразной цепной реакции (ПЦР) следующий:

этап. Длительная первичная денатурация препарата ДНК.1 цикл

этап. Быстрая денатурация препарата ДНК. Отжиг праймеров. Элонгация.30 - 45 циклов.

этап. Длительная элонгация. Охлаждение реакционной смеси.1 цикл.

Каждый элемент этапа - денатурация, отжиг, элонгация - имеет индивидуальные температурные и временные характеристики. Параметры температуры и времени протекания каждого элемента подбирают эмпирически, в соответствии с качественными и количественными показателями продуктов амплификации.

Денатурация. В ходе данного элемента полимеразной цепной реакции происходит расщепление двухцепочечной молекулы ДНК на две одноцепочечные. Температурные параметры денатурации находятся в области 90 - 95oС, но в случае ДНК-образца с большим содержанием гуанина и цитозина, температура должна быть увеличена до 98oС. Температура денатурации должна быть достаточной для полной денатурации - расщепления нитей ДНК и избежания "внезапного охлаждения" или быстрого отжига, однако, термостабильная ДНК-полимераза менее устойчива при высоких температурах. Таким образом, подбор оптимальных температурных параметров денатурации для соотношения праймер/образец (препарат ДНК) является важным условием при проведении амплификации. Если температура денатурации на первом этапе выше 95oС, рекомендуется добавлять ДНК-полимеразу в реакционную смесь после первичной денатурации. Продолжительность данного элемента этапа в ходе полимеразной цепной реакции (ПЦР) должна быть достаточной для полной денатурации ДНК, но в то же время не оказывать существенного влияния на активность ДНК-полимеразы при данной температуре.

Отжиг. Температура отжига (Та) - один из важнейших параметров полимеразной цепной реакции. Температура отжига для каждого конкретного праймера подбирается индивидуально. Она зависит от длинны и нуклеотидного состава праймера. Обычно она ниже на 2 - 4oС значения температуры плавления (Тm) праймера. Если температура отжига системы ниже оптимальной, то число неспецифических амплифицированных фрагментов возрастает и, наоборот, более высокая температура уменьшает количество амплифицированных продуктов. При этом концентрация специфических ампликонов может резко снижаться, вплоть до ингибирования полимеразной цепной реакции (ПЦР). Увеличение времени отжига также приводит к увеличению количества неспецифических ампликонов.

Элонгация. Обычно каждый вид термостабильной ДНК-полимеразы имеет индивидуальный температурный оптимум активности. Скорость синтеза ферментом комплементарной нити ДНК также является величиной специфичной для каждой полимеразы (в среднем она составляет 30 - 60 нуклеотидов в секунду, или 1 - 2 тыс. оснований в минуту), поэтому время элонгации подбирается в зависимости от типа ДНК-полимеразы и длинны амплифицируемого региона.


1.5.3 Основные принципы подбора праймеров

При создании ПЦР-тест-системы одной из основных задач является правильный подбор праймеров, которые должны отвечать ряду критериев:

Праймеры должны быть специфичны. Особое внимание уделяют 3-концам праймеров, т. к именно с них начинает достраивать комплементарную цепь ДНК Taq-полимераза. Если их специфичность недостаточна, то, вероятно, что в пробирке с реакционной смесью будут происходить нежелательные процессы, а именно, синтез неспецифической ДНК (коротких или длинных фрагментов). Она видна на электрофорезе в виде тяжелых или легких дополнительных полос. Это мешает оценке результатов реакции, т. к легко перепутать специфический продукт амплификации с синтезированной посторонней ДНК. Часть праймеров и дНТФ расходуется на синтез неспецифической ДНК, что приводит к значительной потере чувствительности.

Праймеры не должны образовывать димеры и петли, т.е. не должно образовываться устойчивых двойных цепей в результате отжига праймеров самих на себя или друг с другом.


1.5.4 Эффект "Плато"

Следует заметить, что процесс накопления специфических продуктов амплификации по геометрической прогрессии идет лишь ограниченное время, а затем его эффективность критически падает. Это связано с так называемым эффектом "плато".

Термин эффект плато используют для описания процесса накопления продуктов ПЦР на последних циклах амплификации.

В зависимости от условий и количества циклов реакции амплификации, на момент достижения эффекта плато влияют утилизация субстратов (дНТФ и праймеров), стабильность реактантов (дНТФ и фермента), количество ингибиторов, включая пирофосфаты и ДНК-дуплексы, конкуренция за реактанты неспецифическими продуктами или праймер-димерами, концентрация специфического продукта и неполная денатурация при высокой концентрации продуктов амплификации.

