Судно с ядерной установкой 8. Судовые энергетические установки и движители

Содержание статьи

СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ, устройства для обеспечения движения кораблей, катеров и других судов. К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и двигатели внутреннего сгорания, в основном дизельные. На крупных и мощных специализированных судах типа ледоколов и подводных лодок часто применяются атомные энергетические установки.

По-видимому, первым предложил использовать энергию пара для движения судов Леонардо да Винчи (1452–1519). В 1705 Т.Ньюкомен (Англия) запатентовал первую довольно эффективную паровую машину, но его попытки использовать возвратно-поступательное движение поршня для вращения гребного колеса оказались неудачными.

ТИПЫ СУДОВЫХ УСТАНОВОК

Пар – традиционный источник энергии для движения судов. Пар получают при сжигании топлива в водотрубных котлах. Чаще других применяются двухбарабанные водотрубные котлы. В этих котлах имеются топки с водоохлаждаемыми стенками, пароперегреватели, экономайзеры, а иногда и воздухоподогреватели. Их КПД достигает 88%.

Дизели впервые появились в качестве судовых двигателей в 1903. Расход топлива в судовых дизелях составляет 0,25–0,3 кг/кВтЧ ч, а паровые машины расходуют 0,3–0,5 кг/кВтЧ ч в зависимости от конструкции двигателя, привода и других конструктивных особенностей. Дизели, особенно в сочетании с электроприводом, очень удобны для применения на паромах и буксирах, поскольку обеспечивают высокую маневренность.

Поршневые паровые машины.

Времена поршневых машин, когда-то служивших самым разнообразным целям, прошли. По КПД они существенно уступают как паровым турбинам, так и дизелям. На тех судах, где еще стоят паровые машины, – это компаунд-машины: пар расширяется последовательно в трех или даже четырех цилиндрах. Поршни всех цилиндров работают на один вал.

Паровые турбины.

Судовые паровые турбины обычно состоят из двух каскадов: высокого и низкого давления, каждый из которых через понижающий редуктор вращает вал гребного винта. На военно-морских судах часто дополнительно ставят небольшие турбины для крейсерского режима, которые используют для повышения экономичности, а при максимальных скоростях включаются мощные турбины. Каскад высокого давления вращается со скоростью 5000 об/мин.

На современных паровых судах питательная вода из конденсаторов в подогреватели подается через несколько ступеней нагрева. Нагрев производится за счет тепла рабочего тела турбины и отходящих топочных газов, обтекающих экономайзер.

Почти все вспомогательное оборудование имеет электрический привод. Электрогенераторы с приводом от паровых турбин обычно вырабатывают постоянный ток напряжением 250 В. Используется и переменный ток.

Если передача мощности от турбины на винт осуществляется через редуктор, то для обеспечения заднего хода (обратное вращение винта) применяется дополнительная небольшая турбина. Мощность на валу при обратном вращении составляет 20–40% основной мощности.

Электропривод от турбины к гребному винту был очень популярен в 1930-е годы. В этом случае турбина вращает высокооборотный генератор, а выработанная электроэнергия передается на малооборотные электродвигатели, которые вращают гребной вал. КПД зубчатой передачи (редуктора) примерно 97,5%, электропривода – около 90%. В случае электропривода обратное вращение обеспечивается просто переключением полярности.

Газовые турбины.

Газовые турбины появились на судах значительно позже, чем в авиации, поскольку выигрыш в весе в судостроении не так важен, и этот выигрыш не перевешивал высокую стоимость и сложность монтажа и эксплуатации первых газовых турбин.

Газовые турбины используют на судах не только как главные двигатели; они нашли применение в качестве приводов для пожарных насосов и вспомогательных электрогенераторов, где выгодны их небольшой вес, компактность и быстрый запуск. В военно-морском флоте газовые турбины широко применяются на небольших скоростных судах: десантных катерах, минных тральщиках, судах на подводных крыльях; на больших кораблях их используют для получения максимальной мощности.

Современные газовые турбины обладают приемлемым уровнем надежности, стоимости эксплуатации и производства. Учитывая их малый вес, компактность и быстрый запуск, они во многих случаях становятся конкурентоспособными с дизелями и паровыми турбинами.

Дизельные двигатели.

Впервые дизель как судовой двигатель был установлен на «Вандале» в Санкт-Петербурге (1903). Это произошло всего через 6 лет после изобретения Дизелем своего двигателя. На «Вандале», ходившем по Волге, было два гребных винта; каждый винт устанавливался на одном валу с 75-кВт электродвигателем. Электроэнергия вырабатывалась двумя дизель-генераторами. Трехцилиндровые дизели мощностью по 90 кВт имели постоянную частоту вращения (240 об/мин). Мощность от них нельзя было передавать непосредственно на гребной вал, поскольку не было реверса.

Пробная эксплуатация «Вандала» опровергла общее мнение, что дизели нельзя применять на судах из-за опасности вибраций и высоких давлений. Более того, расход топлива составил только 20% от расхода топлива на пароходах того же водоизмещения.

Внедрение дизелей.

За десять лет, прошедших после установки первого дизеля на речное судно, эти двигатели подверглись значительному усовершенствованию. Увеличилась их мощность за счет повышения числа оборотов, увеличения диаметра цилиндра, удлинения хода поршня, а также разработки двухтактных двигателей.

Число оборотов существующих дизелей составляет от 100 до 2000 об/мин; высокооборотные дизели применяются на небольших быстроходных катерах и во вспомогательных дизель-генераторных системах. Их мощность варьируется в столь же широком диапазоне (10–20 000 кВт). В последние годы появились дизели с наддувом, что увеличивает их мощность примерно на 20%.

Сравнение дизельных двигателей с паровыми.

Дизели имеют преимущество над паровыми двигателями на небольших судах благодаря своей компактности; кроме того, они легче при одинаковой мощности. Дизели расходуют меньше топлива на единицу мощности; правда, дизельное топливо дороже топочного. Расход дизельного топлива можно уменьшить дожиганием отработанных газов. На выбор энергетической установки влияет и тип судна. Дизельные двигатели запускаются гораздо быстрее: их не надо предварительно разогревать. Это очень важное преимущество для портовых судов и вспомогательных или резервных силовых установок. Однако есть преимущества и у паротурбинных установок, которые надежнее в эксплуатации, способны длительное время работать без регламентного обслуживания, отличаются меньшим уровнем вибраций благодаря отсутствию возвратно-поступательного движения.

Судовые дизели.

Судовые дизели отличаются от прочих дизелей только вспомогательными элементами. Они непосредственно либо через редуктор вращают гребной вал и должны обеспечивать обратное вращение. В четырехтактных двигателях для этого служит дополнительная муфта обратного хода, которая входит в зацепление при необходимости обратного вращения. В двухтактных двигателях с обеспечением обратного вращения проще, поскольку последовательность работы клапанов определяется положением поршня в соответствующем цилиндре. В небольших двигателях обратное вращение получают с помощью муфты сцепления и зубчатой передачи. На некоторых сторожевых кораблях и амфибиях длиной менее 60 м ставят реверсивные гребные винты (см. ниже ). Для того чтобы число оборотов двигателя не превысило безопасный предел, все двигатели оборудованы ограничителями частоты вращения.

Электрическая тяга.

Термином «суда с электрической тягой» называют суда, у которых одним из элементов системы преобразования энергии топлива в механическую энергию вращения гребного вала является электрическая машина. Один или несколько электродвигателей соединяются с валом винта напрямую или через редуктор. Питание электродвигателей осуществляется от электрогенераторов, приводом которых служит паровая или газовая турбина либо дизель. На подводных лодках в подводном положении питание электродвигателей осуществляется от аккумуляторов, а в надводном – от дизель-генераторов. Электрические машины постоянного тока обычно устанавливаются на небольших и на высокоманевренных судах. Машины переменного тока используются на океанских лайнерах.

Турбоэлектроходы.

На рис. 1 представлена схема турбоэлектропривода с котельной установкой для получения пара. Пар вращает турбину, которая, в свою очередь, вращает электрогенератор. Выработанная электроэнергия подается на электродвигатели, которые связаны с гребным валом. Обычно каждый турбогенератор работает на один электродвигатель, который вращает свой винт. Однако такая схема позволяет легко подсоединить к одному турбогенератору несколько электродвигателей, а следовательно, несколько гребных винтов.

Судовые турбогенераторы переменного тока могут вырабатывать ток с частотой в пределах 25–100% максимальной, но не более 100 Гц. Генераторы переменного тока вырабатывают ток напряжением до 6000 В, постоянного – до ~900 В.

Дизельэлектроходы.

Дизельэлектрический привод по существу не отличается от турбоэлектрического, за исключением того, что котельная установка и паровая турбина заменены дизельным двигателем.

На небольших судах обычно на каждый винт работают один дизель-генератор и один электродвигатель, однако при необходимости можно отключить один дизель-генератор для экономии или включить дополнительный для увеличения мощности и скорости.

КПД . Электродвигатели постоянного тока на низких оборотах создают больший крутящий момент, чем турбины и дизели с механической передачей. Кроме того, у двигателей и постоянного и переменного тока крутящий момент одинаков как при прямом, так и при обратном вращении.

Полный КПД турбоэлектропривода (отношение мощности на гребном валу к энергии топлива, выделяющейся в единицу времени) ниже, чем КПД турбинного привода, хотя турбина и соединена с гребным валом через два понижающих редуктора. Турбоэлектропривод тяжелее и дороже механического турбинного привода. Полный КПД дизельэлектропривода примерно такой же, как у механического турбинного привода. Каждый тип привода имеет свои достоинства и недостатки. Поэтому выбор типа двигательной установки определяется типом судна и условиями его эксплуатации.

Электроиндукционная муфта.

В этом случае передача мощности от двигателя к гребному винту производится электромагнитным полем. Принципиально такой привод подобен обычному асинхронному электродвигателю, за исключением того, что и статор и якорь электродвигателя в электромагнитном приводе сделаны вращающимися; один из них связан с валом двигателя, а другой – с гребным валом. Элемент, связанный с двигателем, представляет собой обмотку возбуждения, которая питается от внешнего источника постоянного тока и создает электромагнитное поле. Элемент, связанный с гребным валом, представляет собой короткозамкнутую обмотку без внешнего питания. Оба элемента разделены воздушным промежутком. Вращающееся магнитное поле возбуждает в обмотке второго элемента ток, что заставляет этот элемент вращаться, но всегда медленнее (со скольжением), чем первый элемент. Возникающий крутящий момент пропорционален разности частот вращения этих элементов. Выключение тока возбуждения в первичной обмотке «разъединяет» эти элементы. Частоту вращения второго элемента можно регулировать, меняя ток возбуждения. При одном дизельном двигателе на судне использование электромагнитного привода позволяет снизить вибрации благодаря отсутствию механической связи двигателя с гребным валом; при нескольких дизельных двигателях такой привод повышает маневренность судна за счет переключения гребных винтов, поскольку направление их вращения легко изменить.

Атомные энергетические установки.

На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину. См . АТОМНАЯ ЭНЕРГЕТИКА.

В реакторной установке, как и в обычном паровом котле, имеются насосы, теплообменники и другое вспомогательное оборудование. Особенностью ядерного реактора является его радиоактивное излучение, которое требует специальной защиты обслуживающего персонала.

Безопасность.

Вокруг реактора приходится ставить массивную биологическую защиту. Обычные защитные материалы от радиоактивного излучения – бетон, свинец, вода, пластмассы и сталь.

Существует проблема хранения жидких и газообразных радиоактивных отходов. Жидкие отходы хранятся в специальных емкостях, а газообразные поглощаются активированным древесным углем. Затем отходы переправляются на берег на предприятия по их переработке.

Судовые ядерные реакторы.

Основными элементами ядерного реактора являются стержни с делящимся веществом (ТВЭЛы), управляющие стержни, охладитель (теплоноситель), замедлитель и отражатель. Эти элементы заключены в герметичный корпус и расположены так, чтобы обеспечить управляемую ядерную реакцию и отвод выделяющегося тепла.

