Сглаженный ряд. Форум студентов мти - показать сообщение отдельно - эконометрика

Распространенным приемом при выявлении тенденции развития является сглаживание временного ряда. Суть различных приемов сглаживания сводится к замене фактических уровней временного ряда расчетными уровнями, которые подвержены колебаниям в меньшей степени. Это способствует более четкому проявлению тенденци и развития. Иногда сглаживание применяют как предварительный этап перед использованием других методов выделения тенденции

Скользящие средние позволяют сгладить как случайные, так и периодические колебания, выявить имеющуюся тенденцию в развитии процесса, и поэтому, являются важным инструментом при фильтрации компонент временного ряда.

Если рассматриваемое явление носит линейный характер, то применяется простая скользящая средняя. Алгоритм сглаживания по простой скользящей средней может быть представлен в виде следующей последовательности шагов:

1. Определяют длину интервала сглаживания g, включающего в себя g последовательных уровней ряда (g

2. Разбивают весь период наблюдений на участки, при этом интервал сглаживания как бы скользит по ряду с шагом, равным 1.

3. Рассчитывают арифметические средние из уровней ряда, образующих каждый участок.

4. Заменяют фактические значения ряда, стоящие в центре каждого участка, на соответствующие средние значения.

При этом удобно брать длину интервала сглаживания g в виде нечетного числа: g=2p+1, т.к. в этом случае полученные значения скользящей средней приходятся на средний член интервала.

Наблюдения, которые берутся для расчета среднего значения, называются активным участком сглаживания.

При нечетном значении g все уровни активного участка могут быть представлены в виде: yt-p, yt-p+1, ... , yt-1, yt, yt+1, ... , yt+p-1, yt+p,

а скользящая средняя определена по формуле:

Процедура сглаживания приводит к полному устранению периодических колебаний во временном ряду, если длина интервала сглаживания берется равной или кратной циклу, периоду колебаний.

Для устранения сезонных колебаний желательно было бы использовать четырех- и двенадцатичленную скользящие средние, но при этом не будет выполняться условие нечетности длины интервала сглаживания. Поэтому при четном числе уровней принято первое и последнее наблюдение на активном участке брать с половинными весами:

Тогда для сглаживания сезонных колебаний при работе с временными рядами квартальной или месячной динамики можно использовать следующие скользящие средние:

При использовании скользящей средней с длиной активного участка g=2p+1 первые и последние p уровней ряда сгладить нельзя, их значения теряются. Очевидно, что потеря значений последних точек является существенным недостатком, т.к. для исследователя последние "свежие" данные обладают наибольшей информационной ценностью. Рассмотрим один из приемов, позволяющих восстановить потерянные значения временного ряда . Для этого необходимо:

1.Вычислить средний прирост на последнем активном участке yt-p, yt-p+1, ... , yt, ... , yt+p-1, yt+p

2.Получить P сглаженных значений в конце временного ряда путем последовательного прибавления среднего абсолютного прироста к последнему сглаженному значению.

Аналогичную процедуру можно реализовать для оценивания первых уровней временного ряда.

Метод простой скользящей средней применим, если графическое изображение динамического ряда напоминает прямую. Когда тренд выравниваемого ряда имеет изгибы, и для исследователя желательно сохранить мелкие волны, применение простой скользящей средней нецелесообразно.

Если для процесса характерно нелинейное развитие, то простая скользящая средняя может привести к существенным искажениям. В этих случаях более надежным является использование взвешенной скользящей средней.

При построении взвешенной скользящей средней на каждом участке сглаживания значение центрального уровня заменяется на расчетное, определяемое по формуле средней арифметической взвешенной, т.е. уровни ряда взвешивают.

Взвешенная скользящая средняя приписывает каждому уровню вес, зависящий от удаления данного уровня до уровня, стоящего в середине участка сглаживания.

При сглаживании по взвешенной скользящей средней используются полиномы второго (парабола) или третьего порядка.

Сглаживание с помощью взвешенной скользящей средней осуществляется следующим образом: для каждого участка сглаживания подбирается полином вида:

Y i = a j + a 1 t

Y i = a o + a 1 t + a 2 t 2 +… a p t p

Параметры полинома находятся по методу наименьших квадратов.