Чем меньше начальная концентрация ДНК-мишени, тем выше риск выхода реакции на плато". Этот момент может наступить до того, как количество специфических продуктов амплификации будет достаточно, чтобы их можно было проанализировать. Избежать этого позволяют лишь хорошо оптимизированные тест-системы.


1.5.5 Подготовка пробы биологического материала

Для выделения ДНК используют различные методики в зависимости от поставленных задач. Их суть заключается в экстракции (извлечении) ДНК из биопрепарата и удалении или нейтрализации посторонних примесей для получения препарата ДНК с чистотой, пригодной для постановки ПЦР.

Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, описанная Мармуром. Она включает в себя ферментативный протеолиз с последующей депротеинизацией и переосаждением ДНК спиртом. Этот метод позволяет получить чистый препарат ДНК. Однако он довольно трудоемок и предполагает работу с такими агрессивными и имеющими резкий запах веществами, как фенол и хлороформ.

Одним из популярных в настоящее время является метод выделения ДНК, предложенный Boom с соавторами. Этот метод основан на использовании для лизиса клеток сильного хаотропного агента - гуанидина тиоционата (GuSCN), и последующей сорбции ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное "молоко" и. т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен, технологичен и пригоден для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок. Особенно большое значение это имеет при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР. Поэтому при использовании этого метода очень важен правильный выбор сорбента и тщательное соблюдение технологических нюансов.

Другая группа методов пробоподготовки основана на использовании ионообменников типа Chilex, которые, в отличие от стекла, сорбируют не ДНК, а наоборот, примеси, мешающие реакции. Как правило, эта технология включает две стадии: кипячение образца и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом. К сожалению, иногда встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, некоторые микроорганизмы не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.

Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов.


1.5.6 Амплификация

Для проведения реакции амплификации необходимо приготовить реакционную смесь и внести в нее анализируемый образец ДНК. При этом важно учитывать некоторые особенности отжига праймеров. Дело в том, что, как правило, в анализируемом биологическом образце присутствуют разнообразные молекулы ДНК, к которым используемые в реакции праймеры имеют частичную, а в некоторых случаях значительную, гомологию. Кроме того, праймеры могут отжигаться друг с другом, образуя праймер-димеры. И то, и другое приводит к значительному расходу праймеров на синтез побочных (неспецифических) продуктов реакции и, как следствие, значительно уменьшает чувствительность системы. Это затрудняет или делает невозможным чтение результатов реакции при проведении электрофореза.


1.6 Состав стандартной реакционной ПЦР смеси


х ПЦР буфер (100 мМ р-р Трис-HCl, pH 9,0, 500 мМ р-р KCl, 25 мМ р-р MgCl2) …….2,5 мкл

Вода (MilliQ) ……………………………………………………….18,8 мкл

Смесь нуклеотидтрифосфатов (дНТФ)

мМ р-р каждого……………………………………….……….0,5 мкл

Праймер 1 (10 мМ р-р) ………………………………………….….1 мкл

Праймер 2 (10 мМ р-р) ………………………………………….….1 мкл

ДНК-полимераза (5 ед. /мкл) ………………………………………0,2 мкл

Образец ДНК (20 нг/мкл) …………………………………………..1 мкл


1.7 Оценка результатов реакции


Для правильной оценки результатов ПЦР важно понимать, что данный метод не является количественным. Теоретически продукты амплификации единичных молекул ДНК-мишени могут быть обнаружены с помощью электрофореза уже после 30-35 циклов. Однако на практике это выполняется лишь в случаях, когда реакция проходит в условиях, близких к идеальным, что в жизни встречается не часто. Особенно большое влияние на эффективность амплификации оказывает степень чистоты препарата ДНК, т.е. наличие в реакционной смеси тех или иных ингибиторов, от которых избавиться в некоторых случаях бывает крайне сложно. Иногда, из-за их присутствия не удается амплифицировать даже десятки тысяч молекул ДНК-мишени. Таким образом, прямая связь между исходным количеством ДНК-мишени и конечным количеством продуктов амплификации часто отсутствует.

Глава 2: Применение Полимеразной цепной реакции


ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых "генетических отпечатков пальцев". Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т.п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью электрофореза ДНК. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев.