Горючим может быть уран-235, плутоний либо их смесь; эти элементы могут быть химически связаны с иными элементами, быть в жидкой или твердой фазе. Для охлаждения реактора используется тяжелая или легкая вода, жидкие металлы, органические соединения или газы. Теплоноситель может быть использован для передачи тепла другому рабочему телу и производства пара, а может использоваться непосредственно для вращения турбины. Замедлитель служит для уменьшения скорости образующихся нейтронов до значения, наиболее эффективного для реакции деления. Отражатель возвращает в активную зону нейтроны. Замедлителем и отражателем обычно служат тяжелая и легкая вода, жидкие металлы, графит и бериллий.

На всех военно-морских судах, на первом атомном ледоколе «Ленин», на первом грузо-пассажирском судне «Саванна» стоят энергетические установки, выполненные по двухконтурной схеме. В первичном контуре такого реактора вода находится под давлением до 13 МПа и поэтому не вскипает при температуре 270° С, обычной для тракта охлаждения реактора. Вода, нагретая в первичном контуре, служит теплоносителем для производства пара во вторичном контуре.

В первичном контуре могут использоваться и жидкие металлы. Такая схема применена на подводной лодке ВМС США «Си Вулф», где теплоносителем является смесь жидкого натрия с жидким калием. Давление в системе такой схемы сравнительно невелико. Это же преимущество можно реализовать, используя в качестве теплоносителя парафинообразные органические вещества – дифенилы и трифенилы. В первом случае недостатком является проблема коррозии, а во втором – образование смолистых отложений.

Существуют одноконтурные схемы, в которых рабочее тело, нагретое в реакторе, циркулирует между ним и главным двигателем. По одноконтурной схеме работают газоохлаждаемые реакторы. Рабочим телом служит газ, например, гелий, который нагревается в реакторе, а затем вращает газовую турбину.

Защита.

Ее главная функция – обеспечить защиту экипажа и оборудования от излучения, испускаемого реактором и другими элементами, имеющими контакт с радиоактивными веществами. Это излучение делится на две категории: нейтроны, выделяющиеся при делении ядер, и гамма-излучение, возникающее в активной зоне и в активированных материалах.

В общем случае на судах имеются две защитные оболочки. Первая расположена непосредственно вокруг корпуса реактора. Вторичная (биологическая) защита охватывает парогенераторное оборудование, систему очистки и емкости для отходов. Первичная защита поглощает большую часть нейтронов и гамма-излучение реактора. Это снижает радиоактивность вспомогательного оборудования реактора.

Первичная защита может представлять собой двухоболочечный герметичный резервуар с пространством между оболочками, заполненным водой, и наружным свинцовым экраном толщиной от 2 до 10 см. Вода поглощает большую часть нейтронов, а гамма-излучение частично поглощается стенками корпуса, водой и свинцом.

Основная функция вторичной защиты – снизить излучение радиоактивного изотопа азота 16 N, который образуется в теплоносителе, прошедшем через реактор. Для вторичной защиты используются емкости с водой, бетон, свинец и полиэтилен.

Экономичность судов с атомными энергетическими установками.

Для боевых кораблей стоимость постройки и эксплуатационные расходы имеют меньшее значение, чем преимущества почти неограниченной дальности плавания, большей энерговооруженности и скорости кораблей, компактности установки и сокращения обслуживающего персонала. Эти достоинства атомных энергетических установок обусловили их широкое применение на подводных лодках. Оправданно и применение энергии атома на ледоколах.

СУДОВЫЕ ДВИЖИТЕЛИ

Существует четыре основных вида судовых движителей: водометные движители, гребные колеса, гребные винты (в том числе с направляющей насадкой) и крыльчатый движитель.

Водометный движитель.

Водометный движитель – это, по существу, просто поршневой или центробежный насос, который засасывает воду через отверстие в носу или днище корабля и выбрасывает через сопла в кормовой его части. Создаваемый упор (сила тяги) определяется разностью количеств движения струи воды на выходе и входе в движитель. Водометный движитель был впервые предложен и запатентован Тугудом и Хейсом в Англии в 1661. Позднее разные варианты такого двигателя предлагали многие, но все конструкции были неудачными из-за низкого КПД. Водометный движитель применяется в некоторых случаях, когда низкий КПД компенсирутся преимуществами в других отношениях, например для плавания по мелководным или засоренным рекам.

Гребное колесо.

Гребное колесо в самом простом случае – это широкое колесо, у которого по периферии установлены лопасти. В более совершенных конструкциях лопасти могут поворачиваться относительно колеса так, чтобы они создавали нужную пропульсивную силу при минимальных потерях. Ось вращения колеса расположена выше уровня воды, и погружена лишь его небольшая часть, поэтому в каждый данный момент времени только несколько лопастей создают упор. КПД гребного колеса, вообще говоря, возрастает с увеличением его диаметра; не редкость значения диаметра 6 м и более. Частота вращения большого колеса получается низкой. Невысокое число оборотов соответствовало возможностям первых паровых машин; однако со временем машины совершенствовались, их скорости возросли, и малые обороты колеса стали серьезным препятствием. В итоге гребные колеса уступили место гребным винтам.

Гребные винты.

Еще древние египтяне использовали винт для подачи воды из Нила. Есть свидетельства, что в средневековом Китае для движения судов использовали винт с ручным приводом. В Европе винт в качестве судового движителя впервые предложил Р.Гук (1680).

Конструкция и характеристики.

Современный гребной винт обычно имеет несколько лопастей примерно эллиптической формы, равномерно расположенных на центральной втулке. Поверхность лопасти, обращенную вперед, в нос судна, называют засасывающей, обращенную назад – нагнетающей. Засасывающая поверхность лопасти выпуклая, нагнетающая – обычно почти плоская. На рис. 2 схематично показана типичная лопасть гребного винта. Осевое перемещение винтовой поверхности за один оборот называют шагом p ; произведение шага на число оборотов в секунду pn – осевая скорость лопасти винта нулевой толщины в недеформируемой среде. Разность (pn - v 0), где v 0 – истинная осевая скорость винта, характеризует меру деформируемости среды, называемую скольжением. Отношение (pn - v 0)/pn – относительное скольжение. Это отношение – один из основных параметров гребного винта.

Важнейшим параметром, определяющим рабочие характеристики гребного винта, является отношение шага винта к его диаметру. Следующие по значимости – количество лопастей, их ширина, толщина и форма, форма профиля и дисковое отношение (отношение суммарной площади лопастей к площади описывающего их круга) и отношение диаметра втулки к диаметру винта. Экспериментально определены диапазоны изменения этих параметров, обеспечивающие хорошие рабочие характеристики: шаговое отношение (отношение шага винта к его диаметру) 0,6–1,5, отношение максимальной ширины лопасти к диаметру винта 0,20–0,50, отношение максимальной толщины лопасти вблизи втулки к диаметру 0,04–0,05, отношение диаметра втулки к диаметру винта 0,18–0,22. Форма лопасти обычно яйцевидная, а форма профиля – плавно обтекаемая, очень похожая на профиль крыла самолета. Размеры современных гребных винтов варьируются от 20 см до 6 м и более. Мощность, развиваемая винтом, может составлять доли киловатта, а может превышать 40 000 кВт; соответственно, частота вращения лежит в диапазоне от 2000 об/мин для малых винтов до 60 для больших. КПД хороших винтов составляет 0,60–0,75 в зависимости от шагового отношения, числа лопастей и других параметров.

Применение.

На судах ставят один, два или четыре гребных винта в зависимости от размеров судна и требуемой мощности. Одиночный винт обеспечивает более высокий КПД, поскольку отсутствует интерференция и часть энергии, затрачиваемой на движение судна, восстанавливается гребным винтом. Это восстановление выше, если гребной винт установлен в середине спутной струи сразу за ахтерштевнем. Некоторое увеличение пропульсивной силы может быть достигнуто с помощью разрезного руля, для чего верхнюю и нижнюю части руля немного отклоняют в противоположные стороны (соответственно вращению винта), с тем чтобы использовать поперечную составляющую скорости струи после винта для создания дополнительной составляющей силы в направлении движения судна. Применение нескольких винтов увеличивает маневренность судна и возможности поворота без использования рулей, когда винты создают упор в разных направлениях. Как правило, реверсирование упора (изменение направления действия пропульсивной силы на обратное) достигается реверсированием вращения гребных двигателей, но существуют и специальные реверсивные винты, которые позволяют реверсировать упор без изменения направления вращения валов; это достигается поворотом лопастей относительно втулки с помощью механизма, расположенного во втулке и приводимого в действие через полый вал. Гребные винты изготавливают из бронзы, отливают из стали или чугуна. Для работы в соленой воде предпочтительнее сплав бронзы, легированной марганцем, поскольку он хорошо поддается шлифованию и успешно противостоит кавитации и воздействию соленой воды. Спроектированы и созданы высокоскоростные суперкавитирующие винты, у которых вся засасывающая поверхность занята зоной кавитации. При малых скоростях такие винты обладают несколько меньшим КПД, однако они значительно эффективнее обычных при высоких скоростях.

Винт с направляющей насадкой.

Винт с насадкой – обычный винт, установленный в коротком сопле, – изобретен немецким инженером Л.Кортом. Насадка жестко соединена с корпусом судна или выполнена с ним как одно целое.

Принцип действия.

Был сделан ряд попыток установить винт в трубе для улучшения его рабочих характеристик. В 1925 Корт обобщил результаты этих исследований и существенно усовершенствовал конструкцию: он превратил трубу в короткое сопло, диаметр которого на входе был больше, а форма соответствовала аэродинамическому профилю. Корт установил, что такая конструкция обеспечивает значительно больший упор при заданной мощности по сравнению с обычными винтами, поскольку струя, ускоряемая винтом, при наличии насадки сужается в меньшей степени (рис. 3). При одинаковых расходах скорость за винтом с насадкой (v 0 + u u ). В связи с этим винты с насадкой чаще ставят на буксирах, траулерах и аналогичных судах, которые буксируют тяжелые грузы с малой скоростью. Для таких судов выигрыш на единицу мощности, создаваемый винтом с насадкой, может достигать 30–40%. На быстроходных судах винт с насадкой не имеет преимуществ, поскольку небольшой выигрыш в КПД теряется из-за увеличения сопротивления на насадке.

Крыльчатые движители.

Такой движитель представляет собой диск, на котором по периферии перпендикулярно плоскости диска размещены 6–8 лопатообразных лопастей. Диск установлен заподлицо с днищем корабля, а в поток опущены только лопасти движителя. Диск с лопастями вращается относительно своей оси, и, кроме того, лопасти совершают вращательное или колебательное движение относительно своей продольной оси. В результате вращательного и колебательного движений лопастей вода ускоряется в требуемом направлении, и создается упор для движения судна. Такой тип движителя имеет преимущество перед гребным винтом и гребным колесом, поскольку может создавать упор в любом желаемом направлении: вперед, назад и даже вбок без изменения направления вращения двигателя. Поэтому для управления судами с крыльчатым движителем не требуется рулей или других механизмов. Хотя крыльчатые движители не могут заменить гребные винты по универсальности применения, в некоторых специальных случаях они весьма эффективны.

Литература:

Акимов Р.Н. и др. Справочник судового механика . М., 1973–1974
Самсонов В.И. и др. Судовые двигатели внутреннего сгорания . М., 1981
Овсянников М.К., Петухов В.А. Судовые дизельные установки (спр.). Л., 1986
Артюшков Л.С. и др. Судовые движители . Л., 1988
Батырев А.Н. и др. Корабельные ядерные установки зарубежных стран . СПб., 1994



Когда настало время прощаться, ни одна скупая слеза не скатилась по щекам моряков. Крейсер «Техас» был без сожаления выброшен на свалку, несмотря на свои юные 15 лет и четверть века оставшегося ресурса.


