Условный экстремум примеры. Экстремум функции нескольких переменных Понятие экстремума функции нескольких переменных

Определение1 : Говорят, что функция имеет в точке локальный максимум, если существует такая окрестность точки, для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции < 0.

Определение2 : Говорят, что функция имеет в точке локальный минимум, если существует такая окрестность точки, для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0.

Определение 3 : Точки локальных минимума и максимума называются точками экстремума .

Условные Экстремумы

При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция и линия L на плоскости 0xy . Задача состоит в том, чтобы на линии L найти такую точку P(x, y), в которой значение функции является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L , находящихся вблизи точки P . Такие точки P называются точками условного экстремума функции на линии L . В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L .

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума ) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Поясню сказанное обычным примером. Графиком функции является верхняя полусфера (Приложение 3 (Рис 3)).

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение x+y-1=0 ), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке, лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции на данной линии; ей соответствует точка M 1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области нам приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Приступим теперь к практическому отысканию точек условного экстремума функции Z= f(x, y) при условии, что переменные x и y связаны уравнением (x, y) = 0. Это соотношение будем называть уравнение связи. Если из уравнения связи y можно выразить явно через х: y=(x), мы получим функцию одной переменной Z= f(x, (x)) = Ф(х).

Найдя значение х, при которых эта функция достигает экстремума, и определив затем из уравнения связи соответствующие им значения у, мы и получим искомые точки условного экстремума.

Так, в вышеприведенном примере из уравнения связи x+y-1=0 имеем y=1-х. Отсюда

Легко проверить, что z достигает максимума при х = 0,5; но тогда из уравнения связи y=0,5, и мы получаем как раз точку P, найденную из геометрических соображений.

Очень просто решается задача на условный экстремум и тогда, когда уравнение связи можно представить параметрическими уравнениями х=х(t), y=y(t). Подставляя выражения для х и у в данную функцию, снова приходим к задаче отыскания экстремума функции одной переменной.

Если уравнение связи имеет более сложный вид и нам не удается ни явно выразить одну переменную через другую, ни заменить его параметрическими уравнениями, то задача отыскания условного экстремума становится более трудной. Будем по-прежнему считать, что в выражении функции z= f(x, y) переменная (x, y) = 0. Полная производная от функции z= f(x, y) равна:

Где производная y`, найдена по правилу дифференцирования неявной функции. В точках условного экстремума найденная полная производная должна ровняться нулю; это дает одно уравнение, связывающее х и у. Так как они должны удовлетворять еще и уравнению связи, то мы получаем систему двух уравнений с двумя неизвестными

Преобразуем эту систему к гораздо более удобной, записав первое уравнение в виде пропорции и введя новую вспомогательную неизвестную:

(знак минус перед поставлен для удобства). От этих равенств легко перейти к следующей системе:

f` x =(x,y)+` x (x,y)=0, f` y (x,y)+` y (x,y)=0 (*),

которая вместе с уравнением связи (x, y) = 0 образует систему трех уравнений с неизвестными х, у и.

Эти уравнения (*) легче всего запомнить при помощи следующего правила: для того, чтобы найти точки, которые могут быть точками условного экстремума функции

Z= f(x, y) при уравнении связи (x, y) = 0, нужно образовать вспомогательную функцию

Ф(х,у)=f(x,y)+(x,y)

Где -некоторая постоянная, и составить уравнения для отыскания точек экстремума этой функции.

Указанная система уравнений доставляет, как правило, только необходимые условия, т.е. не всякая пара значений х и у, удовлетворяющая этой системе, обязательно является точкой условного экстремума. Достаточные условия для точек условного экстремума я приводить не стану; очень часто конкретное содержание задачи само подсказывает, чем является найденная точка. Описанный прием решения задач на условный экстремум называется методом множителей Лагранжа.