При этом начало отсчета переносится в середину участка сглаживания, например, если длина интервалов сглаживания = 5, то индексы уровней участка сглаживания будут равны: -2, -1, 0, 1, 2.

у t t t
у1 -2
у2 -1
у3
у4
у5
t=0

Тогда сглаживающим значением для уровня, стоящего в середине участка сглаживания, будет значение параметра а 0 .

Нет необходимости каждый раз заново вычислять весовые коэффициенты при уровнях ряда, входящих в участок сглаживания, поскольку они будут одинаковыми для каждого участка сглаживания, например, если в интервал сглаживания входит 5 последующих уровней ряда и выравнивание производится по параболе, то коэффициенты параболы находят по методу наименьших квадратов, учитывая, что t = 0.

Метод наименьших квадратов в этой ситуации дает следующую систему уравнений:

Для нахождения параметра а0 используют 1 и 3 уравнение

-

34-=5*34а0-10*10а0

34-=а0(170-100)

а0=

Если длина интервала сглаживания равна 7, весовые коэффициенты следующие:

Отметим важные свойства приведенных весов:

1) Они симметричны относительно центрального уровня.

2) Сумма весов с учетом общего множителя, вынесенного за скобки, равна единице.

3) Наличие как положительных, так и отрицательных весов, позволяет сглаженной кривой сохранять различные изгибы кривой тренда.

Существуют приемы, позволяющие с помощью дополнительных вычислений получить сглаженные значения для Р начальных и конечных уровней ряда при длине интервала сглаживания g=2p+1.

Весовые коэффициенты при сглаживании по полиномам второго и третьего порядка


Тема 5: Методы измерения и изучения устойчивости временного ряда.

o устойчивость уровней ряда;

o устойчивость тренда.

Согласно статистической теории, статистический показатель содержит в себе элементы необходимого и случайного. Необходимость проявляется в форме тенденции временных рядов, а случайность в форме колебаний уровней относительно тренда. Тенденцией характеризуется процесс эволюции.

Расчленение временных рядов на составляющие элементы – условный описательный прием. Тем не менее, решающим фактором, обусловливающим тенденцию является целенаправленная деятельность человека, а главной причиной колеблемости – изменение условий жизнедеятельности.

Отсюда следует, что устойчивость не означает обязательного повторения одинакового уровня из года в год. Слишком узким было понятие устойчивости ряда как полное отсутствие любых колебаний уровней.

Сокращение колебаний уровней ряда – одна из главных задач при повышении устойчивости.

Устойчивость временных рядов - это наличие необходимой тенденции изучаемого показателя с минимальным влиянием на него неблагоприятных условий.

Для измерения устойчивости уровней временных рядов используют следующие показатели:

1) размах колеблемости - определяется как разница средних уровней за благоприятные и неблагоприятные по отношению к изучаемому явлению периоды времени:

R=y благопр – унеблагопр

К благоприятным периодам времени относятся все периоды с уровнями выше тренда, а к неблагоприятным – ниже тренда.

3)среднее линейное отклонение:

1) среднее квадратическое отклонение:

S(t)=

Уменьшение колеблемости во времени будет равнозначно устойчивости уровней.

Для характеристики устойчивости рекомендуются также следующие показатели:

1) процентный размах (PR):

Wmax/min – max/min относительный прирост.

W=

2) Скользящая средняя (МА) оценивает величину среднего отклонения от уровня скользящих средних (хt):

3) Среднее процентное изменение (АРС) оценивает среднее значение абсолютных величин, относительных приростов и квадратов относительных приростов:

АРС=

Для оценки устойчивости уровней временных рядов применяются относительные показатели колеблемости:

K=100 – V(t) – коэффициент устойчивости (в процентах или долях единиц).

Для измерения устойчивости тенденции динамики (тренда) используют следующие показатели:

1) коэффициент корреляции рангов (коэффициент Спирмена):

d - разность рангов уровней изучаемого ряда и рангов номеров периодов или моментов времени.