11 тысяч тонн стальных конструкций, крылатые ракеты «Томагавк» и планы по дальнейшей модернизации с установкой системы «Иджис» - все оказалось напрасным. Что же сгубило крейсер «Техас»? Почему практически новый корабль был безжалостно разделан на гвозди?

На первый взгляд, причиной безвременного списания «Техаса», а также его трех грозных систер-шипов - «Вирджинии», «Миссиссиппи» и «Арканзаса» стало окончание Холодной войны. Но ведь многие из их ровесников остались в строю!- те же эсминцы «Спрюэнс» проходили под звездно-полосатым флагом еще по 10 и более лет. Не меньшим долголетием отличались фрегаты «Оливер Х. Перри» - половина из них до сих пор числится в составе ВМС США, другие были переданы союзникам – Турции, Польше, Египту, Пакистану, где были с восторгом приняты местными моряками.

Парадокс? Вряд ли. Янки в первую очередь списывали наиболее неэффективные, затратные и сложные в эксплуатации образцы техники.


15 лет – не возраст для боевого корабля. Для сравнения, средний возраст современных американских крейсеров УРО типа «Тикондерога» - 20…25 лет, и, согласно планам ВМС США, они будут находиться в действующем составе флота до середины следующего десятилетия. На илл. - атомный ракетный крейсер "Арканзас"

Крейсер «Техас» подвело его «горячее сердце» - адский агрегат D2G, внутри которого невидимым огнем горели урановые сборки, ежесекундно выделяя 150 Мегаджоулей теплоты.

Ядерная силовая установка (ЯСУ) наделяла корабль фантастическими боевыми способностями – неограниченная дальность плавания, высокая крейсерская скорость хода - без оглядки на запасы топлива на борту. Кроме того, ЯСУ обеспечивала герметичность надстройки, ввиду отсутствия развитых дымоходов и воздухозаборников – немаловажный фактор в случае применения противником массового поражения. Согласитесь, преимуществ немало.

Увы, за красивой сказкой о «семи кругосветных походах без захода в порт» скрывались несколько нелицеприятных истин:

1. Автономность корабля ограничивается НЕ только запасами топлива. Продовольствие, технические жидкости, ремонт – всякий раз придется встречаться с кораблем комплексного снабжения или делать заход в ближайшую военно-морскую базу/ПМТО. Не говоря о таком простом и очевидном условии, как выносливость экипажа – технике и людям необходим отдых.

2. Кругосветный поход на полной скорости в 30 узлов – не более чем красивая фантазия. Корабли редко ходят поодиночке: фрегаты, десантные корабли (БДК, «Мистраль» - макс. 15..18 уз.), корабли снабжения, океанские буксиры и морские спасательные комплексы, тральщики, эскортируемые суда торгового флота – боевая служба ВМФ может включать в себя самые различные задачи.

При действии в составе эскадр атомный крейсер теряет все свои преимущества - установить ЯСУ на каждый «Мистраль», фрегат или торговое судно не представляется возможным.

3. Ядерная силовая установка вкупе со своими контурами охлаждения и сотнями тонн биологической защиты занимает гораздо БОЛЬШЕ места, чем машинное отделение обычного крейсера, даже с учетом необходимого запаса тысяч тонн мазута или более легких фракций нефти.

Впрочем, полностью отказаться от обычной ГЭУ в пользу ЯСУ не удастся: согласно принятым нормам безопасности, на всех атомоходах стоят аварийные дизель-генераторы и имеются запасы горючего.

Вот такая экономия.

В цифрах это означает буквально следующее:
ГЭУ современного Иджис-эсминца «Орли Берк» представляет комбинацию из четырех газовых турбин General Electric LM2500 (знаменитый агрегат, применяется на кораблях ВМС в 24 странах мира), а также трех резервных дизель-генераторов. Суммарная мощность – порядка 100 тысяч л.с.
Масса турбины LM2500 – без малого 100 тонн. Четыре турбины – 400 тонн.
Запас топлива на борту «Берка» - 1300 тонн керосина JP-5 (что обеспечивает дальность плавания 4400 миль на скорости 20 уз.)

Вы спросите, отчего автор так ловко пренебрег массами станин, насосов, теплоизоляционных контуров и вспомогательного оборудования машинного отделения? Ответ прост – в данном случае это уже не имеет значения.
Ведь перспективная разработка КБ Африкантова – «компактный» ядерный реактор РИТМ-200 для строящегося атомного ледокола ЛК-60Я имеет массу 2200 тонн (комбинация из двух реакторов). Мощность на валах ледокола – 80 тысяч л.с.

2200 тонн! И это без учета биологической защиты реакторного отсека, а также двух главных турбогенераторов, их питательных, конденсатных, циркуляционных насосов, вспомогательных механизмов и гребных электродвигателей.

Нет, к ледоколу здесь претензий нет. Атомный ледокол - машина во всех отношениях замечательная, в полярных широтах без ЯСУ не обойтись. Но всему должно быть свое время и место!

Установить подобную силовую установку на перспективный российский эсминец – решение, как минимум сомнительное.

На самом деле, американский «Берк» - здесь не самый удачный пример. Более современные образцы, например британские эсминцы «Тип 45» с удачной комбинацией дизель-генераторов, ГТД и полным электродвижением демонстрируют еще более впечатляющие результаты – при сходном запасе топлива они могут пройти до 7000 морских миль! (от Мурманска до Рио-де-Жанейро – куда уж больше?!)


Атомный кресер "Техас" и крейсер типа "Тикондерога"

Что касается упомянутого в начале статьи крейсера «Техас» - с ним сложилась аналогичная ситуация. При сходном составе вооружения, он был минимум на 1500 тонн крупнее неатомного крейсера типа «Тикондерога». При этом он был медленнее «Тики» на пару узлов.

4. Эксплуатация корабля с ЯСУ, при прочих равных условиях, оказывается дороже эксплуатации корабля с обычной силовой установкой. Известно, что ежегодные затраты на эксплуатацию «Техаса» и его систер-шипов превышали аналогичные показатели «Тикондерог» на 12 млн. долларов (солидная сумма, особенно по меркам 20-летней давности).

5. ЯСУ ухудшает живучесть корабля. Вышедшую из строя газовую турбину можно отключить. Но как быть с поврежденным контуром или (о, ужас!) активной зоной реактора? Оттого посадка на мель или боевые повреждения корабля с ЯСУ – происшествие мирового масштаба.

6. Наличие ЯСУ на борту корабля затрудняет его визиты в зарубежные порты и усложняет проход Суэцким и Панамским каналом. Особые меры безопасности, радиационный контроль, согласования-разрешения.

Например, для американцев стало неприятным сюрпризом, когда их атомным кораблям запретили приближаться к берегам Новой Зеландии. Запугивание «коммунистической угрозой» ни к чему не привело – новозеландцы лишь посмеялись над Пентагоном и посоветовали янки внимательнее изучить глобус.

Сложно, затратно, неэффективно.

Сей немалый список прегрешений стал причиной списания всех 9 атомных крейсеров ВМС США, в том числе, четырех относительно новых «Вирджиний». Янки при первой же возможности избавились от этих кораблей, и ни разу не пожалели о принятом решении.

Отныне и впредь за океаном не строят иллюзий на счет атомоходов – все дальнейшие проекты надводных боевых кораблей - эсминцы «Орли Берк», что будут составлять основу миноносных сил ВМС США до 2050-х годов или тройки перспективных эсминцев «Замволт» - все они оснащены обычной, неатомной ГЭУ.

Ядерные силовые установки уступают по критерию стоимость/эффективность (обширное понятие, куда входят все вышеописанные факторы) даже котлотурбинным установкам полувековой давности. Что же касается современные разработок в области корабельных ГЭУ, то применение перспективных схем FEP или CODLOG (полное электродвижение с комбинацией из газовых турбогенераторов полного хода и высокоэкономичных дизель-генераторов крейсерского хода) позволяет добиться еще лучших показателей. При несении боевой службы в удаленных районах Мирового океана такие корабли практически не уступают по автономности кораблям с ядерными силовыми установками (при несопоставимой стоимости ЯСУ и обычной ГЭУ по типу CODLOG).

Разумеется, ЯСУ не является «дьяволом во плоти». Ядерный реактор имеет два ключевых преимущества:
1. Колоссальная концентрация энергии в урановых стержнях.
2. Выделение энергии без участия кислорода.

Исходя из данных условий и нужно искать правильную область применения для корабельных ЯСУ.
Все ответы известны с середины прошлого века:

Возможность получения энергии без кислорода была по достоинству оценена на подводном флоте – там готовы отдать любые деньги, лишь бы подольше оставаться под водой, сохраняя при этом 20-узловой ход.

Что касается высокой концентрации энергии, этот фактор приобретает ценность лишь в условиях высокого энергопотребления и необходимости длительной работы в режиме максимальной мощности. Где наличествуют подобные условия? Кто день и ночь бьется со стихией, прокладывая себе путь сквозь полярные льды? Ответ очевиден – ледокол.

Другой один крупный потребитель энергии – авианосец, точнее, установленные на его палубе катапульты. В этом случае мощная, производительная ЯСУ оправдывает свое предназначение.

Продолжая мысль, можно вспомнить специализированные корабли, например атомный разведчик «Урал» (судно связи пр. 1941). Обилие «прожорливых» в энергетическом плане радаров и электроники, а также необходимость длительного нахождения посреди океана («Урал» предназначался для наблюдения за американским ракетным полигоном на атолле Кваджалейн) – в данном случае, выбор ЯСУ в качестве главной энергетической установки корабля был вполне логичным и оправданным решением.
Вот, пожалуй, и все.


Грузо-пассажирский атомоход "Саванна"


Остальные попытки установить ЯСУ на надводные боевые корабли и суда торгового флота увенчались неудачей. Американский коммерческий атомоход «Саванна», немецкий атомный рудовоз «Отто Ган», японский грузо-пассажирский атомоход «Муцу» - все проекты оказались нерентабельны. После 10 лет эксплуатации янки поставили свой атомоход на прикол, немцы и японцы демонтировали ЯСУ, заменив её на обычный дизель. Как говорится, слова излишни.

Наконец, безвременное списание американских атомных крейсеров и отсутствие за рубежом новых проектов в этой области – все это явно свидетельствует о бесперспективности применения ЯСУ на современных боевых кораблях классов «крейсер» и «эсминец».

Забег по граблям?

Возродившийся интерес к проблеме ЯСУ на надводных боевых кораблях – не что иное, как попытка разобраться в недавнем заявлении о ходе проектирования перспективного отечественного эсминца:

«Проектирование нового эсминца ведется в двух вариантах: с обычной энергетической установкой и с ядерной энергетической установкой. Этот корабль будет обладать более универсальными возможностями а также повышенной огневой мощью. Он будет способен действовать в дальней морской зоне как одиночно, так и в составе группировок кораблей ВМФ»


- представитель пресс-службы Минобороны РФ по Военно-морскому флоту (ВМФ) Игорь Дрыгало, 11 сентября 2013 г.

Не знаю, как насчет связи между ядерной силовой установкой и огневой мощью эсминца, но связь между ЯСУ, размерами и стоимостью корабля прослеживаются вполне себе отчетливо: такой корабль выйдет крупнее, дороже и, как следствие, его постройка займет больше времени – в то время, как ВМФ необходимо срочное насыщение надводными боевыми кораблями океанской зоны.


Нереализованный проект атомного большого противолодочного корабля пр. 1199 "Анчар"


О том, что ЯСУ в реальности мало влияет на повышение боевой мощи корабля (скорее даже наоборот) сегодня было сказано уже немало. Что касается стоимости эксплуатации такого монстра, то здесь тоже все предельно очевидно: заправка обычном корабельным топливом – керосином, соляром (не говоря уже о котельном мазуте) – выйдет ГОРАЗДО дешевле, чем «вечный двигатель» в виде ядерного реактора.

Позвольте процитировать данные из отчета для Конгресса США (Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress, 2010 год): янки честно признались, что оснащение надводного боевого корабля ЯСУ автоматически увеличит стоимость его жизненного цикла на 600-800 миллионов долларов , по сравнению с его неатомным аналогом.

