Сложные уравнения с комплексными числами примеры решений. Как решить комплексное уравнение по математике

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Для наглядности решим такое задание:

Вычислить \[ (z_1\cdot z_2)^{10},\] если \

В первую очередь обратим внимание на то, что одно число представлено в алгебраической, другое - в тригонометрической форме. Его необходимо упростить и привести к следующему виду

\[ z_2 = \frac{1}{4} (\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}).\]

Выражение \ говорит о том, что в первую очередь делаем умножение и возведение в 10-ю степень по формуле Муавра. Эта формула сформулирована для тригонометрической формы комплексного числа. Получим:

\[\begin{vmatrix} z_1 \end{vmatrix}=\sqrt {(-1)^2+(\sqrt 3)^2}=\sqrt 4=2\]

\[\varphi_1=\pi+\arctan\frac{\sqrt 3}{-1}=\pi\arctan\sqrt 3=\pi-\frac{\pi}{3}=\frac{2\pi}{3}\]

Придерживаясь правил умножения комплексных чисел в тригонометрической форме, сделаем следующее:

В нашем случае:

\[(z_1+z_2)^{10}=(\frac{1}{2})^{10}\cdot(\cos (10\cdot\frac{5\pi}{6})+i\sin\cdot\frac{5\pi}{6}))=\frac{1}{2^{10}}\cdot\cos \frac{25\pi}{3}+i\sin\frac{25\pi}{3}.\]

Делая дробь \[\frac{25}{3}=8\frac{1}{3}\] правильной, приходим к выводу, что можно "скрутить" 4 оборота \[(8\pi рад.):\]

\[ (z_1+z_2)^{10}=\frac{1}{2^{10}}\cdot(\cos \frac{\pi}{3}+i\sin\frac{\pi}{3})\]

Ответ: \[(z_1+z_2)^{10}=\frac{1}{2^{10}}\cdot(\cos \frac{\pi}{3}+i\sin\frac{\pi}{3})\]

Данное уравнение можно решить еще одним способом, который сводится к тому, чтобы привести 2 -е число в алгебраическую форму, после чего выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и применить формулу Муавра:

Где можно решить систему уравнений с комплексными числами онлайн?

Решить систему уравнений вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА АГЛЕБРЫ И ГЕОМЕТРИИ

Комплексные числа

(избранные задачи)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по специальности 050201.65 математика

(с дополнительной специальностью 050202.65 информатика)

Выполнила: студентка 5 курса

физико-математического

факультета

Научный руководитель:

ВОРОНЕЖ – 2008


1. Введение……………………………………………………...…………..…

2. Комплексные числа (избранные задачи)

2.1. Комплексные числа в алгебраической форме….……...……….….

2.2. Геометрическая интерпретация комплексных чисел…………..…

2.3. Тригонометрическая форма комплексных чисел

2.4. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени……………..………………………………………………………

2.5. Комплексные числа и параметры………...……………………...….

3. Заключение…………………………………………………….................

4. Список литературы………………………….…………………...............


1. Введение

В программе математики школьного курса теория чисел вводится на примерах множеств натуральных чисел, целых, рациональных, иррациональных, т.е. на множестве действительных чисел, изображения которых заполняют всю числовую ось. Но уже в 8 классе запаса действительных чисел не хватает, решая квадратные уравнения при отрицательном дискриминанте. Поэтому было необходимо пополнить запас действительных чисел при помощи комплексных чисел, для которых квадратный корень из отрицательного числа имеет смысл.

Выбор темы «Комплексные числа», как темы моей выпускной квалификационной работы, заключается в том, что понятие комплексного числа расширяет знания учащихся о числовых системах, о решении широкого класса задач как алгебраического, так и геометрического содержания, о решении алгебраических уравнений любой степени и о решение задач с параметрами.

В данной дипломной работе рассмотрено решение 82-х задач.

В первой части основного раздела «Комплексные числа» приведены решения задач с комплексными числами в алгебраической форме, определяются операции сложения, вычитания, умножения, деления, операция сопряжения для комплексных чисел в алгебраической форме, степень мнимой единицы, модуль комплексного числа, а также излагается правило извлечения квадратного корня из комплексного числа.

Во второй части решаются задачи на геометрическую интерпретацию комплексных чисел в виде точек или векторов комплексной плоскости.

В третьей части рассмотрены действия над комплексными числами в тригонометрической форме. Используются формулы: Муавра и извлечение корня из комплексного числа.

Четвертая часть посвящена решению уравнений 3-й и 4-й степеней.

