Синапс нервной клетки и проведение нервного импульса. Проведение нервного импульса

Лекция № 3Проведение
нервного
импульса
Строение синапса

Нервные волокна

Мякотные
(миелинизированные)
Безмякотные
(немиелизированные)
Чувствительные и двигательные
волокна.
Принадлежат в основном
симпатической н.с.
ПД распространяется скачкообразно
(сальтаторное проведение).
ПД распространяется непрерывно.
при наличии даже слабой миелинизации
при том же диаметре волокна - 1520 м/с. Чаще при большем диаметре 120
м/сек.
При диаметре волокна около 2 µм и
отсутствии миелиновой оболочки
скорость проведения будет составлять
~1 м/с

I – немиелинизированное волокно II – миелинизированное волокно

По скорости проведения все нервные волокна подразделяются:

Волокна типа А – α, β, γ, δ.
Миелинизированные. Наиболее толстые α.
Скорость проведения возбуждения 70-120м/сек
Проводят возбуждение к скелетным мышцам.
Волокна β, γ, δ. Имеют меньший диаметр, меньшую
скорость, более длительный ПД. Преимущественно
чувствительные волокна тактильных, болевых
температурных рецепторов, рецепторов внутренних
органов.

Волокна типа В – покрыты миелиновой
оболочкой. Скорость от 3 –18 м/сек
- преимущественно преганглионарное
волокно вегетативной нервной системы.
Волокна типа С – безмякотные. Очень
малого диаметра. Скорость проведения
возбуждения от 0-3 м/сек. Это
постганглионарные волокна
симпатической нервной системы и
чувствительные волокна некоторых
рецепторов.

Законы проведения возбуждения в нервах.

1) Закон анатомической и
физиологической непрерывности
волокна. При любом повреждении нерва
(перерезка) или его блокады
(новокаином), возбуждение по нерву не
проводится.

2) Закон 2-х стороннего проведения.
Возбуждение проводится по нерву от
места нанесения раздражения в обе
стороны одинаково.
3) Закон изолированного проведения
возбуждения. В периферическом нерве
импульсы распространяются по каждому
волокну изолированно, т.е. не переходя с
одного волокна на другое и оказывают
действие только на те клетки, окончания
нервного волокна которого контактируют

Последовательность процессов, приводящих к блокаде проведения нервных импульсов под влиянием местного анестетика

1.Диффузия анестетика через оболочку нерва и
нервную мембрану.
2.Фиксация анестетика в зоне рецепторов в натриевом
канале.
3. Блокада натриевого канала и угнетение проницаемости
мембраны для натрия.
4.Снижение скорости и степени фазы деполяризации
потенциала действия.
5.Невозможность достижения порогового уровня и
развития потенциала действия.
6. Проводниковая блокада.

Синапс.

Синапс - (от греч. «соединять, связывать).
Это понятие ввел в 1897 г. Шеррингтон

Общий план строения синапса

Основные свойства синапсов:

1.Одностороннее проведение возбуждения.
2. Задержка проведения возбуждения.
3. Суммация и трансформация. Выделяемые
малые дозы медиатора суммируются и
вызывают возбуждение.
В результате этого частота нервных
импульсов, приходящих по аксону
трансформируется в иную частоту.

4. Во всех синапсах одного нейрона
выделяется один медиатор либо
возбуждающего либо тормозного действия.
5.Синапсы отличаются низкой лабильностью
и высокой чувствительностью к химическим
веществам.

Классификация синапсов

По механизму:
Химический
Электрический
Электро-химический
По расположению:
1. нервно-мышечные По знаку:
-возбуждающие
2. Нервно-нервные
- аксо-соматический -тормозные
- аксо-дендритный
- аксо-аксональный
- дендро-дендрические

Механизм проведения возбуждения в синапсе.

Последовательность действий:

* Поступление возбуждения в виде ПД к
окончанию нервного волокна.
* деполяризация пресинаптической
мембраны и высвобождение ионов Са++
из саркоплазматического ретикулюма
мембраны.
*Поступление Са++ при поступлении в
синаптическую бляшку способствует
высвобождению медиатора из везикул.