В этом легко убедиться, сопоставив средний «пробег» эсминца в течение всего цикла его службы (обычно не более двух-трех сотен тысяч миль) с расходом топлива (тонн/1 милю пути) и стоимость 1 тонны горючего. А после сравнить получившуюся сумму со стоимостью перезарядки реактора (с учетом утилизации отработавшего ядерного топлива). Для сравнения: перезарядка многоцелевой атомной лодки может обойтись за раз в сумму до 200 млн. долларов, а стоимость перезарядки реакторов авианосца «Нимиц» составила 510 млн. долл. в ценах 2007 года!

Немаловажное значение будут иметь последние годы жизни атомного корабля – вместо банального потопления в виде мишени или аккуратной разделки на металл, потребуется сложная и дорогостоящая утилизация радиоактивных руин.

Постройка атомного эсминца могла иметь смысл лишь в одном случае – отсутствии у России необходимых технологий в области создания морских газотурбинных установок.


М90ФР


Увы, это совершенно не так – например, НПО «Сатурн» (г. Рыбинск), при участии ГП НПКГ «Зоря-Машпроект» (Украина) разработало готовый образец перспективного корабельного ГТД М90ФР – близкий аналог американской турбины LM2500.

Что касается надежных и эффективных корабельных дизель-генераторов – всегда к услугам мировой лидер, финская компания Wärtsilä, к услугам которой прибегли даже надменные британцы при создании своего эсминца «Тип 45».

Все проблемы имеют доброе решение – было бы желание и настойчивость.

Но в условиях, когда отечественный Военно-морской Флот испытывает острый дефицит кораблей океанской зоны, мечтать об атомных супер-эсминцах, как минимум, несерьезно. Флоту срочно требуется «свежие силы» - пяток (а лучше - десяток) «Бёркоподобных» универсальных эсминцев полным водоизмещением 8-10 тыс. тонн, а не пара атомных монстров, чье строительство должно завершится до 203…-ого года.


Скромный герой морских просторов - танкер «Иван Бубнов» (проект 1559-В).
Серия из шести танкеров пр. 1559-В строилась в 1970-х годах для Военно-Морского Флота СССР - именно благодаря им флот был способен действовать на любом удалении от родных берегов.
Танкеры проекта оборудованы устройством передачи грузов в море на ходу траверзным способом, позволяющим выполнять грузовые операции при значительном волнении моря. Широкая номенклатура передаваемых грузов (мазута - 8250 тонн, дизельного топлива - 2050 тонн, авиатоплива - 1000 тонн, питьевой воды - 1000 тонн, котельной воды 450 тонн, смазочного масла (4 сортов) - 250 тонн, сухих грузов и продовольствия по 220 тонн) позволяет причислять танкеры этого проекта к кораблям комплексного снабжения.


А это - янки

По материалам:
http://npo-saturn.ru/
http://dic.academic.ru/
http://bastion-karpenko.narod.ru/
http://www.fas.org/
http://navy-matters.beedall.com/

Федеральное агентство по образованию Российской Федерации

Филиал «СЕВМАШВТУЗ» государственного образовательного

учреждения высшего профессионального образования

«Санкт-Петербургский государственный морской

технический университет» в г.Северодвинске

И.В. Маковеев

КОНСТРУКЦИИ РЕАКТОРНЫХ УСТАНОВОК.

Конспект лекций

Северодвинск

Маковеев И.В., Конструкции реакторных установок. Конспект лекций. - Северодвинск: Севмашвтуз, 2010. - 64 с.

Ответственный редактор: к.т.н., профессор, зав. каф. «Океанотехника и энергетические установки» А.И.Лычаков

Рецензенты: к.т.н., профессор Лычаков А.И..

Учебное пособие предназначено для студентов заочной формы обучения специальности «Океанотехника и энергетические установки», изучающих учебную дисциплину «Судовое главное энергетическое оборудование. Паропроизводящие установки». Содержит основной материал, необходимый для изучения конструктивных особенностей оборудования ППУ, на примере ледокола «Арктика».

Перечень принятых сокращений и условный обозначений………4

Введение………………………………………………………………………5

    Обзор судов с ядерной энергетической установкой……………..…….6

    Суда с ядерными энергетическими установками в России………….…

    Компоновки судовых ЯППУ………………………………………….

    Судовая ядерная энергетическая ледокола……………………………..

    Судовая ядерная ППУ ледокола…………………………………………

4.1 Реактор, первый контур……………………………………………..

4.2Приводы ИМ СУЗ……………………………………………………

4.3 Первый контур и связанные с ним системы……………….………..

4.4. Система компенсации давления…………………………….………..

4.5. Система очистки и расхолаживания ……………………….………..

4.6. Система газоудаления……………………………………….………

4.7. Система отбора проб………………………………………………..

4.8. Система аварийного охлаждения активной зоны……………….

4.9.Второй контур………………………………………………………..

4.10. Третий контур………………………………………………………

4.11. Система ваккумирования…………………………………………..

4.12. Система 4 контура……………………………………………………

4.13. Система подпитки 1 контура и аварийной проливки реактора…..

4.14. Водно-химический режим……………………………………………

Литература ……………………………………………………………………….

Перечень принятых сокращений и условный обозначений

A3 - аварийная защита

АПН - аварийный питательный насос

АЭУ - атомная энергоустановка

БЧВ - большая частота вращения

ВКВ - верхние конечные выключатели

ГВД - аз высокого давления

ДЕ - дренажная ёмкость

ДУ - дистанционное управление

ЖРО - жидкие радиоактивные отходы

ЗО - защитная оболочка

ОУ - опреснительная установка

ПАР - пост аварийного расхолаживания

ПГ - парогенератор

ПД - продукты деления

ПЗ - предупредительная защита

ПКГ - периферийная компенсирующая группа

ПНД - подогреватель низкого давления

ППН - насос подпитки

РВ - радиоактивные вещества

РО - рабочий орган

РПН - разводочный питательный насос

РУ - реакторная установка

РЦ - расширительная цистерна

САОЗ - система подпитки и аварийного охлаждения активной зоны реактора

САР - система аварийного расхолаживания

САЭ - система аварийного электроснабжения

СК - смотровая колонка

Введение

Судовая ядерная энергетика начала свое развитие практически одновременно с появлением атомных электростанций. Побудительными стимулами для этого послужили новые, весьма важные потребительские качества, которые в принципе могла обеспечить ядерная энергетика, а именно:

Увеличение мощности движителей практически без ограничений;

Любой потребный энергозапас в реакторе;

Неограниченность плавания судов во времени и пространстве;

Повышенная автономность эксплуатации атомного флота в сравнении с судами на органическом топливе.

Перечисленные качества имеют стратегическое значение не только для коммерческих судов, но и для кораблей военно-морского флота, поэтому становление и развитие судовой ядерной энергетики в какой-то степени испытывало влияние параллельно развивающейся ядерной энергетики для ВМФ.

Более чем за 40 лет судовая ядерная энергетика прошла большой путь в своем развитии. Качественные изменения претерпели технологические схемы ядерных энергетических установок (ЯЭУ), их структура, конструкция оборудования, компоновочные решения, системы управления.

Уже на самом начальном этапе поиска рациональных проектных решений выяснилось, что специфика условий использования ядерных энергоисточников на судах исключает возможность заимствования проектных решений, положительно зарекомендовавших себя в условиях эксплуатации атомных электростанций. Для судовых ЯЭУ характерны жесткие ограничения по габариту и весу, близость к размещению обслуживающего персонала, ограничения на его численность, специфические особенности внешних воздействий и др. Разработчикам судовых ЯЭУ пришлось искать оригинальные проектные и конструкторские решения, преодолевая значительные трудности при создании высоконадежного оборудования и составляющих систем.

1. Обзор судов с ядерной энергетической установкой.

Первыми судами с ядерными энергетическими установками были: в СССР - атомный ледокол "Ленин" (1959), в США - торговое судно "Саванна" (1960), в Германии - рудовоз "Отто Ган" (1968) и в Японии - экспериментальное судно "Муцу" (1972). Однако только в СССР строительство судов с ЯЭУ получило коммерческое продолжение и развитие. К настоящему времени Россия располагает атомным флотом сугубо гражданского назначения: девятью ледоколами с двухреакторными и однореакторными ЯЭУ и одним контейнеровозом-лихтеровозом ледового плавания.

После наработки более 100 тыс. часов выведен из эксплуатации по причине изношенности корпуса судна ледокол "Ленин", хотя его ЯЭУ сохранила работоспособность, что подтвердила ревизия оборудования и обеспечивающих систем. Так, ревизия главных циркуляционных насосов (рис. 1) показала, что после функционирования в течение более 100 тыс. часов их работоспособность не вызывает сомнений. В частности, на подшипниковых опорах не выявлено заметного износа. Электрические, механические и гидравлические характеристики сохранили свои проектные значения. То же состояние зарегистрировано для приводов органов управления и защиты, для арматуры. Металловедческие исследования главных патрубков реактора, соединяющих его с корпусами парогенераторов и насосов, не обнаружили каких-либо развивающихся дефектов в материалах патрубка, включая и материал сварного шва.

Результаты ревизии послужили основой для корректировки назначенного ресурса и определения условий его продления в процессе эксплуатации. В частности, на эксплуатирующемся и поныне ледоколе "Арктика" достигнутый ресурс ЯЭУ составляет около 150 тыс. часов, обосновывается возможность продления ресурса до 175 тыс. часов.

В судовых ЯЭУ критическим элементом всегда была теплообменная поверхность парогенераторов. Сложные условия ее работы, большое число Бездействующих факторов различной природы обусловили довольно длительный период поиска оптимальной конструкции парогенератора и конструкционных материалов для теплообменной поверхности. Эта задача нашла успешное решение в рамках современных требований. Эффективность конструкции перспективных парогенераторов подтверждена продолжительной эксплуатацией.

Корпус реактора также подвержен воздействию разнообразных факторов, изменяющихся в процессе эксплуатации. Однако исчерпание его ресурса определяется не термомеханическими нагрузками, а воздействием флюенса (потока) нейтронов на материал корпуса и сварных швов в районе активной зоны. Поток нейтронов существенно изменяет их микроструктуру и, соответственно, механические свойства, в частности, пластичность и критическую температуру хрупкости. Дальнейшее повышение ресурса корпуса реактора, в случае использования существующих материалов, возможно лишь, если уменьшить поток нейтронов на корпусе. Это достигается только за счет увеличения поглощения нейтронов в радиальном зазоре между корпусом и активной зоной. В результате увеличивается диаметр корпуса реактора, что может заметно усложнить его транспортировку по железной дороге.

Многолетняя эксплуатация нескольких поколений судовых ЯЭУ с реакторами на воде в качестве теплоносителя-замедлителя показала, что они имеют достаточно высокие характеристики и по ресурсной надежности, и по безопасности. При этом сохраняется возможность дальнейшего совершенствования судовых ЯЭУ, чтобы обеспечить рост ресурса и безопасности.

Следует иметь в виду, что параллельная работа над проектами ЯЭУ для ВМФ и гражданских судов, включая анализ эксплуатационного опыта по обоим направлениям, существенно расширяет базовую информацию, помогая выбору оптимальных конструктивных решений в каждом из направлений, включая проблему безопасности.

2. Суда с ядерными энергетическими установками в России.

Атомные ледоколы были построены с целью обеспечения проводки судов вдоль Арктического побережья. Ледоколы используются при перевозке различных грузов, в основном железной руды из Норильска на Кольский полуостров, где руда переправляется на обогатительные предприятия Мурманской области. Протяженность этого маршрута составляет около 3000 км.

Первым в мире гражданским судном с ядерной энергетической установкой был спущенный на воду в 1957 году ледокол "Ленин". "Ленин" находился в эксплуатации 30 лет - с 1959 по 1989 г.г.

Водоизмещение "Ленина" 16 тыс. тонн, длина 134 м, осадка 9.2 м.