УСЛОВНЫЙ ЭКСТРЕМУМ

Минимальное или максимальное значение, достигаемое данной функцией (или функционалом) при условии, что нек-рые другие функции (функционалы) принимают значения из заданного допустимого множества. Если условия, ограничивающие в указанном смысле изменения независимых переменных (функций), отсутствуют, то говорят о безусловном экстремуме.
Классич. задачей на У. э. является задача определения минимума функции многих переменных

При условии, что нек-рые другие функции принимают заданные значения:

В этой задаче G, к-рому должны принадлежать значения вектор-функции g= (g 1 , ...,g m ), входящей в дополнительные условия (2), есть фиксированная точка c= (c 1 , ..., с т )в m-мерном евклидовом пространстве
Если в (2) наряду со знаком равенства допускаются знаки неравенства

То это приводит к задаче нелинейного программирования (1), (3). В задаче (1), (3) множество Gдопустимых значений вектор-функции gпредставляет собой нек-рый криволинейный , принадлежащий (n-m 1)-мерной гиперповерхности, задаваемой т 1 , m 1 условиями типа равенства (3). Границы указанного криволинейного многогранника строятся с учетом п-m 1 неравенств, входящих в (3).
Частным случаем задачи (1), (3) на У. в. является задача линейного программирования, в к-рой все рассматриваемые функции f и g i являются линейными по x l , ... , х п. В задаче линейного программирования множество Gдопустимых значений вектор-функции g, входящей в условия, ограничивающие область изменения переменных x 1 , .....x n , представляет собой , принадлежащий (п-т 1)-мерной гиперплоскости, задаваемой m 1 условиями типа равенства в (3).
Аналогичным образом большинство задач оптимизации функционалов, представляющих нрактич. интерес, сводится к задачам на У. э. (см. Изопериметрическая задача, Кольца задача, Лагранжа задача, Манера задача ). Так же, как и в математич. программировании, основными задачами вариационного исчисления и теории оптимального управления являются задачи на У. э.
При решении задач на У. э., особенно при рассмотрении теоретич. вопросов, связанных с задачами на У. э., весьма полезным оказывается использование неопределенных Лагранжа множителей, позволяющих свести задачу на У. э. к задаче на безусловный и упростить необходимых условий оптимальности. Использование множителей Лагранжа лежит в основе большинства классич. методов решения задач на У. э.

Лит. : Xедли Дж., Нелинейное и , пер. с англ., М., 1967; Блисс Г. А., Лекции по вариационному исчислению, пер. с англ., М., 1950; Понтрягин Л. С. [и др.], Математическая оптимальных процессов, 2 изд., М., 1969.
И. Б. Вапнярский.

Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "УСЛОВНЫЙ ЭКСТРЕМУМ" в других словарях:

    Относительный экстремум, экстремум функции f (x1,..., xn + m) от п + т переменных в предположении, что эти переменные подчинены ещё т уравнениям связи (условиям): φk (x1,..., xn + m) = 0, 1≤ k ≤ m (*) (см. Экстремум).… …

    Пусть открытое множество и на заданы функции. Пусть. Эти уравнения называют уравнениями связей (терминология заимствованна из механики). Пусть на G определена функция … Википедия

    - (от лат. extremum крайнее) значение непрерывной функции f (x), являющееся или максимумом, или минимумом. Точнее: непрерывная в точке х0 функция f (x) имеет в x0 максимум (минимум), если существует окрестность (x0 + δ, x0 δ) этой точки,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Экстремум (значения). Экстремум (лат. extremum крайний) в математике максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум,… … Википедия

    Функция, используемая при решении задач на условный экстремум функций многих переменных и функционалов. С помощью Л. ф. записываются необходимые условия оптимальности в задачах на условный экстремум. При этом не требуется выражать одни переменные … Математическая энциклопедия

    Математическая дисциплина, посвященная отысканию экстремальных (наибольших и наименьших) значений функционалов переменных величин, зависящих от выбора одной или нескольких функций. В. и. является естественным развитием той главы… … Большая советская энциклопедия

    Переменные, с помощью к рых строится Лагранжа функция при исследовании задач на условный экстремум. Использование Л. м. и функции Лагранжа позволяет единообразным способом получать необходимые условия оптимальности в задачах на условный экстремум … Математическая энциклопедия

    Вариационное исчисление это раздел функционального анализа, в котором изучаются вариации функционалов. Самая типичная задача вариационного исчисления состоит в том, чтобы найти функцию, на которой заданный функционал достигает… … Википедия