Электрические явления в живых тканях связаны с разностью концентраций ионов, несущих электрические заряды.

Согласно общепринятой мембранной теории происхождения биопотенциалов , разность потенциалов в живой клетке возникает потому, что ионы, несущие электрические заряды, распределяются по обе стороны полупроницаемой клеточной мембраны в зависимости от ее избирательной проницаемости к разным ионам. Активный перенос ионов против концентрационного градиента осуществляется с помощью так называемых ионных насосов , представляющих собой систему ферментов-переносчиков. Для этого используется энергия АТФ.

В результате работы ионных насосов концентрация ионов K + внутри клетки оказывается в 40-50 раз больше, а ионов Na + - в 9 раз меньше, чем в межклеточной жидкости. Ионы выходят на поверхность клетки, анионы остаются внутри нее, сообщая мембране отрицательный заряд. Таким образом создается потенциал покоя , при котором мембрана внутри клетки заряжена отрицательно по отношению к внеклеточной среде (ее заряд условно принимается за нуль). У различных клеток мембранный потенциал варьирует от -50 до -90 мВ.

Потенциал действия возникает в результате кратковременного колебания мембранного потенциала. Он включает две фазы:

  • Фаза деполяризации соответствует быстрому изменению мембранного потенциала примерно на 110 мВ. Это объясняется тем, что в месте возбуждения резко возрастает проницаемость мембраны для ионов Na + , так как открываются натриевые каналы. Поток ионов Na + устремляется в клетку, создавая разность потенциалов с положительным зарядом на внутренней и отрицательным на наружной поверхности мембраны. Мембранный потенциал в момент достижения пика составляет +40 мВ. Во время фазы реполяризации мембранный потенциал вновь достигает уровня покоя (мембрана реполяризуется), после чего наступает гиперполяризация до значения примерно -80 мВ.
  • Фаза реполяризации потенциала связана с закрытием натриевых и открытием калиевых каналов. Так как по мере выпада K + удаляются положительные заряды, мембрана реполяризуется. Гиперполяризация мембраны до уровня большего (более отрицательного), чем потенциал покоя, обусловлена высокой калиевой проницаемостью в фазу реполяризации. Закрытие калиевых каналов приводит к восстановлению исходного уровня мембранного потенциала; значения проницаемости для K + и Na + при этом также возвращаются к прежним.

Проведение нервного импульса

Разность потенциала, возникающая между возбужденным (деполяризованным) и покоящимися (нормально поляризованными) участками волокна, распространяются по всей его длине. В немиелинизированных нервных волокнах возбуждение передается со скоростью до 3 м/с. По аксонам, покрытым миелиновой оболочкой, скорость проведения возбуждения достигает 30-120 м/с. Такая высокая скорость объясняется тем, что деполяризующий ток не протекает через участки, покрытые изолирующей миелиновой оболочкой (участки между перехватами). Потенциал действия здесь распространяется скачкообразно.

Скорость проведения потенциала действия по аксону пропорциональна его диаметру. В волокнах смешанного нерва она варьирует от 120 м/с (толстые, диаметром до 20 мкм, миелинизированные волокна) до 0,5 м/с (самые тонкие, диаметром 0,1 мкм, безмякотные волокна).

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые. Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5-7 мкм, скорость проведения импульса 1-2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С. Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С - от 0,5 до 2 м/с.