Основываясь на опыте создания и эксплуатации первого атомохода, в 1975 году введен строй еще более мощный корабль - "Арктика". Этот ледокол первым из надводных судов 17 мая 1977 года достиг в свободном плавании Северного полюса. "Арктика" - 3-х вальный турбоэлектороход с 4 палубами, баком и 5-ти ярусной средней надстройкой, корпус разделен на 8 водонепроницаемых отсеков. Атомная водо-водяная паропроизводящая установка состоит из 2-х блоков по 1 реактору и четырех парогенераторов в каждом. Гребная электрическая установка переменно-постоянного тока выполнена по схеме "генератор переменного тока - кремниевый выпрямитель - электродвигатель постоянного тока", 3 гребных электродвигателя мощностью по 17.6 МВт. Водоизмещение - 23 460 т, длина 148 м, ширина 30 м, осадка 11 м, высота борта 17 м, мощность атомной паропроизводящей установки - 55.1 МВт.

Всего построено 6 ледоколов типа "Арктика".

"Арктика";

"Советский Союз";

"50 Лет Победы".

Кроме того, в конце восьмидесятых годов в Финлядии были построены 2 ледокола: "Таймыр" и "Вайгач", оснащенных одним реактором и способных заходить в устья крупных рек. Их длина - 151 м, ширина - 29 м, мощность реактора 35 МВт.

Лихтеровоз "Севморпуть" построен на Керченском судостроительном заводе «Залив» им. Б.Е. Бутомы в период с 01.06.82 - 31.12.88. Судно предназначено для перевозки: лихтеров типа ЛЭШ (до 450 т) в трюмах, в специально оборудованных ячейках и на верхней палубе с погрузкой и выгрузкой их судовым лихтерным краном; контейнеров международного стандарта ИСО (до 30 т) в трюмах и на верхней палубе без специального переоборудования судна, погрузка-выгрузка контейнеров должна осуществляться береговыми средствами. Ограниченные партии могут быть погружены и выгружены контейнерными приставками лихтерного крана.

Длина судна - 260 м, ширина - 32 м, мощность энергетической установки - 32.5 МВт. Всего судно может взять на борт 74 лихтера грузоподъемностью по 300 т или 1328 двадцатифутовых контейнеров. Корабль способен самостоятельно идти в ледовом поле толщиной до 1 м.

3. Компоновки судовых ЯППУ

Для судовых ЯЭУ компоновка оборудования реакторной части имеет определяющее значение, поскольку многие характеристики, в том числе оптимальность решения вопросов безопасности, массогабаритные показатели, конструкция основного оборудования, его ремонтопригодность, в значительной степени зависят от вида компоновки [3 ]. Чаще используются петлевые и блочные компоновки оборудования реакторной части ЯЭУ (рис. 3, 4). У каждой из них свои достоинства и недостатки, которые проявляются на стадии изготовления оборудования, монтажа и эксплуатации.

Рис. 1. Петлевая компоновка оборудования первого контура судовой ядерной энергетической установки:

1 – корпус реактора; 2 – активная зона; 3 – парогенератор; 4 – главный

циркулярный насос; 5 – исполнительные механизмы управления; 6 – трубопровод питательной воды; 7 – трубопровод пара; КД – компенсатор давления.

Наиболее перспективной ныне считается интегральная компоновка оборудования реакторной части судовой ЯЭУ (рис. 4). Ее достоинства обусловлены тем, что весь объем теплоносителя первого контура реакторной установки локализуется в одном корпусе, все оборудование первого контура также размещается в этом корпусе, исключаются неотсекаемые участки первого контура на случай разгерметизации, резко уменьшается число корпусных конструкций, арматуры, снимается опасность достижения критического значения флюенса нейтронов на корпус реактора. Однако следует иметь в виду, что в интегральной компоновке применяется только отработанное высоконадежное насыщающее оборудование, поскольку по ремонтопригодности она заметно уступает и петлевой, и блочной компоновкам.

Рис. 3. Интегральная компоновка оборудования с естественной циркуляцией в первом контуре судовой ядерной энергетической установки:

1 - корпус интегрального реактора; 2 - активная зона; 3 – парогенератор; 4 - исполнительные механизмы управления; 5 - компенсатор давления; 6 - патрубок трубопровода питательной воды; 7 - патрубок трубопровода

Дальнейшее повышение ресурсных характеристик судовых ЯЭУ - необходимое условие совершенствования технико-экономических эксплуатационных показателей. Поиск соответствующих технических решений проводится по двум существенно различным направлениям:

Повышение назначенного ресурса оборудования и обеспечивающих систем ЯЭУ за счет совершенствования конструкции, отработки и других технических мероприятий на стадии проектирования;

Внедрение систем мониторинга для оперативного эксплуатационного контроля расхода назначенного ресурса по всем видам оборудования, лимитирующим ресурс ЯЭУ в целом, с оценкой остаточного ресурса.

Многолетний опыт эксплуатации судовых ядерных энергетических установок и перспектив дальнейшего улучшения их технико-экономических показателей дает основание считать, что в ближайшие десятилетия развитие судовой ядерной энергетики будет определяться качественным совершенствованием интегральных реакторных установок с водой в качестве теплоносителя-замедлителя, а также систем управления. При предельной минимизации габаритных характеристик предпочтительной может оказаться блочная компоновка оборудования, поэтому эволюция блочных реакторных установок будет продолжаться. Нельзя также исключать, что поиск принципиально новых проектных решений с использованием других теплоносителей вместо воды приведет к прорывным решениям, обеспечивающим новые потребительские качества, которые будут дополнительно стимулировать строительство судов разных типов с ядерными энергетическими установками.

4. Судовая ядерная энергетическая установка ледокола

Каждая ядерная энергетическая установка состоит из отдельных блоков, в каждом блоке находятся: реактор водо-водяного типа, четыре циркуляционных насоса и четыре парогенератора, компенсатор объема, ионообменный фильтр с холодильником и другое оборудование. Реактор, насосы и парогенераторы имеют отдельные корпуса и соединены друг с другом короткими патрубками типа “труба в трубе”. Все оборудование расположено вертикально в кессонах бака железоводной защиты и закрыто малогабаритными блоками защиты, что обеспечивает легкую доступность при ремонтных работах.

Реактор состоит из активной зоны и отражателя. Реактор водо-водяного типа - вода в нем является и замедлителем быстрых нейтронов и охлаждающей и теплообменной средой. Активная зона содержит ядерное топливо в защитном покрытии (тепловыделяющие элементы - ТВЭЛы) и замедлитель. ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками ТВС.

Активная зона реактора представляет собой совокупность активных частей свежих тепловыделяющих сборок (СТВС), которые в свою очередь состоят из тепловыделяющих элементов (ТВЭЛ). В реактор помещаются 241 СТВС. Ресурс современной активной зоны (2,1- 2,3 млн. МВт час.) обеспечивает энергетические потребности судна с ЯЭУ в течение 5-6 лет. После того, как энергоресурс активной зоны исчерпан, проводится перезарядка реактора.

Корпус реактора с эллиптическим днищем изготовлен из низколегированной теплостойкой стали с антикоррозийной наплавкой на внутренних поверхностях.

Тепловая схема паропроизводящей установки атомного судна состоит из 4-х контуров. Через активную зону реактора прокачивается теплоноситель I контура (вода высокой степени очистки). Вода нагревается до 317 градусов, но не превращается в пар, поскольку находится под давлением. Из реактора теплоноситель 1 контура поступает в парогенератор, благодаря чему вода, протекающая по его трубам, превращается в перегретый пар. Далее теплоноситель I контура циркуляционным насосом снова подается в реактор. Из парогенератора перегретый пар (теплоноситель II контура) поступает на главные турбины. Параметры пара перед турбиной: давление - 30 кгс/см2 (2,9 Мпа), температура - 300 °С. Затем пар конденсируется и далее вода проходит систему ионообменной очистки и снова поступает в парогенератор. III контур предназначен для охлаждения оборудования ЯЭУ, в качестве теплоносителя используется вода высокой чистоты (дистиллят). Теплоноситель III контура имеет незначительную радиоактивность. IV контур служит для охлаждения пара в системе II контура, в качестве теплоносителя используется морская вода.

Рис 4. СЯЭУ ледокола.

АППУ выполнена и размещена на судне таким образом, чтобы обеспечить защиту экипажа и населения от облучения, а окружающую среду - от загрязнения радиоактивными веществами в пределах допустимых безопасных норм как при нормальной эксплуатации, так и при авариях установки и судна. С этой целью на возможных путях выхода радиоактивных веществ созданы четыре защитных барьера между ядерным топливом и окружающей средой:

I. первый - оболочки топливных элементов активной зоны реактора;

II. второй - прочные стенки оборудования и трубопроводов первого контура;

III. третий - защитная оболочка;

IV. четвертый - защитное ограждение, границами которого являются продольные и поперечные переборки, второе дно и настил верхней палубы в районе реакторного отсека. Безопасность АППУ обеспечена устройствами и системами нормальной эксплуатации и системами безопасности, предназначенными для надежного выключения реактора, отвода тепла от активной зоны и ограничения последствий возможных аварий.

5. Судовая ядерная ППУ ледокола

5.1 Реактор, первый контур

Реактор представляет собой водо-водяной реактор корпусного типа и предназначен для выработки тепловой энергии за счет деления ядерного топлива в активной зоне и передачи полученной энергии теплоносителю 1 контура при работе реактора в составе реакторной установки.

Реактор и связанные с ним оборудование и системы выполняют следующие функции:

Обеспечение поддержания управляемой цепной реакции деления ядерного топлива активной зоны на заданных, в соответствии с проектными режимами, уровнях мощности с выполнением требований нормативной документации по безопасности атомных станций;

Обеспечение поддержания заданных параметров - давления и температуры теплоносителя 1 контура в соответствии с проектными режимами и требованиями нормативной документации по безопасности атомных станций;

Обеспечение отвода тепла, выделяющегося при работе активной зоны, теплоносителем 1 контура во всех проекциях режимах;

Обеспечение регламентированного уровня ионизирующего и теплового излучения в реакторном помещении.

Основная циркуляции теплоносителя I контура в реакторе (рис. 6) осуществляется следующим образом: теплоноситель через внутренние насосные патрубки попадает в напорную камеру реактора. Далее, пройдя кольцевой зазор между корпусом и обечайкой блока выемного и щелевой фильтр, теплоноситель попадает в напорную камеру активной зоны, расположенную под нижней плитой выемного блока. Пройдя активную зону, теплоноситель попадает в сливную камеру реактора, откуда он поступает во внутренние патрубки парогенераторов. Из парогенераторов теплоноситель по кольцевым полостям между главными и внутренними патрубками поступает во всасывающую полость электронасосов, которая расположена над конической обечайкой и разделена на четыре камеры, гидравлически объединяющие попарно электронасос и парогенератор, реализуя при этом четырехпетлевую схему циркуляции теплоносителя 1 контура. Из камер теплоноситель по кольцевым полостям главных насосных патрубков поступает в гидрокамеры на всас электронасосов.

При естественной циркуляции движение теплоносителя в реакторе осуществляется тем же путем, что и при принудительной.

Конструктивно реактор (рис. 7) выполнен в виде сосуда высокого давления с крышкой, в котором размещены активная зона, РО КГ и РО A3, а на крышке - привода ИМ КГ и ИМ A3, термопреобразователи сопротивления, преобразователи термоэлектрические, предназначенные для измерения температуры в реакторе.

Рис 5. Реактор

В состав реактора входят следующие основные сборочные единицы:

  • блок выемной;

    активная зона;

    привод РО СУЗ (5 шт.);

    исполнительный механизм АЗ (4 шт.);

    контрольно-измерительные приборы:

    термопреобразователь сопротивления (6 шт.)

    преобразователь термоэлектрический (7 шт.)

    комплект монтажных частей.

Корпус предназначен для размещения в нём составных частей реактора. Корпус состоит из обечайки с патрубками, гладкой цилиндрической обечайки и эллиптического днища. Внутренняя поверхность корпуса и главных патрубков защищена от коррозионного воздействия теплоносителя 1 контура антикоррозионной наплавкой.