При решении задач последней части «Комплексные числа и параметры» используются и закрепляются сведения, приведенные в предыдущих частях. Серия задач главы посвящена определению семейств линий в комплексной плоскости, заданных уравнениями (неравенствами) с параметром. В части упражнений нужно решить уравнения с параметром (над полем С). Есть задания, где комплексная переменная удовлетворяет одновременно ряду условий. Особенностью решения задач этого раздела является сведение многих из них к решению уравнений (неравенств, систем) второй степени, иррациональных, тригонометрических с параметром.

Особенностью изложения материала каждой части является первоначальный ввод теоретических основ, а в последствии практическое их применение при решении задач.

В конце дипломной работы представлен список используемой литературы. В большинстве из них достаточно подробно и доступно изложен теоретический материал, рассмотрены решения некоторых задач и даны практические задания для самостоятельного решения. Особое внимание хочется обратить на такие источники, как:

1. Гордиенко Н.А., Беляева Э.С., Фирстов В.Е., Серебрякова И.В. Комплексные числа и их приложения: Учебное пособие. . Материал учебного пособия изложен в виде лекционных и практических занятий.

2. Шклярский Д.О., Ченцов Н.Н., Яглом И.М. Избранные задачи и теоремы элементарной математики. Арифметика и алгебра. Книга содержит 320 задач, относящихся к алгебре, арифметике и теории чисел. По своему характеру эти задачи значительно отличаются от стандартных школьных задач.


2. Комплексные числа (избранные задачи)

2.1. Комплексные числа в алгебраической форме

Решение многих задач математики, физики сводится к решению алгебраических уравнений, т.е. уравнений вида

,

где a0 , a1 , …, an действительные числа. Поэтому исследование алгебраических уравнений является одним из важнейших вопросов в математике. Например, действительных корней не имеет квадратное уравнение с отрицательным дискриминантом. Простейшим таким уравнением является уравнение

.

Для того чтобы это уравнение имело решение, необходимо расширить множество действительных чисел путем присоединения к нему корня уравнения

.

Обозначим этот корень через

. Таким образом, по определению , или ,

следовательно,

. называется мнимой единицей. С его помощью и с помощью пары действительных чисел и составляется выражение вида .

Полученное выражение назвали комплексными числами, поскольку они содержали как действительную, так и мнимую части.

Итак, комплексными числами называются выражения вида

, и – действительные числа, а – некоторый символ, удовлетворяющий условию . Число называется действительной частью комплексного числа , а число – его мнимой частью. Для их обозначения используются символы , .

Комплексные числа вида

являются действительными числами и, следовательно, множество комплексных чисел содержит в себе множество действительных чисел.

Комплексные числа вида

называются чисто мнимыми. Два комплексных числа вида и называются равными, если равны их действительные и мнимые части, т.е. если выполняются равенства , .

Алгебраическая запись комплексных чисел позволяет производить операции над ними по обычным правилам алгебры.

Для решения задач с комплексными числами необходимо разобраться с основными определениями. Главная задача данной обзорной статьи - объяснить, что же такое комплексные числа, и предъявить методы решения основных задач с комплексными числами. Итак, комплексным числом будем называть число вида z = a + bi , где a, b — вещественные числа, которые называют действительной и мнимой частью комплексного числа соответственно и обозначают a = Re(z), b=Im(z) .
i называется мнимой единицей. i 2 = -1 . В частности, любое вещественное число можно считать комплексным: a = a + 0i , где a — вещественное. Если же a = 0 и b ≠ 0 , то число принято называть чисто мнимым.

Теперь введем операции над комплексными числами.
Рассмотрим два комплексных числа z 1 = a 1 + b 1 i и z 2 = a 2 + b 2 i .

Рассмотрим z = a + bi .

Множество комплексных чисел расширяет множество вещественных чисел, которое в свою очередь расширяет множество рациональных чисел и т.д. Эту цепочку вложений можно рассмотреть на рисунке: N – натуральные числа, Z - целые, Q – рациональные, R – вещественные, C – комплексные.


Представление комплексных чисел

Алгебраическая форма записи.

Рассмотрим комплексное число z = a + bi , такая форма записи комплексного числа называется алгебраической . Эту форму записи мы уже подробно разобрали в предыдущем разделе. Довольно часто используют следующий наглядный рисунок


Тригонометрическая форма.

Из рисунка видно, что число z = a + bi можно записать иначе. Очевидно, что a = rcos(φ) , b = rsin(φ) , r=|z| , следовательно z = rcos(φ) + rsin(φ)i , φ ∈ (-π; π) называется аргументом комплексного числа. Такое представление комплексного числа называется тригонометрической формой . Тригонометрическая форма записи порой очень удобна. Например, ее удобно использовать для возведения комплексного числа в целую степень, а именно, если z = rcos(φ) + rsin(φ)i , то z n = r n cos(nφ) + r n sin(nφ)i , эта формула называется формулой Муавра .

Показательная форма.