Выделяют 5 законов проведения возбуждения:

  • 1. Нерв должен сохранять физиологическую и функциональную непрерывность.
  • 2. В естественных условиях распространение импульса от клетки к периферии. Имеется 2-х стороннее проведение импульса.
  • 3. Проведение импульса изолированно, т.е. волокна покрытые миелином не передают возбуждение на соседние нервные волокна, а только вдоль нерва.
  • 4. Относительная неутомимость нерва в отличие от мышц.
  • 5. Скорость проведения возбуждения зависит от наличия или отсутствия миелина и длины волокна.
  • 3. Классификация повреждений периферических нервов

Повреждения бывают:

  • А) огнестрельные: -прямые (пулевые, осколочные)
  • -опосредованные
  • -пневмоповреждения
  • Б) неогнестрельные: резаные, колотые, укушенные, компрессионные, компрессионно-ишемические

Так же в литературе встречается разделение повреждений на открытые(резаные, колотые, рваные, рубленные, ушибленные, размозженные раны) и закрытые(сотрясение, ушиб, сдавленно, растяжение, раз рыв и вывих) травмы периферической нервной системы.

Потенциал действия или нервный импульс, специфическая реакция, протекающая в виде возбуждающей волны и протекающей по всему нервному пути. Эта реакция является ответом на раздражитель. Главной задачей является передача данных от рецептора к нервной системе, а после этого она направляет эту информацию к нужным мышцам, железам и тканям. После прохождения импульса, поверхностная часть мембраны становится отрицательно заряженной, а внутренняя ее часть остается положительной. Таким образом, нервным импульсом называют последовательно передающиеся электрические изменения.

Возбуждающее действие и его распространение подвергается физико-химической природе. Энергия для проведения этого процесса образуется непосредственно в самом нерве. Происходит это из-за того, что прохождение импульса влечет образование тепла. Как только он прошел, начинается затихание или референтное состояние. В которою всего лишь долю секунды нерв не может проводить стимул. Скорость, с которой может поступать импульс колеблется в пределах от 3 м/с до 120 м/с.

Волокна, по которым проходит возбуждение, имеют специфическую оболочку. Грубо говоря, эта система напоминает электрический кабель. По своему составу оболочка может быть миелиновая и безмиелиновая. Самый главной составляющей миелиновой оболочки является – миелин, который играет роль диэлектрика.

Скорость прохождения импульса зависит от нескольких факторов, например, от толщины волокон, при чем оно толще, тем скорость развивается быстрее. Еще один фактором в повышении скорости проведения, является сам миелин. Но при этом он располагается не по всей поверхности, а участками, как бы нанизывается. Соответственно между этими участками есть те, которые остаются «голыми». По ним происходит утечка тока из аксона.

Аксоном называется отросток, с помощью него обеспечивается передача данных от одной клетки к остальным. Регулируется этот процесс с помощью синапса – непосредственной связи между нейронами или нейроном и клеткой. Еще существует, так называемое синаптическое пространство или щель. Когда поступает раздражительный импульс к нейрону, то в процессе реакции высвобождаются нейромедиаторы (молекулы химического состава). Они проходят через синаптическое отверстие, в итоге попадая на рецепторы нейрона или клетки, которой нужно донести данные. Для проведения нервного импульса необходимы ионы кальция, так как без этого не происходит высвобождение нейромедиатора.

Вегетативная система обеспечивается в основном безмиелиновыми тканями. По ним возбуждение распространяется постоянно и беспрерывно.

Принцип передачи основан на возникновении электрического поля, поэтому возникает потенциал, раздражающий мембрану соседнего участка и так по всему волокну.

При этом потенциал действия не передвигается, а появляется и исчезает в одном месте. Скорость передачи по таким волокнам составляет 1-2 м/с.

Законы проведения

В медицине присутствуют четыре основных закона:

  • Анатомо-физиологическая ценность. Проводится возбуждение только в том случае, если нет нарушения в целостности самого волокна. Если не обеспечивать единство, например, по причине ущемления, принятия наркотиков, то и проведение нервного импульса невозможно.
  • Изолированное проведение раздражения. Возбуждение может передаваться вдоль , никаким образом, не распространяясь на соседние.
  • Двустороннее проведение. Путь проведения импульса может быть только двух видов – центробежно и центростремительно. Но в действительности направление происходит в одном из вариантов.
  • Бездекрементное проведение. Импульсы не утихают, иными словами, проводятся без декремента.