4 главных патрубка для подсоединения гидрокамер главных циркуляционных насосов;

1 малый патрубок для подключения к системе компенсации давления и к системе очистки и расхолаживания;

2 малых патрубка для подключения к системе аварийного охлаждения активной зоны;

1 малый патрубок для подключения к системе очистки и расхолаживания.

Рис 6. Выемной экран;

1- верхняя плита; 2-корпус выемного экрана; 3- средняя плита; 4-нижняя плита блока; 5-экраны;6-щелевые фильтры;7-направляющие трубы; 8-нижняя плита РО КГ;9-г-образные болты; 10-направляющие трубы.

Выемной блок опирается на бурт разделительной обечайки корпуса реактора и крепится к ней при помощи Г-образных болтов, расположенных в верхней плите.

Внутри выемного блока расположены пять независимых РО КГ: центральный, два средних и для периферийных. Каждый РО КГ конструктивно представляет две плиты, связанные между собой стаканами, в которых установлены подшипниковые узлы с графитовыми вкладышами, скользящими по направляющим трубам яри перемещении РО КГ. Внутри направляющих труб размещены ТВС.

К нижним плитам РО КГ прикреплены стержневые ПЭЛ, перемещающиеся в направляющих трубках, размещенных между средней и нижней плитами выемного блока.

Связь каждого РО КГ с винтом привода ИМ КГ осуществляется с помощью штока и удлинителя штока. Шток соединяется с нижней плитой РО КГ при помощи сухаря, а с удлинителем штока - при помощи байонетного соединения. Удлинители ориентируются по углу и фиксируются относительно штоков при помощи фиксаторов.

Винты приводов ИМ КГ соединяются с удлинителями штоков при помощи байонетного соединения.

К нижней плите блока выемного болтами крепится щелевой фильтр с экранами, предназначенный для предохранения активной зоны от попадания посторонних предметов. Экраны предназначены для снижения нейтронного потока на днище корпуса реактора.

Основные детали выемного блока изготовлены из нержавеющей аустенитной стали.

Направляющие трубки ПЭЛ изготовлены из циркониевого сплава Э-635, обладающего низким сечением поглощения нейтронов.

Рис 7.Основные ТВС:

1 – головка; 2 – пробка; 3 – пружина; 4 - замок цанговый; 5 – подвеска; 6 – кассета; 7 – гайка; 8 – кольцо; 9 – головка; 10 – обойма; 11 – полукольцо; 12 - решетка дистанционирующая;13 – чехол; 14 – втулка; 15 – кольцо; 16 – наконечник.

Рис 8. TBС под стержень A3.

1 – Головка, 2 – Пружина, 3 - Замок цанговый, 4 – Подвеска, 5 – Кассета, 6 – Гайка, 7 – Кольцо, 8 - Головка, 9 – Обойма, 10 – Полукольцо, 11 - Решетка дистанционирующая, 13 – Чехол, 14 – Вытеснитель, 15 – Втулка, 16 – Кольцо, 17 – Наконечник.

Рис 9.ТВС со штоком.

1 – Головка; 2 – Замок шариковый; 3 – Пружина; 4 – Шток; 5 – Сухарь; 6 – Гайка; 7 – Подвеска; 8 – Кассета; 9 – Головка; 10 – Гайка; 11 – Кольцо; 12 – Полукольцо; 13 – Обойма; 14 - Решетка дистанционирующая; 15 – Чехол; 16 – Втулка; 17 – Кольцо; 18 – Наконечник.

Основные конструктивные решения:

Конструкция активной зоны исключает выброс, заклинивание и самопроизвольное расцепление рабочих органов СУЗ с приводами ИМ КГ и приводами ИМ A3 путем размещения ПЭЛ в направляющих трубах из радиационно- и коррозионностойкого циркониевого сплава, а стержней A3 в гильзах - сухих толстостенных трубах. ПЭЛ при креплении на плите КГ имеют шарнирный подвес, способный компенсировать их кривизну и перекос плит КГ, а стержни A3 состоят из девяти блочков, соединенных шарнирно друг с другом, что уменьшает возможность заклинивания, доводя ее практически до нуля;

Конструкция ТВС исключает при возможных формоизменениях твэлов и других элементов перекрытие проходного сечения проходного сечения ТВС, приводящего к повреждению твэлов сверх установленных пределов, что обеспечивается возможностью компенсации осевого и радиального расширения твэлов и других элементов ТВС, реализующихся в процессе эксплуатации, и исключением азимутальных и аксиальных перемещений как элементов ТВС, так и самой ТВС в целом, путем жесткого закрепления твэлов в районе верхней заглушки к элементам ТВС как по углу, так и в осевом направлении и дистанционированием ТВС в верхней и нижней плитах блока выемного с поджатием ТВС через пружину крышкой реактора;

Материалы, используемые в ТВС и ее элементах, в пределах всего срока службы активной зоны сохраняют удовлетворительные физико-механические свойства, совместимость, а также стойкость против коррозионных, электрохимических, тепловых, механических и радиационных воздействий;

ТВС и ее элементы имеют конструктивные отличительные признаки, исключающие их ошибочную установку и комплектацию;

Основные характеристики активной зоны приведены в таблице 1.

Таблица 1.

Характеристика

Значение

Номинальная тепловая мощность, МВт

Назначенный энергоресурс, 10 6 МВт-ч

Назначенный ресурс, ч

Назначенный срок службы, лет

Средний тепловой поток с поверхности твэлов, МВт/м 2

Давление теплоносителя I контура, МПа

Расход теплоносителя I контура, т/ч

Температура теплоносителя I контура, N=N ном., °C

На входе в активную зону

На выходе из активной зоны

Описанный диаметр, мм

Эквивалентный диаметр, мм

Высота, мм

Число ТВС, шт.

Число стержней АЗ, шт

Число РО АЗ,

Диаметр оболочки стержня A3, наружный/внутренний, мм

Время сброса РО АЗ, с

Число ПЭЛ, шт

Диаметр оболочки ПЭЛ, наружный/внутренний, мм

Число РО КГ, шт

5.2Приводы ИМ СУЗ

Приводы ИМ СУЗ в составе четырех приводов ИМ A3 и пяти приводов ИМ КГ предназначены для перемещения рабочих органов (РО) СУЗ в активной зоне при осуществлении пуска реактора, регулирования мощности, компенсации избыточной реактивности и остановки реактора.

Привод ИМ A3 обеспечивает:

Подъем и сброс РО A3 с необходимой скоростью:

Удержание РО A3 в верхнем и нижнем положениях;

Сигнализацию о верхнем и нижнем положениях РО A3;

Сигнализацию о течи гильз стержней A3.

Привод ИМ КГ обеспечивает:

Перемещение РО КГ с необходимой скоростью и удержание его в любом положении хода;

Перемещение РО КГ вниз под Действием собственного веса при обесточивании электродвигателя;

Сигнализацию о положении РО КГ;

Стопорение РО КГ от самопроизвольного перемещения вверх;

Возможность ручного перемещения РО КГ.

Привод ИМ КГ (общий вид и кинематическая схема приведены на ри­сунке 13) - электромеханического типа состоит из винтового механизма 1 с датчиками реперных точек 2, редуктора 6, шагового электродвигателя 4, ручного привода 3, датчика положения

Срабатывание привода ИМ A3 (сброс РО A3 в активную зону) происходит при обесточивании электромагнита и не зависит от наличия источника питания.

Удержание РО A3 в нижнем положении и исключение самопроизвольного подъема РО КГ из активной зоны обеспечивается применением в конструкции приводов ИМ АЗ и ИМ КГ роликовых обгонных муфт.

Рис 10. Привод ИМ КГ. Общий вид.

1 – Винтовой механизм; 2 – Датчик реперных точек; 3 – Ручной привод; 4 – Шаговый электродвигатель; 5 – Муфта; 6 – Редуктор.

5.3 Первый контур и связанные с ним системы

Существуют два типа связи 1 контура с внешними системами: гидравлическая - с помощью трубопроводов и тепловая - через теплообменные поверхности.

Гидравлически связанные системы обеспечивают организацию нормального технологического процесса по подготовке к работе, работе с выработкой реактором тепла и поддержанием заданных параметров и характеристик 1 контура, а также поддержанием активной зоны под заливом теплоносителя при течи 1 контура.

Системы, связанные с 1 контуром через теплообменные поверхности, входят в комплекс систем охлаждения реактора и оборудования 1 контура.

При межконтурной течи участки этих систем, включая двойную запорную арматуру со стороны теплообменных поверхностей, обеспечивают локализацию радиоактивного теплоносителя 1 контура в заданных границах и рассчитаны на высокое давление.

В состав принципиальной схемы 1 контура и связанных с ним систем, входят в полном объеме или в пределах участков локализации следующие системы:

Основной контур циркуляции (главный циркуляционный контур), назначением которого является получение и перенос тепла от активной зоны к парогенераторам и выработка пара требуемых параметров;

Система очистки и расхолаживания, предназначенная для поддержания показателей качества воды 1 контура и снятия остаточных тепловыделений при расхолаживании;

Система компенсации давления, предназначенная для создания и поддержания давления в 1 контуре;

Система газоудаления, назначением которой является удаление газа из оборудования 1 контура при подготовке к вводу в действие РУ;

Системы отбора проб и дренажа, предназначенные для отбора проб теплоносителя, поддренирования и осушения 1 контура;

Система газа высокого давления, назначением которой является прием, заполнение, сброс и перекачка газа в системе компенсации давления 1 контура;

Система аварийного охлаждения активной зоны, предназначенная для восполнения течи из I контура и охлаждения активной зоны в авариях с потерей теплоносителя;

Система предотвращения переопрессовкн ПГ, назначением которой является исключение возможной переопрессовки отсеченной по 2 контуру трубной системы ПГ за счет надежного соединения отсеченной полости с 1 контуром;

Система водоподготовки и подпитки, предназначенная для подпитки и опрессовки 1 контура в технологических операциях;

Система 2 контура по пару и питательной воде, предназначенная для подачи питательной воды и отвода выработанного в ПГ пара, расхолаживания в нормальных условиях и аварийных режимах, а также для локализации радиоактивного теплоносителя при межконтурной течи;

Система 3 контура, предназначенная для охлаждения оборудования 1 контура и отвода тепла в нормальных и аварийных режимах, а также для локализации радиоактивного теплоносителя при межконтурной течи.

5.4. Описание и характеристики систем и элементов 1 контура.

Основной контур циркуляции Рис.5. (парогенерирующий блок) предназначен для преобразования ядерной энергии в тепловую, обеспечения теплосъема с активной зоны и передачи тепла во 2 контур для выработки в ПГ пара требуемых параметров.

Состав основного контура циркуляции:

Реактор;

Четыре парогенератора;

Четыре ЦНПК;

Четыре гидрокамеры.

Рис.11. Парогенерирующий блок.

Технические характеристики и расчетные параметры основного контура циркуляции при работе на поминальном уровне мощности приведены в таблице 2.

Таблица 2

Наименоваиие параметра, характеристики

Значение

Тепловая мощность, МВт

Давление теплоносителя, МПа

Температура теплоносителя на входе в активную зону, °С

Температура теплоносителя на выходе из активной зоны, %

Расход теплоносителя, т/ч

Расчетное давление, МПа

Расчетная температура, °С

Уровень естественной циркуляции, % Nhom

* Обеспечивается расхолаживание РУ через ПГ мри срабатывании аварийной защиты с номинального уровня мощности.

Основной контур циркуляции четырехпетлевого исполнения, чем обеспечивается высокая степень резервирования основного оборудования, и тем самым, высокая надежность теплосъема с активной зоны реактора. Наряду с резервированием петель циркуляции, для надежного теплосъема с активной зоны предусмотрены четыре способа создания циркуляции в основном контуре: за счет работы 1ЦНПК на большой или малой частотах вращения электронасоса расхолаживания, а также за счет естественной циркуляции.