Установление отцовства

Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. Отец. Ребенок. Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя "генетические отпечатки пальцев" уникальны, родственные связи все же можно установить, сделав несколько таких отпечатков. Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Иногда лекарства оказываются токсичными или аллергенными для некоторых пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием.

Клонирование генов

Клонирование генов - это процесс выделения генов и, в результате генноинженерных манипуляций, получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

Метод ПЦР позволил проанализировать наличие последовательностей вирусов папилломы человека в срезах биопсий новообразований шейки матки человека, залитых парафином за 40 лет до данного исследования. Более того, с помощью ПЦР удалось амплифицировать, и клонировать фрагменты митохондриальной ДНК из ископаемых останков мозга человека возраста 7 тысяч лет!

На лизатах индивидуальных сперматозоидов человека продемонстрирована возможность одновременно анализировать два локуса, расположенных на разных негомологичных хромосомах. Такой подход обеспечивает уникальную возможность тонкого генетического анализа и изучения хромосомной рекомбинации, ДНК-полиморфизма и др. Метод анализа индивидуальных сперматозоидов сразу нашел практическое применение в судебной медицине, так как HLA-типирование гаплоидных клеток позволяет определять отцовство или выявлять преступника (комплекс HLA представляет собой набор генов главного комплекса гистосовместимости человека; локусы комплекса HLA - наиболее полиморфные из всех известных у высших позвоночных: в пределах вида в каждом локусе существует необычайно большое число разных аллелей - альтернативных форм одного и того же гена).

Используя ПЦР, можно выявлять правильность интеграции чужеродных генетических структур в заранее определенный район генома изучаемых клеток. Суммарная клеточная ДНК отжигается с двумя олигонуклеотидными затравками, одна из которых комплементарна участку хозяйской ДНК вблизи точки встраивания, а другая - последовательности интегрированного фрагмента в антипараллельной цепи ДНК. Полимеразная цепная реакция в случае неизмененной структуры хромосомной ДНК в предполагаемом месте встройки приводит к образованию фрагментов одноцепочечной ДНК неопределенного размера, а в случае запланированной встройки - двухцепочечных фрагментов ДНК известного размера, определяемого расстоянием между местами отжига двух праймеров. Причем степень амплификации анализируемого района генома в первом случае будет находиться в линейной зависимости от количества циклов, а во втором - в экспоненциальной. Экспоненциальное накопление в процессе ПЦР амплифицируемого фрагмента заранее известного размера позволяет визуально наблюдать его после электрофоретического фракционирования препарата ДНК и делать однозначное заключение о встройке чужеродной последовательности в заданный район хромосомной ДНК.

Заключение


Самое широкое распространение метод ПЦР в настоящее время получил как метод диагностики различных инфекционных заболеваний. ПЦР позволяет выявить этиологию инфекции даже если в пробе, взятой на анализ, содержится всего несколько молекул ДНК возбудителя. ПЦР широко используется в ранней диагностики ВИЧ-инфекций, вирусных гепатитов и т.д. На сегодняшний день почти нет инфекционного агента, которого нельзя было бы выявить с помощью ПЦР.

Список использованной литературы


1.Падутов В.Е., Баранов О.Ю., Воропаев Е.В. Методы молекулярно - генетического анализа. - Мн.: Юнипол, 2007. - 176 с.

2.ПЦР "в реальном времени"/ Ребриков Д.В., Саматов Г.А., Трофимов Д.Ю. и др.; под ред. д. б. н. Д.В. Ребрикова; предисл. Л.А. Остермана и акад. РАН и РАСХН Е.Д. Свердлова; 2-е изд., испр. и доп. - М.: БИНОМ. Лаборатория знаний, 2009. - 223 с.

.Патрушев Л.И. Искусственные генетические системы. - М.: Наука, 2005. - В 2 т

.Б. Глик, Дж. Пастернак Молекулярная биотехнология. Принципы и применение 589 стр., 2002 г.

5.Щелкунов С.Н. Генетическая инженерия. - Новосибирск: Сиб. унив. издательствово, 2004. - 496 с.

Под редакцией А.А. Ворбьева "Полимеразная цепная реакция и ее применение для диагностики в дерматовенерологии"; Медицинское информационное агентство - 72 стр.

Http://ru. wikipedia.org

Http://scholar. google.ru

.

.

Http://www.med2000.ru/n1/n12. htm

12.http://prizvanie. su/ - медицинский журнал


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Похожие публикации