Химия проведения импульса

Процесс раздражения так же контролируется ионами, в основном калием, натрием и некоторыми органическими соединениями. Концентрация расположения этих веществ разная, клетка заряжена внутри себя отрицательно, а на поверхности положительно. Этот процесс будет называться разностью потенциалов. При колебании отрицательного заряда, например, его уменьшении провоцируется разность потенциалов и этот процесс называется деполяризацией.

Раздражение нейрона влечет за собой открытие каналов натрия в месте раздражения. Это может способствовать вхождению положительно заряженных частиц во внутрь клетки. Соответственно отрицательный заряд снижается и происходит потенциал действия или происходит нервный импульс. После этого натриевые каналы снова прикрываются.

Часто встречается, что именно ослабление поляризации способствует открытию калиевых каналов, что провоцирует высвобождению положительно заряженных ионов калия. Этим действием уменьшается отрицательный заряд на поверхности клетки.

Потенциал покоя или электрохимическое состояние восстанавливается тогда, когда в работу включаются калий-натриевые насосы, с помощью которых ионы натрия выходят из клетки, а калия заходят в нее.

В результате можно сказать – при возобновлении электрохимических процессов и происходят импульсы, стремящиеся по волокнам.

ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА

СТРУКТУРА НЕРВНЫХ ВОЛОКОН

Проведение нервных импульсов является специализированной функцией нервных волокон, т. е. отростков нервных клеток.

Нервные волокна разделяют на мякотные, или миелинизированные, и безмякотные, немиелинизированные. Мякотные, чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру; они имеются также в вегетативной нервной системе. Безмякотные волокна у позвоночных животных принад­лежат в основном симпатической нервной системе.

Нервы обычно состоят как из мякотных, так и из безмякотных волокон, причем соотношение между числом тех и других в разных нервах различное. Например, во многих кожных нервах преобладают безмякотные нервные волокна. Так, в нервах веге­тативной нервной системы, например в блуждающем нерве, количество безмякотных волокон достигает 80-95 %. Наоборот, в нервах, иннервирующих скелетные мышцы, имеется лишь относительно небольшое количество безмякотных волокон.

На рис. 42 схематически показано строение миелинизированного нервного волокна. Как видно, оно состоит из осевого цилиндра и покрывающей его миелиновой оболочки. Поверхность осевого цилиндра образована плазматической мембраной, а его содержи­мое представляет собой аксоплазму, пронизанную тончайшими (диаметром 10-40 нм) нейрофибриллами (и микротубулами), между которыми находится большое количество митохондрий и микросом. Диаметр нервных волокон колеблется от 0,5 до 25 мкм.

Как показали электронно-микроскопические исследования, миелиновая оболочка создается в результате того, что миелоцит (шванновская клетка) многократно оберты­вает осевой цилиндр (рис. 43, I), слои ее сливаются, образуя плотный жировой футляр - миелиновую оболочку. Миелиновая оболочка через промежутки равной длины прерыва­ется, оставляя открытыми участки мембраны шириной примерно 1 мкм. Эти участки получили название перехватов (перехваты Ранвье).

Длина межперехватных участков, покрытых миелиновой оболочкой, примерно пропорциональна диаметру волокна. Так, в нервных волокнах, имеющих диаметр 10- 20 мкм, длина промежутка между перехватами составляет 1-2 мм. В наиболее тонких волокнах (диаметром 1-2 мкм) эти участки имеют длину около 0,2 мм.

Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друга только шванновскими клетками. В простейшем случае одиночный миелоцит окружает одно безмякотное волокно. Часто, однако, в складках миелоцита оказывается несколько тонких безмякотных волокон (рис. 43. II).

Рис.43. Роль миелоцита (шванновской клетки) в образовании миелиновой оболочки в мякотных нервных волокнах. Показаны последовательные стадии спиралеобразного закручивания миелоцита вокруг аксона (I). Взаимное расположение миелоцитов и аксонов в безмякотных нервных волок­нах (II).