    Раздел мате.матики, посвященный исследованию методов отыскания экстремумов функционалов, зависящих от выбора одной или нескольких функций при разного рода ограничениях (фазовых, дифференциальных, интегральных И т. п.), накладываемых на эти… … Математическая энциклопедия

    Вариационное исчисление это раздел математики, в котором изучаются вариации функционалов. Самая типичная задача вариационного исчисления состоит в том, чтобы найти функцию, на которой функционал достигает экстремального значения. Методы… … Википедия

Книги

  • Лекции по теории управления. Том 2. Оптимальное управление , В. Босс. Рассматривается классическая проблематика теории оптимального управления. Изложение начинается с базовых понятий оптимизации в конечномерных пространствах: условный и безусловный экстремум,…

Пусть функция z - /(х, у) определена в некоторой области D и пусть Мо(хо, Уо) - внутренняя точка этой области. Определение. Если существует такое число, что для всех, удовлетворяющих условиям, верно неравенство то точка Мо(хо, уо) называется точкой локального максимума функции /(х, у); если же для всех Дх, Ду, удовлетворяющих условиям | то точка Мо(хо,уо) называется тонкой локального минимума. Иными словами, точка М0(х0, у0) есть точка максимума или минимума функции /(х, у), если существует 6-окрестность точки А/о(хо,уо) такая, что во всех точках М(х, у) этой окрестности приращение функции сохраняет знак. Примеры. 1. Для функции точка - точка минимума (рис. 17). 2. Для функции точка 0(0,0) является точкой максимума (рис.18). 3. Для функции точка 0(0,0) является точкой локального максимума. 4 В самом деле, существует окрестность точки 0(0, 0), например, круг радиуса j (см. рис. 19), во всякой точке которого, отличной отточки 0(0,0), значение функции /(х,у) меньше 1 = Мы будем рассматривать только точки строгдго максимума и минимума функций, когда строгое неравенство или строгое неравенство выполняется для всех точек М(х} у) из некоторой проколотой 6-окрестности точки Mq. Значение функции в точке максимума называется максимумом, а значение функции в точке минимума - минимумом этой функции. Точки максимума и точки минимума функции называются точками экстремума функции, а сами максимумы и минимумы функции - ее экстремумами. Теорема 11 (необходимое условие экстремума). Если функция Экстремум функции нескольких переменных Понятие экстремума функции нескольких переменных. Необходимые и достаточные условия экстремума Условный экстремум Наибольшее и наименьшее значения непрерывных функций имеет экстремум в точке то в этой точке каждая частная производная и щ либо обращается в нуль, либо не существует. Пусть в точке М0(х0, уо) Функция z = f(x} у) имеет экстремум. Дадим переменной у значение уо. Тогда функция z = /(х, у) будет функцией одной переменной х\ Так как при х = хо она имеет экстремум (максимум или минимум, рис. 20), то ее производная по при х = «о, | (*о,л>)" Равна нулю, либо не существует. Аналогично убеждаемся в том, что) или равна нулю, или не существует. Точки, в которых = 0 и щ = 0 либо не существуют, называются критическими точками функции z = Дх, у). Точки, в которых $£ = щ = 0, называются также стационарными точками функции. Теорема 11 выражает лишь необходимые условия экстремума, не являющиеся достаточными. Пример. Функция Рис. 18 Рис.20 иммт производные которые обращаются а нуль при. Но эта функция а тонка на имват «страмума. Действительно, функция равна нулю в точке 0(0,0) и принимает в точках М(х,у), как угодно близких к точке 0(0,0), квк положительные, так и отрицательные значения. Для нее так что в точках в точках (0, у) при сколь угодно малых Точку 0(0,0) указанного типа называют точкой мини-макса (рис. 21). Достаточные условия экстремума функции двух переменных выражаются следующей теоремой. Теореме 12 (достаточные условии экстремума фужцим д§ух переменных). Пустьточка Мо(хо» Уо) является стационарной точкой функции f(x, у), и в некоторой окрестности точки / включая саму точку Мо, функция /(г, у) имеет непрерывные частные производные до второго порядка включительно. Тогда". 