Общая мощность равномерно распределена между четырьмя петлями. При отказе одной или двух петель основной контур циркуляции сохраняет работоспособность при соответственно сниженной мощности.

В случае отказа четырех ЦНПК обеспечено расхолаживание за счет ра­боты электронасоса расхолаживания, а также за счет естественной циркуляции по 1 контуру при подаче воды в ПГ. Теплосъем с активной зоны при атмосфер­ном давлении обеспечен за счет работы электронасоса расхолаживания, а также может производиться через ПГ при естественной циркуляции по 1 контуру.

Реактор

Корпус состоит из обечайки с патрубками, гладкой цилиндрической обечайки и эллиптического днища. Внутренняя поверхность корпуса и главных патрубков защищена от коррозионного воздействия теплоносителя 1 контура антикоррозионной наплавкой.

Корпус имеет следующие патрубки:

4 главных патрубка для подсоединения корпусов парогенераторов;

4 главных патрубка для подсоединения гидрокамер циркуляционных насосов 1 контура;

1 малый патрубок для подключения к системе компенсации давления к системе очистки и расхолаживания;

2 малых патрубка для подключения к системе аварийного охлаждения а.з.;

1 малый патрубок для подключения к системе очистки и расхолажи­вания.

На верхнем торце корпуса размещены 24 шпильки, с помощью которых, а также нажимного фланца, гаек, шайб и медной клиновой прокладки производится уплотнение крышки в горловине корпуса.

Крышка предназначена для герметизации корпуса, является биологической защитой и служит опорой для приводов ИМ A3 и КГ, а также первичных преобразователей.

Крышка состоит из плоской силовой плиты, к которой крепится болтами и герметизируется сварным швом обечайка с приваренной к ней верхней плитой. Силовая плита по поверхностям контакта с теплоносителем 1 контура защищена антикоррозионной наплавкой.

Применение плоской силовой плиты обусловлено простотой изготовления и большим положительным опытом эксплуатации аналогичных конструкций подтверждается расчетом на прочность.

Через крышку проходят 36 стоек, приваренных к нижнему торцу силовой плиты, предназначенные для присоединения приводов ИМ A3 и ИМ КГ, клапана газоудаления, преобразователей термоэлектрических, гильз термопреобразователей сопротивления, гильз для стержней A3 и гильз для физических измерений.

Во внутренней полости крышки размещена биологическая защита.

В качестве биологической защиты используется галя серпентинитовая ТУ 95.6112-76 с ограничением влажности (не более 0,5%) и содержания хлоридов (не более 0,01%).

Рис.12. Крышка реактора:

1 - плита силовая; 2 - обечайка;3 - плита верхняя; 4 - стойка преобразователя термоэлектрического; 5 - стойка привода ИМ А3; 6 - стойка привода ИМ РО КГ; 7 - стойка термопреобразователя сопротивления; 8 - стойка для физических измерений; 9 – стакан; 10 – шпилька; 11 – шпилька; 12 – шпилька; 13 – фланец; 14 – фланец.

Парогенератор

Парогенератор предназначен для отвода тепла от теплоносителя 1 контура и генерации перегретого пара,

Основные характеристики парогенератора при работе на номинальном уровне мощности:

Паропроизводительность - 60 т/ч;

Давление пара - 3,72 МПа (абс.);

Температура пара, не менее - 290°С;

Температура питательной воды - 170°С;

Давление теплоносителя 1 контура - 12,7 МПа;

Расход теплоносителя 1 контура - 650 т/ч

Рабочий диапазон нагрузок - (10-100)% Nhom;

Расчетное давление -16,2 МПа;

Рабочая температура по 1 контуру максимальная - 317°С.

Парогенератор представляет собой сосуд, выполненный и виде сварной конструкции, и состоит из следующих основных элементов:

Вертикального цилиндрического корпуса 1 с эллиптическим днищем, облицованного изнутри коррозионностойкой наплавкой;

Выгородок внутрикорпусных 2, выполненных из нержавеющей стали, служащих для организации потока теплоносителя изнутри корпуса;

Патрубка типа «труба в трубе» 3, облицованного изнутри коррознонностойкой наплавкой, являющегося силовым элементом, соединяющим парогенератор с реактором и предназначенным для подвода и отвода теплоносителя 1 контура от реактора к парогенератору;

Выемной части парогенератора (системы трубной), состоящей из змеевиковой трубной бухты 4 и плоской крышки 5, привариваемой к фланцу корпуса силовым швом;

Парового коллектора 6 с выходным патрубком;

Питательного коллектора 7 с входным патрубком и с крышкой, соеди­ненной с коллектором при помощи шпилек и герметизируемой с ис­пользованием заварной манжеты;

Цапфы опорной 8.

Трубная система парогенератора выполнена в виде набора цилиндрических разнозаходных змеевиков, состоящих из 100 параллельно включенных трубных ветвей, объединенных в 20 самостоятельных секций по подводу питательной воды и отводу перегретого пара.

В случае возникновения межконтурной неплотности любая из секций может быть выявлена и заглушена по пару и питательной воде.

Подвод питательной воды к парогенерирующим змеевикам производится через 100 дроссельно-питательных опускных труб малого диаметра, обеспечивающих гидродинамическую устойчивость работы парогенератора в рабочем диапазоне.

При нормальной эксплуатации ПГ обеспечивает ввод РУ в действие, работу на мощности и расхолаживание при принудительной циркуляции по первому и второму контурам.

ПГ обеспечивает аварийное расхолаживание РУ, как при принудительной, так и естественной циркуляции в первом и втором контурах.

Вода 1 контура

Вода 1 контура

Питательная вода

Рис 13. Парогенератор.

1 – Корпус; 2 – выгородки внутрикорпусные; 3 – патрубок типа «труба в трубе»; 4 – трубная бухта; 5 – крышка; 6 – паровой коллектор; 7 – питательный коллектор; 8 – цапфа опорная; 9 – сильфонное уплотнение

Электронасос 1 контура

Электронасос (ЦНПК) предназначен для создания циркуляции воды в системе 1 контура.

Электронасос является оборудованием, выполняющим функции нормальной эксплуатации и обеспечения безопасности.

Тип электронасоса - герметичный, центробежный, одноступенчатый, вертикального исполнения с экранированным двухскоростным (двухобмоточным) асинхронным электродвигателем.

Электронасос (Рис. 1) состоит из электродвигателя и центробежного одноступенчатого насоса, объединенных в один агрегат.

Рис.14. Герметичный главный циркуляционный насос:

1 – рабочее колесо; 2 – направляющий аппарат; 3 – ротор электродвигателя; 4 – статорная перегородка; 5 – корпус статора; 6 – линзовое уплотнение.

Насос содержит рабочее колесо 1 и направляющий аппарат 2 с обратными клапанами, которые исключают циркуляцию теплоносителя через неработающий электронасос.

Электродвигатель состоит из статора, размещенного в корпусе 5, трубчатого холодильника, подшипников, и ротора 3.

Полость обмоток статора герметично отделена от роторной полости тонкостенной статорной перегородкой.

Статор закрыт сверху крышкой с уплотнением разъема с помощью линзовой прокладки 6.

Охлаждение обмоток статора, перегородки, ротора 3, а также смазка и охлаждение подшипников производится при помощи охлаждающей воды, циркулирующей в трубках холодильника.

В крышке предусмотрен штуцер для удаления газа при заполнении электронасоса водой.

Гидрокамера

Гидрокамера предназначена для установки электронасоса 1 контура, обеспечения его гидравлической связи с реактором и организации циркуляции теплоносителя 1 контура в ПГБ, а также для крепления ПГБ к фундаменту.

Основные технические характеристики гидрокамеры:

Рабочая среда - вода 1 контура в соответствии с нормами по ОСТ 95.10002-95;

Температура расчетная - 300°С;

Давление расчетное - 16,2 МПа;

Температура рабочая максимальная -300°С;

Гидрокамера представляет собой сварную конструкцию, состоящую из корпуса 1 с патрубком и опорами и цилиндрической обечайки 2. Патрубок предназначен для подсоединения к реактору, опоры для крепления ПГБ к фундаменту. Обечайка имеет резьбовые отверстия с футорками для крепления электронасоса.

Гидрокамера в нижней части снабжена направляющим устройством, состоящим из обечайки 6, переходника 3, седла 4, патрубка 5. К переходнику крепится вытеснитель 7, организующий поток теплоносителя.

Внутренняя поверхность корпуса с патрубком, контактирующая с теплоносителем, покрыта антикоррозионной наплавкой.

Рис 15. Гидрокамера:

1-корпус; 2-обечайка; 3-переходник; 4-седло; 5-патрубок; 6-обечайка; 7-вытесниель.

4.4. Система компенсации давления

Система компенсации давления предназначена для создания и поддержания давления 1 контура в заданных пределах во всех режимах работы установки и выполняет функции нормальной эксплуатации. Система выполняет также локализующие функции безопасности по обеспечению проектных характеристик плотности и прочности 1 контура, как барьера безопасности. В 1 контуре применена газовая система компенсации давления.

Описание технологической схемы

В состав системы входят:

Четыре компенсатора давления;

Две рабочие группы баллонов с газом;

Резервная группа баллонов;

Трубопроводы;

Арматура;

Гидравлически связанная с ней система газа высокого давления включая в себя арматуру и трубопроводы.

Подключение КД к реактору но воде производится с помощью крестовины-смесителя, трубопровода DN80 и трубопроводов DN50, не имеющих отсечной арматуры, а по газу - к группам баллонов газа трубопроводами DN32 с двойной запорной арматурой. Из трех газовых баллонов две рабочие, а одна - резервная. Все элементы системы размещены внутри 30. Сварные соединения системы и сильфонная арматура обеспечивают ее полную герметичность.

Компенсатор давления

Компенсатор давления предназначен для приема (возврата) теплоносителя 1 контура при температурных изменениях его объема, создания и поддержания в 1 контуре требуемого давления во время работы реакторной установки.

Компенсатор давления представляет собой герметичный сосуд, выполненный в виде сварной неразборной конструкции, и состоит из крышки 1, корпуса 2, днища 3.

В центр крышки вварен патрубок 13, имеющий гнездо для крепления на сварке датчика уровнемера, на нем же расположен патрубок 6 для подачи и отвода газа. Для организации подвода (отвода) воды 1 контура к крышке компенсатора давления приварены патрубки 5 и 12. К патрубку 12 приварена емкость 8 с трубой 7 с размещенным внутри защитным экраном 4. Для исключения вибрации трубы 10, в которую устанавливается уровнемер, к днищу приварен стакан 11, для исключения вибрации трубы подвода-отвода воды установлены хомуты 14, а для исключения вибрации экрана 4 - бобышки. Для установки и крепления компенсатор давления имеет фланец 9.

Рис 16. Компенсатор давления

1 – крышка; 2 – корпус; 3 – днище; 4 – экран емкости; 5 – патрубок; 6 – штуцер; 7 – труба; 8 – емкость; 9 – фланец; 10 – труба; 11 – стакан; 12 – патрубок; 13 – патрубок; 14 – диск; 15 – хомут;

Баллон газа высокого давления

Баллон предназначен для работы в составе системы КД и обеспечивает хранение, прием и возврат газа в систему при ее эксплуатации.

Баллон (рисунок 18) представляет собой двухгорловой герметичный сосуд, изготовленный по ГОСТ 9731-79 из бесшовных труб.

На монтаже в горловины баллона ввертываются штуцера, уплотняющиеся медными прокладками, к которым привариваются с одной стороны трубопроводы системы КД, а с другой - трубопроводы системы ГВД

Для обеспечения надежной длительной работы баллона предусмотрено:

    выполнение его бесшовным из трубной заготовки;

    выполнением его из легированной стали, обладающей высокими механическими свойствами и стабильностью свойств в течение всего срока службы.

Рис 17. Баллон газа высокого давления.