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ СТРУКТУРНЫХ ЭЛЕМЕНТОВ МИЕЛИНИЗИРОВАННОГО НЕРВНОГО ВОЛОКНА

Можно считать доказанным, что в процессах возникновения и проведения нервного импульса основную роль играет поверхностная мембрана осевого цилиндра. Миелиновая оболочка выполняет двоякую функцию: функцию электрического изолятора и трофиче­скую функцию. Изолирующие свойства миелиновой оболочки связаны с тем, что миелин как вещество липидной природы препятствует прохождению ионов и потому обладает очень высоким сопротивлением. Благодаря существованию миелиновой оболочки возникновение возбуждения в мякотных нервных волокнах возможно не на всем протя­жении осевого цилиндра, а только в ограниченных участках - перехватах узла (перехвата Ранвье). Это имеет важное значение для распространения нервного импульса вдоль волокна.

Трофическая функция миелиновой оболочки, по-видимому, состоит в том, что она принимает участие в процессах регуляции обмена веществ и роста осевого цилиндра.

Рис.44. Гипотетический транспортный механизм нервного волокна.

Предполагается, что микротубулы (МТ) и нейрофиламенты (НФ) образованы миозином, а тонкие транспорт­ные филаменты - актином. При расщеплении АТФ транспортные фила менты скользят вдоль микротрубочек и таким образом переносят прикрепившиеся к ним митохондрии (М), молекулы белка (Б) или пузырьки (П) с медиатором. АТФ продуцируется митохондриями в результате распада глюкозы, проникающей в волокно. Энергия АТФ частично используется также натриевым насосом поверхностной мембраны.

Нейрофибриллы, микротубулы и транспортные филаменты обеспечивают транспорт различных веществ и некоторых клеточных органелл по нервным волокнам от тела нейрона к нервным окончаниям и в обратном направлении. Так, по аксону из тела клетки на периферию транспортируются: белки, формирующие ионные каналы и насосы;

возбуждающие и тормозные медиаторы; митохондрии. Подсчитано, что через попереч­ный разрез среднего по диаметру аксона в течение суток перемещается примерно 1000 митохондрии.

Обнаружено, что нейрофибриллы образованы сократительным белком актином, а микротубулы - белком тубулином. Предполагают, что микротубулы, взаимодействуя с нейрофибриллами, выполняют в нервном волокне ту же роль, которую в мышечном волокне играет миозин. Транспортные филаменты, образованные актином, «скользят» вдоль микротубул со скростью 410 мкм/сут. Они связывают различные вещества (напри­мер, белковые молекулы) или клеточные органеллы (митохондрии) и переносят их вдоль волокна (рис. 44).

Так же как и мышечный сократительный аппарат, транспортная система нервного волокна использует для своей работы энергию АТФ и нуждается в присутствии ионов Ca 2+ в цитоплазме.

ПЕРЕРОЖДЕНИЕ НЕРВНЫХ ВОЛОКОН ПОСЛЕ ПЕРЕРЕЗКИ НЕРВА

Нервные волокна не могут существовать вне связи с телом нервной клетки: перерезка нерва ведет к гибели тех волокон, которые оказались отделенными от тела клеток. У теплокровных живот­ных уже через 2-3 сут после перерезки нерва периферический его отросток утрачивает способность к проведению нервных импульсов. Вслед за этим начинается дегенерация нервных волокон, причем миелиновая оболочка претерпевает жировое перерождение. Это выражается в том, что мякотная оболочка теряет миелин, который скапливается в виде капель; распавшиеся волокна и их миелин рассасываются и на месте нервных волокон остаются тяжи, образованные леммоцитом (шванновской клеткой). Все эти изменения впервые были описаны английским врачом Валлером и названы по его имени валлеровским перерождением.

Регенерация нерва происходит очень медленно. Леммоциты, оставшиеся на месте дегенери­ровавших нервных волокон, начинают разрастаться вблизи места перерезки по направлению к центральному отрезку нерва. Одновременно перерезанные концы аксонов центрального отрезка образуют так называемые колбы роста - утолщения, которые растут в направлении перифериче­ского отрезка. Часть этих веточек попадает в старое ложе перерезанного нерва и продолжает расти в этом ложе со скоростью 0,5-4,5 мм в сутки до тех пор, пока не дойдет до соответствующей периферической ткани или органа, где волокна образуют нервные окончания. С этого времени восстанавливается нормальная иннервация органа или ткани.