1) в точке Mq(xq, Уо) функция /(ж, у) имеет максимум, если в этой точке определитель 2) в точке Мо(я0, Уо) функция /(ж, у) имеет минимум, если в точке Мо(го, Уо) функция /(ж, у) не имеет экстремума, если D(xо, уо) < 0. Если же то в точке Мо(жо> Уо) экстремум функции f(x, у) ложет быть, о может и не быть. В этом случае требуется дальнейшее исследование. м Ограничимся доказательством утверждений 1) и 2) теоремы. Напишем формулу Тейлора второго порядка для функции /(я, у): где. По условию откуда видно, что знак приращения Д/ определяется знаком трехчлена в правой части (1), т. е. знаком второго^дифференциала d2f. Обозначим для краткости. Тогда равенство (l) можно записать так: Пусть в точке MQ(so, Уо) имеем.. Так как по условию частные производные второго порядка от функции /(s, у) непрерывны, то неравенство (3) будет иметь место и в некоторой окрестности точки M0(s0,yo). Если выполнено условие (в точке Л/0, и в силу непрерывности производная /,z(s,y) будет сохранять знак в некоторой окрестности точки Af0. В области,где А Ф 0, имеем Отсюда видно, что если ЛС - В2 > 0 в некоторой окрестности точки М0(х0) у0), то знак трехчлена ААх2 -I- 2ВАхАу + СДу2 совпадает со знаком А в точке (so, Уо) (а также и со знаком С, поскольку при АС - В2 > 0 А и С не могут иметь разные знаки). Так как знак суммы AAs2 + 2ВАхАу + САу2 в точке (s0 + $ Ах, уо + 0 Ду) определяет знак разности то мы приходим к следующему выводу: если для функции /(s,y) в стационарной точке (s0, Уо) выполнено условие, то для достаточно малых || будет выполняться неравенство. Тем самым, в точке (sq, Уо) функция /(s, у) имеет максимум. Если же в стационарной точке (s0, уо) выполнено условие),то для всех достаточно малых |Дг| и |Ду| верно неравенство, значит, в точке (so,yo) функция /(s, у) имеет минимум. Примеры. 1. Исследовать на экстремум функцию 4 Пользуясь необходимыми условиями экстремума, разыскиваем стационарные точки функции. Для этого находим частные производные, щ и приравниваем их нулю. Получаем систему уравнений откуда - стационарная точка. Воспользуемся теперь теоремой 12. Имеем Значит, в точке Мл экстремум есть. Поскольку, то это - минимум. Если преобразовать функцию г к виду то нетрудно заметить, что правая часть («) будет минимальной, когда - абсолютный минимум данной функции. 2. Исследовать на экстремум функцию Находим стационарные точки функции, для чего составляем систему уравнений Отсюда так что точке - стационарная. Так как и в силу теоремы 12 в точке М экстремума нет. * 3. Исследовать на экстремум функцию Находим стационарные точки функции. Из системы уравнений получаем, что, так что стационарной является точка. Далее имеем так что и теорема 12 не дает ответа на вопрос о наличии или отсутствии экстремума. Поступим поэтому так. Для функции о всех точках, отличных отточки так что, по определению, а точке Л/о(0,0) функция г имеет абсолютный минимум. Аналогичными раосухдениями устанавливаем, что функция имеет в точке) максимум, а функция в точке экстремума не имеет. Пусть функция п независимых переменных дифференцируема в точке Точка Мо называется стационарной точкой функции если Теорема 13 (достеточнме услоам я экстремума). Пусть функция определена и имеет непрерывные частные производные второго порядка в некоторой окрестности тонки Мц{хи..., которая является стационарной тонкой функции, если квадратинная форма (второй дифференциал функции f в тонке является положительно определенной {отрицательно определенной), тоточкойминимума (соответственно, тонкой максимума) функции f является тонка Если же квадратинная форма (4) является знакопеременной, то в тонке ЛГ0 экстремума нет. Для того что бы установить, будет ли квадратичная форма (4) положггельноили отрицательно определенной, можно воспользоваться, например, критерием Сильвестра положительной (отрицательной) определенности квадратичной формы. 