Атомоход … Орфографический словарь-справочник

Атомоход - Атомоход. АТОМОХОД (атомное судно), общее название надводных и подводных судов с ядерной силовой установкой (ЯСУ). Первая ЯСУ для подводной лодки создана в США (1949), первый гражданский атомоход ледокол “Ленин” построен в СССР (1959). … Иллюстрированный энциклопедический словарь

АТОМОХОД - (атомное судно), общее название надводных и подводных судов с ядерной силовой установкой (ЯСУ). Первая ЯСУ для подводной лодки создана в США (1949), первый гражданский атомоход ледокол Ленин построен в СССР (1959) … Современная энциклопедия

АТОМОХОД - общее название судов (надводных и подводных) с ядерной силовой установкой. 1 й гражданский атомоход советский ледокол Ленин (1959, СССР) … Большой Энциклопедический словарь

АТОМОХОД - АТОМОХОД, а, муж. Судно с ядерной силовой установкой. | прил. атомоходный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

атомоход - сущ., кол во синонимов: 1 судно (401) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Атомоход - (атомное судно) общее название судов с ядерной энергетической установкой. Различают атомоходы гражданские (ледоколы, транспортные суда) и военные (авианосцы, подводные лодки, крейсеры, фрегаты). EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

Атомоход - общее название судов с ядерной силовой установкой; существуют гражданские и военные атомоходы разного назначения: ледоколы, танкеры, подводные лодки, авианосцы и др. Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

атомоход - Судно с ядерной силовой установкой. [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN nuclear powered vesselNPV … Справочник технического переводчика

АТОМОХОД - общее название атомных судов (надводных и подводных) с ядерной энергетической установкой … Большая политехническая энциклопедия

Книги

  • Атомоход идет к полюсу , В. А. Спичкин, В. А. Шамонтьев В.. Мысль о плавании надводного судна к Северному полюсу давно волновала умы многих отважных мореплавателей и полярных исследователей. Это выдающееся событие в истории исследования полярных стран… Купить за 220 руб
  • Атомоход Лаврентий Берия , Дэвид Холловей. Книга американского исследователя Д. Холловея посвящена истории атомного проекта в СССР. Интересно, что в своей антисоветской по духу книге автор все же признает необходимость осуществления…

Принцип действия и устройство энергетических реакторов сводой под давлением.

Атомные энергетические установки (АЭУ). В настоящее время вопрос о широком применении ядерного горю­чего в судовых энергетических установках становится все более актуальным. Интерес к судам с АЭУ особенно возрос в 1973- 1974 гг., когда вследствие мирового энергетического кризиса резко повысились цены на органическое топливо. Основным преимуществом судов с АЭУ является практически неограничен­ная дальность плавания, что очень важно для ледоколов, судов арктического плавания, научно-исследовательских, гидрографи­ческих и пр.

Суточный расход ядерного горючего не превышает нескольких десятков граммов, а тепловыделяющие элементы в реакторе можно менять один раз в два-четыре года. АЭУ на транспортных судах, особенно на тех, которые совершают дальние рейсы с большой скоростью, позволяет значительно повы­сить грузоподъемность судна за счет практически полного отсут­ствия запаса топлива (это дает больший выигрыш, чем потери из-за значительной массы АЭУ). Кроме того, АЭУ может работать без доступа воздуха, что очень важно дляподводных судов. Однако пока потребляемое АЭУ топ­ливо еще очень дорого. Кроме того, на судах с АЭУ приходится пред­усматривать специальную биологи­ческую защиту от радиоактивного излучения, которая утяжеляет уста­новку. Надо полагать, что успехи в развитии атомной техники и в созда­нии новых конструкций и материалов позволят постепенно устранить эти недостатки судовых АЭУ.

Все современные судовые АЭУ используют тепло, выделяющееся при делении ядерного горючего для образования пара, или нагрева газов, поступающих затем в паровую или газовую турбины. Основное звено атомной паропроизводящей установки АППУ реактор, в котором происходит ядерная реакция. В качестве ядерного горючего используют различные расщепляющиеся вещества, у которых процесс деления ядер сопровождается выделением большого количества энергии. К таким веществам относятся изотопы урана, плутония и тория.



Рис. 6.1. Схема ядерного ре­актора.

1- активная зона; 2 -- урановые стержни; 3 - замедлитель; 4 -отражатель; 5 - теплоноситель; 6 - биологическая защита; 7 - тепловой экран; 8 - система ре­гулирования

Наиболее важными элемен­тами судовых реакторов являются (рис 6.2) активная зона, в которой размещены урановые стержни и замедли­тель, необходимый для поглощения энергии выделяющихся при распаде ядер частиц нейтронов; отражатель нейтронов, возвращающий в активную зону часть вылетевших за ее пределы нейтронов; теплоноситель для отбора из активной зоны тепла, выделяющегося при делении урана, и передачи этого тепла дру­гому рабочему телу в теплообменнике; экран биологической за­щиты, препятствующий распространению вредных излучений реактора; система управления и защиты, регулирующая течение реакции в реакторе и прекращающая ее в случае аварийного роста мощности.

Замедлителем в ядерных реакторах служит графит, тяжелая и обычная вода, а теплоносителем - жидкие металлы с низкой температурой плавления (натрий, калий, висмут), газы (гелий, азот, углекислый газ, воздух) или вода.

В судовых АЭУ получили распространение реакторы, у кото­рых и замедлителем и теплоносителем является дистиллированная вода, откуда и произошло их название водо-водяные реакторы. Эти реакторы проще по устройству, компактнее, надежнее в ра­боте, чем другие типы, и дешевле. В зависимости от способа передачи тепловой энергии от реак­тора исполнительному механизму (турбине) различают однокон­турную, двухконтурную и трехконтурную схемы АЭУ.

По одноконтурной схеме (рис. 6.2, а) рабочее вещество - пар - образуется в реакторе, откуда Поступает непосредственно в турбину и из нее через конденсатор с помощью циркуляционного насоса возвращается в реактор.

По двухконтурной схеме (рис. 6.2, б) циркулирующий в реак­торе теплоноситель отдает свое тепло в теплообменнике - паро­генераторе - воде, образующей пар, который поступает в тур­бину. При этом теплоноситель пропускают через реактор и паро­генератор циркуляционным насосом или воздуходувкой, а обра­зующийся в конденсаторе турбины конденсат прокачивают конденсатным насосом через систему подогрева, фильтрации и подпитки и питательным насосом снова подают в парогенератор.

Трехконтурная схема (рис. 6.2, в) представляет собой двух­контурную схему с включенным между первым и вторым конту­рами дополнительным промежуточным контуром.

Одноконтурная схема требует биологической защиты вокруг всего контура, включая и турбину, что усложняет обслуживание и управление и повышает опасность для экипажа. Безопаснее двухконтурная схема, так как здесь второй контур уже не опасен для экипажа. Поэтому на атомных судах почти всегда применяют двухконтурные схемы. Трехконтурные схемы используют в том случае, если теплоноситель в реакторе сильно активируется и его необходимо тщательно отделить от рабочего вещества, для чего и предназначен промежуточный контур.

Рис. 6.2. Тепловые схемы ядерных энергетических установок:

а - одноконтурная; б - двухконтурная; в - трехконтурная.

1 -реактор; 2 - турбина; 3 - конденсатор; 4 - циркуляционный насос; 5 -парогенератор; 6 - конденсатный насос; 7 - система по­догрева фильтрации и подпитки; 8 - питательный насос; 9 - тепло­обменник; 10 - биологическая защита

Принцип действия и устройство энергетических реакторов. На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину.

В реакторной установке, как и в обычном паровом котле, имеются насосы, теплообменники и другое вспомогательное оборудование. Особенностью ядерного реактора является его радиоактивное излучение, которое требует специальной защиты обслуживающего персонала.

Безопасность. Вокруг реактора приходится ставить массивную биологическую защиту. Обычные защитные материалы от радиоактивного излучения – бетон, свинец, вода, пластмассы и сталь.

Существует проблема хранения жидких и газообразных радиоактивных отходов. Жидкие отходы хранятся в специальных емкостях, а газообразные поглощаются активированным древесным углем. Затем отходы переправляются на берег на предприятия по их переработке.

Судовые ядерные реакторы. Основными элементами ядерного реактора являются стержни с делящимся веществом (ТВЭЛы), управляющие стержни, охладитель (теплоноситель), замедлитель и отражатель. Эти элементы заключены в герметичный корпус и расположены так, чтобы обеспечить управляемую ядерную реакцию и отвод выделяющегося тепла.

Горючим может быть уран-235, плутоний либо их смесь; эти элементы могут быть химически связаны с иными элементами, быть в жидкой или твердой фазе. Для охлаждения реактора используется тяжелая или легкая вода, жидкие металлы, органические соединения или газы. Теплоноситель может быть использован для передачи тепла другому рабочему телу и производства пара, а может использоваться непосредственно для вращения турбины. Замедлитель служит для уменьшения скорости образующихся нейтронов до значения, наиболее эффективного для реакции деления. Отражатель возвращает в активную зону нейтроны. Замедлителем и отражателем обычно служат тяжелая и легкая вода, жидкие металлы, графит и бериллий.

На всех военно-морских судах, на первом атомном ледоколе «Ленин», на первом грузо-пассажирском судне «Саванна» стоят энергетические установки, выполненные по двухконтурной схеме. В первичном контуре такого реактора вода находится под давлением до 13 МПа и поэтому не вскипает при температуре 270 0 С, обычной для тракта охлаждения реактора. Вода, нагретая в первичном контуре, служит теплоносителем для производства пара во вторичном контуре.

В первичном контуре могут использоваться и жидкие металлы. Такая схема применена на подводной лодке ВМС США «Си Вулф», где теплоносителем является смесь жидкого натрия с жидким калием. Давление в системе такой схемы сравнительно невелико.

Это же преимущество можно реализовать, используя в качестве теплоносителя парафинообразные органические вещества – дифенилы и трифенилы. В первом случае недостатком является проблема коррозии, а во втором – образование смолистых отложений.

Существуют одноконтурные схемы, в которых рабочее тело, нагретое в реакторе, циркулирует между ним и главным двигателем. По одноконтурной схеме работают газоохлаждаемые реакторы. Рабочим телом служит газ, например, гелий, который нагревается в реакторе, а затем вращает газовую турбину.

Защита. Ее главная функция – обеспечить защиту экипажа и оборудования от излучения, испускаемого реактором и другими элементами, имеющими контакт с радиоактивными веществами. Это излучение делится на две категории: нейтроны, выделяющиеся при делении ядер, и гамма-излучение, возникающее в активной зоне и в активированных материалах.

В общем случае на судах имеются две защитные оболочки. Первая расположена непосредственно вокруг корпуса реактора. Вторичная (биологическая) защита охватывает парогенераторное оборудование, систему очистки и емкости для отходов. Первичная защита поглощает большую часть нейтронов и гамма-излучение реактора. Это снижает радиоактивность вспомогательного оборудования реактора.

Первичная защита может представлять собой двухоболочечный герметичный резервуар с пространством между оболочками, заполненным водой, и наружным свинцовым экраном толщиной от 2 до 10 см. Вода поглощает большую часть нейтронов, а гамма-излучение частично поглощается стенками корпуса, водой и свинцом.

Основная функция вторичной защиты – снизить излучение радиоактивного изотопа азота 16N, который образуется в теплоносителе, прошедшем через реактор. Для вторичной защиты используются емкости с водой, бетон, свинец и полиэтилен.

Экономичность судов с атомными энергетическими установками. Для боевых кораблей стоимость постройки и эксплуатационные расходы имеют меньшее значение, чем преимущества почти неограниченной дальности плавания, большей энерговооруженности и скорости кораблей, компактности установки и сокращения обслуживающего персонала. Эти достоинства атомных энергетических установок обусловили их широкое применение на подводных лодках. Оправданно и применение энергии атома на ледоколах.

Вопросы для самопроверки:

Что является источником энергии для АЭУ?

Что собой представляет двухоболочечный герметичный резервуар?

Похожие публикации