Рассмотрим z = rcos(φ) + rsin(φ)i — комплексное число в тригонометрической форме, запишем в другом виде z = r(cos(φ) + sin(φ)i) = re iφ , последнее равенство следует из формулы Эйлера, таким образом мы получили новую форму записи комплексного числа: z = re iφ , которая называется показательной . Такая форма записи так же очень удобна для возведения комплексного числа в степень: z n = r n e inφ , здесь n не обязательно целое, а может быть произвольным вещественным числом. Такая форма записи довольно часто используется для решения задач.

Основная теорема высшей алгебры

Представим, что у нас есть квадратное уравнение x 2 + x + 1 = 0 . Очевидно, что дискриминант этого уравнения отрицателен и вещественных корней оно не имеет, но оказывается, что это уравнение имеет два различных комплексных корня. Так вот, основная теорема высшей алгебры утверждает, что любой многочлен степени n имеет хотя бы один комплексный корень. Из этого следует, что любой многочлен степени n имеет ровно n комплексных корней с учетом их кратности. Эта теорема является очень важным результатом в математике и широко применяется. Простым следствием из этой теоремы является такой результат: существует ровно n различных корней степени n из единицы.

Основные типы задач

В этом разделе будут рассмотрены основные типы простых задач на комплексные числа. Условно задачи на комплексные числа можно разбить на следующие категории.

  • Выполнение простейших арифметических операций над комплексными числами.
  • Нахождение корней многочленов в комплексных числах.
  • Возведение комплексных чисел в степень.
  • Извлечение корней из комплексных чисел.
  • Применение комплексных чисел для решения прочих задач.

Теперь рассмотрим общие методики решения этих задач.

Выполнение простейших арифметических операций с комплексными числами происходит по правилам описанным в первом разделе, если же комплексные числа представлены в тригонометрической или показательной формах, то в этом случае можно перевести их в алгебраическую форму и производить операции по известным правилам.

Нахождение корней многочленов как правило сводится к нахождению корней квадратного уравнения. Предположим, что у нас есть квадратное уравнение, если его дискриминант неотрицателен, то его корни будут вещественными и находятся по известной формуле. Если же дискриминант отрицателен, то есть D = -1∙a 2 , где a — некоторое число, то можно представить дискриминант в виде D = (ia) 2 , следовательно √D = i|a| , а дальше можно воспользоваться уже известной формулой для корней квадратного уравнения.

Пример . Вернемся к упомянутому выше квадратному уравнению x 2 + x + 1 = 0 .
Дискриминант — D = 1 — 4 ∙ 1 = -3 = -1(√3) 2 = (i√3) 2 .
Теперь с легкостью найдем корни:

Возведение комплексных чисел в степень можно выполнять несколькими способами. Если требуется возвести комплексное число в алгебраической форме в небольшую степень (2 или 3), то можно сделать это непосредственным перемножением, но если степень больше (в задачах она часто бывает гораздо больше), то нужно записать это число в тригонометрической или показательной формах и воспользоваться уже известными методами.

Пример . Рассмотрим z = 1 + i и возведем в десятую степень.
Запишем z в показательной форме: z = √2 e iπ/4 .
Тогда z 10 = (√2 e iπ/4) 10 = 32 e 10iπ/4 .
Вернемся к алгебраической форме: z 10 = -32i .

Извлечение корней из комплексных чисел является обратной операцией по отношению к операции возведения в степень, поэтому производится аналогичным образом. Для извлечения корней довольно часто используется показательная форма записи числа.

Пример . Найдем все корни степени 3 из единицы. Для этого найдем все корни уравнения z 3 = 1 , корни будем искать в показательной форме.
Подставим в уравнение: r 3 e 3iφ = 1 или r 3 e 3iφ = e 0 .
Отсюда: r = 1 , 3φ = 0 + 2πk , следовательно φ = 2πk/3 .
Различные корни получаются при φ = 0, 2π/3, 4π/3 .
Следовательно 1 , e i2π/3 , e i4π/3 — корни.
Или в алгебраической форме:

Последний тип задач включается в себя огромное множество задач и нет общих методов их решения. Приведем простой пример такой задачи:

Найти сумму sin(x) + sin(2x) + sin(2x) + … + sin(nx) .

Хоть в формулировке этой задачи и не идет речь о комплексных числах, но с их помощью ее можно легко решить. Для ее решения используются следующие представления:


Если теперь подставить это представление в сумму, то задача сводится к суммированию обычной геометрической прогрессии.

Заключение

Комплексные числа широко применяются в математике, в этой обзорной статье были рассмотрены основные операции над комплексным числами, описаны несколько типов стандартных задач и кратко описаны общие методы их решения, для более подробного изучения возможностей комплексных чисел рекомендуется использовать специализированную литературу.

Литература

Похожие публикации