15.2. Условный экстремум До сих пор мы занимались отысканием локальных экстремумов функции во всей области ее определения, когда аргументы функции не связаны никакими дополнитель ными условиями. Такие экстремумы называются безусловными. Однако часто встречаются задачи на отыскание так называемых условных экстремумов. Пусть функция z = /(х, у) определена в области D. Допустим, что в этой области задана кривая L, и нужно найти экстремумы функции f(x> у) только среди тех ее значений, которые соответствуют точкам кривой L. Таже экстремумы называют условными экстремумами функции z = f{x} у) на кривой L. Определение Говорят, что в точке, лежащей на кривой L, функция /(ж, у) имеет условный максимум (минимум), если неравенство соответственно выполняется вовсехточкахМ (s, у) кривой L, принадлежащих некоторой окрестности точки М0(х0, Уо) и отличных от точки М0 (Если кривая L задана уравнением то задача о нахождении условного экстремума функции г - f{x,y) на кривой! может быть сформулирована так: найти экстремумы функции х = /(я, у) в области D при условии, что Таким образом, при нахождении условных экстремумов функции z = у) аргументы гну уже нельзя рассматривать как независимые переменные: они связаны между собой соотношением у) = 0, которое называют уравнением связи. Чтобы пояснить различив м«*Д у безусловным и условным экстремумом, рвссмотрим твкой пример, безусловный максимум функции (рис.23) рвеен единице и достигается в точке (0,0). Ему соответствует точив М - вершине пврвбо-лоида, Присоединим уравнение связи у = j. Тогда условный максимум будет, очевидно, рввен Он достигается а точке (о,|), и ему отввчвет вершине Afj пврвболы, являющейся линией пересечения пврвболоида с плоскостью у = j . В случае безусловного мвксимумв мы имеем мвксимвльную аппликату среди всех вппликвт поверхности * = 1 - л;2 ~ у1; слумвв условного - только среди вллликвт точек пвраболоидв, отввчвющих точке* прямой у = j не плоскости хОу. Один из методов отыскания условного экстремума функции при наличи и связи состоит в следующем. Пусть уравнение связи у)- О определяет у как однозначную дифференцируемую функцию аргумента х: Подставляя в функцию вместо у функцию, получаем функцию одного аргумента в которой условие связи уже учтено. Экстремум (безусловный) функции является искомым условным экстремумом. Пример. Найти экстремум функции при условии Экстремум функции нескольких переменных Понятие экстремума функции нескольких переменных. Необходимые и достаточные условия экстремума Условный экстремум Наибольшее и наименьшее значения непрерывных функций А Из уравнения связи (2") находим у = 1-х. Подставляя это значение у в (V), получим функцию одного аргумента х: Исследуем ее на экстремум: откуда х = 1 - критическая точка; , так что доставляет условный минимум функции г {рис.24). Укажем другой способ решения задачи об условном экстремуме, называемый методом множитмей Лагран-жа. Пусть есть точка условного экстремума функции при наличии связи Допустим, что уравнение связи определяет единственную непрерывно дифференцируемую функцию в некоторой окрестности точки хй. Считая, что получаем, что производная по ж от функции / (г, ip(x)) в точке xq должна быть равна нулю или, что равносильно этому, должен быть равен нулю дифференциал от f(x, у) в точке Мо" О) Из уравнения связи имеем (5) Умножая последнее равенство на неопределенный пока числовой множитель А и складывая почленно с равенством (4), будем иметь (считаем, что). Тогда в силу произвольности dx получим Равенства (6) и (7) выражают необходимые условия безусловного экстремума в точке функции которая называется функцией Лагранжа. Таким образом, точка условного экстремума функции /(х, у), если, есть обязательно стационарная точка функции Лагранжа где А - некоторый числовой коэффициент. Отсюда