В различных органах восстановление функции после перерезки нерва наступает в разные сроки. В мышцах первые признаки восстановления функций могут появиться через 5-6 нед;

окончательное восстановление происходит много позднее, иногда через год.

ЗАКОНЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В НЕРВАХ

При изучении проведения возбуждения по нерву было установлено несколько необходимых условий и правил (законов) протекания этого процесса.

Анатомическая и физиологическая непрерывность волокна. Проведение импульсов возможно лишь при условии анатомической целостности волокна, поэтому как церерезка нервных волокон, так и любая травма поверхностной мембраны нарушают проводи­мость. Непроводимость наблюдается также при нарушении физиологической целост­ности волокна (блокада натриевых каналов возбудимой мембраны тетродотоксином или местными анестетиками, резкое охлаждение и т. п.). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна ионами К, накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспали­тельном отеке тканей могут сопровождаться частичным или полным нарушением функ­ции проведения.

Двустороннее проведение. При раздражении нервного волокна возбуждение рас­пространяется по нему и в центробежном, и в центростремительном направлениях. Это доказывается следующим опытом.

К нервному волокну, двигательному или чувствительному, прикладывают две пары электродов, связанных с двумя электроизмерительными приборами А и Б (рис. 45). Раздражение наносят между этими электродами. В результате двустороннего проведе­ния возбуждения приборы зарегистрируют прохождение импульса как под электродом А, так и под электродом Б.

Двустороннее проведение не является только лабораторным феноменом. В естест­венных условиях потенциал действия нервной клетки возникает в той ее части, где тело переходит в ее отросток- аксон (так называемый начальный сегмент). Из начального сегмента потенциал действия распространяется двусторонне: в аксоне по направлению к нервным окончаниям и в тело клетки по направлению к ее дендритам.

Изолированное проведение. В периферическом нерве импульсы распространяются по каждому волокну изолированно, т. е. не переходя с одного волокна на другое и оказы­вая действие только на те клетки, с которыми контактируют окончания данного нервного волокна. Это имеет очень важное значение в связи с тем, что всякий периферический нервный ствол содержит большое число нервных волокон -двигательных, чувствитель­ных и вегетативных, которые иннервируют разные, иногда далеко отстоящие друг от друга и разнородные по структуре и функциям клетки и ткани. Например, блуждающий нерв иннервирует все органы грудной полости и значительную часть органов брюшной полости, седалищный нерв - всю мускулатуру, костный аппарат, сосуды и кожу нижней конечности. Если бы возбуждение переходило внутри нервного ствола с одного волокна на другое, то в этом случае нормальное функционирование периферических органов и тканей было бы невозможно-Изолированное проведение в отдельных волокнах смешанного нерва может быть доказано простым опытом на скелетной мышце, иннервированной смешанным нервом, в образовании кото­рого участвует несколько спинномозговых корешков. Если раздражать один из этих корешков, сокращается не вся мышца, как это было бы в случае перехода возбуждения с одних нервных волокон на другие, а только те группы мышечных волокон, которые иннервированы раздражаемым корешком. Еще более строгое доказательство изолированного проведения возбуждения может быть получено при отведении потенциалов действия от различных нервных волокон нервного ствола.

Изолированное проведение нервного импульса обусловлено тем, что сопротивление жидкости, заполняющей межклеточные щели, значительно ниже сопротивления мем-



Рис.45. Схематическое изображение опыта для доказательства двустороннего проведения импульса в нерве. Объяснение в тексте.

браны нервных волокон. Поэтому основная часть тока, возникающего между возбужден­ным (деполяризованным) и покоящимися участками возбудимой мембраны, проходит по межклеточным щелям, не заходя в соседние волокна.

Похожие публикации