получаем правило дЛя отыскания условных экстремумов: чтобы найти точки, которые могут быть точками усювного экстремума функции при наличии связи 1) составляем функцию Лагранжа, 2) приравнивая нулю производные и Щ этой функции и присоединяя к полученным уравнениям уравнение связи, получаем систему из трех уравнений из которой находим значения А и координаты х, у возможных точек экстремума. Вопрос о существовании и характере условного экстремума решается на основании изучения знака второго дифференциала функции Лагранжа для рассматриваемойсистемы значений x0, Уо, А, полученной из (8) при условии, что Если, то в точке (х0, Уо) функция /(х,у) имеет условный максимум; если d2F > 0 - то условный минимум. В частности, если в стационарной точке (хо, J/o) определитель D для функции F(x, у) положителен, то в точке (®о, Уо) имеется условный максимум функции /(х, у), если, и условный минимум функции /(ж, у), если Пример. Вновь обратимся к условиям предыдущего примера: найти экстремум функции при условии, что х + у = 1. Будем решать задачу методом множителей Лагранжа. Функция Лагранжа в данном случае имеет вид Для отыскания стационарных точек составляем систему Из первых двух уравнений системы получаем, что х = у. Затем из третьего уравнения системы (уравнения связи) находим, что х - у = j - координаты точки возможного экстремума. При этом (указывается, что А = -1. Таким образом, фунщия Лагранжа. есть точка условного минимума функции * = х2 + у2 при условии Отсутствие безусловного экстремума для функции Л агранжа.Р(х, у) еще не означает отсутствия условного экстремумадля функции /(ж, у) при наличии связи Пример. Найти экстремум функции при условии у 4 Составляем функцию Лагранжа и выписываем систему для определения А и координат возможных точек экстремума: Из первых двух уравнений получаем х + у = 0 и приходим к системе откуда х = у = А = 0. Таким образом, соответствующая функция Лагранжа имеет вид В точке (0,0) функция F(x, у; 0) не имеет безуслов ного экстремума, однако условный экстремум функции г = ху. когда у = х, имеется. Действительно, в этом случае г = х2. Отсюда видно, что в точке (0,0) есть условный минимум. » Метод множителей Лагранжа переносится на случай функций любого числа аргументов/ Пусть ищется экстремум функции при наличии уравнений связи Состааляе м функцию Лагранжа где А|, Аз,..., А„, - неопределенные постоянные множители. Приравнивая нулю все частные производные первого порядка от функции F и присоединяя к полученным уравнениям уравнения связи (9), получим систему n + m уравнений, из которых определяем Аь А3|..., Ат и координаты х\} х2) . »хп возможных точек условного экстремума. Вопрос о том, являются ли найденные по методу Лагранжа точки действительно точками условного экстремума зачастую может быть решен на основании соображений физического или геометрического характера. 15.3. Наибольшее и наименьшее значения непрерывных функций Пусть требуется найти наибольшее (наименьшее) значение функции z = /(х, у), непрерывной в некоторой замннугой ограниченной области D. По теореме 3 в этой области найдется точка (хо, Уо), в которой функция принимает наибольшее (наименьшее) значение. Если точка (хо, у0) лежит внутри области D, то в ней функция / имеет максимум (минимум), так что в этом случае интересующая нас точка содержится среди критических точек функции /(х, у). Однако своего наибольшего (наименьшего) значения функция /(х, у) может достигать и на границе области. Поэтому, чтобы найти наибольшее (наименьшее) значение, принимаемое функцией z = /(х, у) в ограниченной замкнутой области 2), нужно найти все максимумы (минимумы) функции, достигаемые внутри этой области, а также наибольшее (наименьшее) значение функции на границе этой области. Наибольшее (наименьшее) из всех этих чисел и будет искомым наибольшим (наименьшим) значением функции z = /(х,у) в области 27. Покажем, как это делается в случае дифференцируемой функции. Прммр. Найти наибольшее и наименьшее значения функции области 4 Находим критические точки функции внутри области D. Для этого составляем систему уравнений Отсюда получаем х = у « 0, так что точка 0(0,0) - критическая точка функции х. Так как Найдем теперь наибольшее и наименьшее значения функции на границе Г области D. На части границы имеем так что у = 0 - критическая точка, и так как = то в этой точке функция z = 1 + у2 имеет минимум, равный единице. На концах отрезка Г», в точках (, имеем. Пользуясь соображениями симметрии, те же результаты получаем для других частей границы. Окончательно получаем: наименьшее значение функции z = х2+у2 в области "Б равно нулю и достигается оно во внутренней точке 0(0, 0) области, а наибольшее значение этой фунмции, равное двум, достигается в четырех точках границы (рис.25) Рис.25 Упражнения Найдите область определения функций: Постройте линии уровня функций: 9 Найдите поверхности уровня функций трех независимых переменных: Вычислите пределы функций: Найдите частные производные функций и их полные дифференциалы: Найдите производные сложных функций: 3 Найдите J. Экстремум функции нескольких переменных Понятие экстремума функции нескольких переменных. Необходимые и достаточные условия экстремума Условный экстремум Наибольшее и наименьшее значения непрерывных функций 34. Используя формулу производной сложной функции двух переменных, найдите и функций: 35. Используя формулу производной сложной функции двух переменных, найдите |J и функций: Найдите jj функций, заданных неявно: 40. Найдите угловой коэффициент касательной кривой в точке пересечения ее с прямой х = 3. 41. Найдите точки, в которых касательная кривой х параллельна оси Ох. . В следующих задачах найдите и Ц: Напишите уравнения касательной плоскости и нормали поверхности: 49. Составьте уравнения касательных плоскостей поверхности х2 + 2у2 + Зг2 = 21, параллельных плоскости х + 4у + 6z = 0. Найдите три-четыре первых члена разложения по формуле Тейлора: 50. у в окрестности точки (0, 0). Пользуясь определением экстремума функции, исследуйте на экстремум следующие функции:). Используя достаточные условия экстремума функции двух переменных, исследуйте на экстремум функции: 84. Найдите наибольшее и наименьшее значения функции z = х2 - у2 в замкнутом круге 85. Найдите наибольшееинаименьшеезначенияфункции* = х2у(4-х-у) в треугольнике, ограниченном прямыми х = 0, у = 0, х + у = б. 88. Определите размеры прямоугольного открытого бассейна, имеющего наименьшую поверхность, при условии, что его объем равен V. 87. Найдите размеры прямоугольного параллелепипеда, имеющего приданной полной поверхности 5 максимальный объем. Ответы 1. и | Квадрат, образованный отрезками прямых х включая его стороны. 3. Семейство концентрических колец 2= 0,1,2,... .4. Вся плоскость за исключением точек прямых у. Часть плоскости, расположенная вуше параболы у = -х?. 8. Точки окружности х. Вся плоскость за исключением прямых х Подкоренное выражение неотрицательно в двух случаях j * ^ или j х ^ ^ что равносильно бесконечной серии неравенств соответственна Область определения - заштрихованные квадраты (рис.26); л что равносильно бесконечной серии Функция определена в точках. а) Прямые, параллельные прямой х б) концентрические окружности с центром в начале координат. 10. а) параболы у) параболы у а) параболы б)гиперболы | .Плоскости xc. 13.Прим -одно-полостные гиперболоиды вращения вокруг оси Oz; при и - двуполостные гиперболоиды вращения вокруг оси Oz, оба семейства поверхностей разделяет конус; Предела не существует, б) 0. 18. Положим у = kxt тогда z lim z = -2, так что заданная функция в точке (0,0) предела не имеет. 19. а) Точка (0,0); б) точка (0,0). 20. а) Линия разрыва - окружность х2 + у2 = 1; б) линия разрыва - прямая у = х. 21. а) Линии разрыва - координатные оси Ох и Оу; б) 0 (пустое множество). 22. Все точки (т,п),гдет и п -целые числа

Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.

Лекция 5.

Определение 5.1. Точка М 0 (х 0 , у 0) называется точкой максимума функции z = f (x, y), если f (x o , y o) > f (x, y) для всех точек (х, у) М 0 .

Определение 5.2. Точка М 0 (х 0 , у 0) называется точкой минимума функции z = f (x, y), если f (x o , y o) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М 0 .

Замечание 1. Точки максимума и минимума называются точками экстремума функции нескольких переменных.

Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.

Теорема 5.1 (необходимые условия экстремума). Если М 0 (х 0 , у 0) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.

Доказательство.

Зафиксируем значение переменной у , считая у = у 0 . Тогда функция f (x, y 0) будет функцией одной переменной х , для которой х = х 0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .

Определение 5.3. Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.

Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.

Теорема 5.2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М 0 (х 0 , у 0) , являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:

1) f (x, y) имеет в точке М 0 максимум, если AC – B ² > 0, A < 0;

2) f (x, y) имеет в точке М 0 минимум, если AC – B ² > 0, A > 0;

3) экстремум в критической точке отсутствует, если AC – B ² < 0;



4) если AC – B ² = 0, необходимо дополнительное исследование.

Доказательство.

Напишем формулу Тейлора второго порядка для функции f (x, y), помня о том, что в стационарной точке частные производные первого порядка равны нулю:

где Если угол между отрезком М 0 М , где М (х 0 + Δх, у 0 + Δу ), и осью Ох обозначить φ, то Δх = Δρ cosφ, Δy = Δρsinφ. При этом формула Тейлора примет вид: . Пусть Тогда можно разделить и умножить выражение в скобках на А . Получим:

Рассмотрим теперь четыре возможных случая:

1) AC-B ² > 0, A < 0. Тогда , и при достаточно малых Δρ. Следовательно, в некоторой окрестности М 0 f (x 0 + Δx, y 0 + Δy) < f (x 0 , y 0) , то есть М 0 – точка максимума.

2) Пусть AC – B ² > 0, A > 0. Тогда , и М 0 – точка минимума.

3) Пусть AC-B ² < 0, A > 0. Рассмотрим приращение аргументов вдоль луча φ = 0. Тогда из (5.1) следует, что , то есть при движении вдоль этого луча функция возрастает. Если же перемещаться вдоль луча такого, что tg φ 0 = -A/B, то , следовательно, при движении вдоль этого луча функция убывает. Значит, точка М 0 не является точкой экстремума.

3`) При AC – B ² < 0, A < 0 доказательство отсутствия экстремума проводится

аналогично предыдущему.

3``) Если AC – B ² < 0, A = 0, то . При этом . Тогда при достаточно малых φ выражение 2B cosφ + C sinφ близко к 2В , то есть сохраняет постоянный знак, а sinφ меняет знак в окрестности точки М 0 . Значит, приращение функции меняет знак в окрестности стационарной точки, которая поэтому не является точкой экстремума.

4) Если AC – B ² = 0, а , , то есть знак приращения определяется знаком 2α 0 . При этом для выяснения вопроса о существовании экстремума необходимо дальнейшее исследование.

Пример. Найдем точки экстремума функции z = x ² - 2xy + 2y ² + 2x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда AC – B ² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).

Определение 5.4. Если аргументы функции f (x 1 , x 2 ,…, x n) связаны дополнительными условиями в виде m уравнений (m < n) :

φ 1 (х 1 , х 2 ,…, х n) = 0, φ 2 (х 1 , х 2 ,…, х n) = 0, …, φ m (х 1 , х 2 ,…, х n) = 0, (5.2)

где функции φ i имеют непрерывные частные производные, то уравнения (5.2) называются уравнениями связи .

Определение 5.5. Экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2) называется условным экстремумом .

Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ(х,у) = 0, задающим некоторую кривую в плоскости Оху . Восставив из каждой точки этой кривой перпендикуляры к плоскости Оху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ(х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).

Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:

Определение 5.6. Функция L (x 1 , x 2 ,…, x n) = f (x 1 , x 2 ,…, x n) + λ 1 φ 1 (x 1 , x 2 ,…, x n) +

+ λ 2 φ 2 (x 1 , x 2 ,…, x n) +…+λ m φ m (x 1 , x 2 ,…, x n) , (5.3)

где λ i – некоторые постоянные, называется функцией Лагранжа , а числа λ i неопределенными множителями Лагранжа .

Теорема 5.3 (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).

Доказательство. Уравнение связи задает неявную зависимость у от х , поэтому будем считать, что у есть функция от х : у = у(х). Тогда z есть сложная функция от х , и ее критические точки определяются условием: . (5.4) Из уравнения связи следует, что . (5.5)

Умножим равенство (5.5) на некоторое число λ и сложим с (5.4). Получим:

, или .

Последнее равенство должно выполняться в стационарных точках, откуда следует:

(5.6)

Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5.6) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.

Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 5.2.

Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2), можно определить как решения системы (5.7)

Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y – 1). Система (5.6) при этом выглядит так:

Откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = - 0,5 (x – y )² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y) имеет максимум, а z = xy – условный максимум.

Похожие публикации