Для определения этого коэффициента величины уровней нумеруют в порядке возрастания, а при наличии одинаковых уровней им присваивается определенный ранг равный частному от деления рангов, приходящихся на число этих равных значений.

Коэффициент Спирмена может принимать значения в пределах от 0 до ±1. Если каждый уровень исследуемого периода выше, чем предыдущего, то ранги уровней ряда и номера лет совпадают – Кр=+1. Это означает полную устойчивость самого факта роста уровней ряда, то есть непрерывность роста. Чем ближе Кр к +1, тем ближе рост уровней к непрерывному, то есть выше устойчивости роста. Если Кр=0, рост совершенно неустойчив.

При отрицательных значениях чем ближе Кр к -1, тем устойчивее уменьшение изучаемого показателя.

I=

Индекс корреляции показывает степень сопряженности колебаний исследуемых показателей с совокупностью факторов, изменяющих их во времени. Приближение индекса корреляции к 1 означает, большую устойчивость изменения уровней временных рядов.

Число уровней ряда у двух показателей должно быть одинаково.

Применяются также комплексные показатели устойчивости , сущность которых заключается в определении их не через уровни временных рядов, а через показатели их динамики.

1. Показатель Каякиной определяется как отношение среднего прироста линейного тренда, т.е. параметра а1 к среднему квадратическому отклонению уровней от тренда:

Чем больше величина этого показателя, тем менее вероятно, что уровень ряда в следующем периоде будет меньше предыдущего.

2. Показатель опережения, который получают, сопоставляя темпы роста уровней ряда с темпами значения колеблемости:

Если показатель опережения > 1, то это свидетельствует о том, что уровни ряда в среднем растут быстрее колебаний или снижаются медленнее колебаний. В таком случае коэффициент колеблемости уровней будет уменьшаться, а коэффициент устойчивости уровней увеличиваться. Если показатель опережения меньше 1, то колебания растут быстрее уровней тренда и коэффициент колеблемости растет, а коэффициент устойчивости уровней уменьшается, то есть показатель опережения определяет направление динамики коэффициента устойчивости уровней.

Очень часто, урони рядов динамики колеблются, при этом тенденция развития явления во времени скрыта случайными отклонениями уровней в ту или иную сторону. С целью более четко выявить тенденцию развития исследуемого процесса, в том числе для дальнейшего применения методов прогнозирования на основе трендовых моделей, производят сглаживание (выравнивание ) временных рядов.

Методы сглаживания временных рядов делятся на две основные группы:

1. аналитическое выравнивание с использованием кривой, проведенной между конкретными уровнями ряда так, чтобы она отображала тенденцию, присущую ряду, и одновременно освобождала его от незначительных колебаний;

2. механическое выравнивание отдельных уровней временного ряда с использованием фактических значений соседних уровней.

Суть методов механического сглаживания заключается в следующем. Берется несколько уровней временного ряда, образующих интервал сглаживания. Для них подбирается полином, степень которого должна быть меньше числа уровней, входящих в интервал сглаживания; с помощью полинома определяются новые, выровненные значения уровней в середине интервала сглаживания. Далее интервал сглаживания сдвигается на один уровень ряда вправо, вычисляется следующее сглаженное значение и так далее.

Самым простым методом механического сглаживания является метод простой скользящей средней.

2.4.1. Метод простой скользящей средней.

Сначала для временного ряда: определяется интервал сглаживания . Если необходимо сгладить мелкие беспорядочные колебания, то интервал сглаживания берут по возможности большим; интервал сглаживания уменьшают, если нужно сохранить более мелкие колебания.

Для первых уровней ряда вычисляется их среднее арифметическое. Это будет сглаженное значение уровня ряда, находящегося в середине интервала сглаживания. Затем интервал сглаживания сдвигается на один уровень вправо, повторяется вычисление среднего арифметического и так далее. Для вычисления сглаженных уровней ряда применяется формула:

где (при нечетном ); для четных формула усложняется.

В результате такой процедуры получаются сглаженных значений уровней ряда; при этом первые и последние уровней ряда теряются (не сглаживаются). Другой недостаток метода в том, что он применим лишь для рядов, имеющих линейную тенденцию.

2.4.2. Метод взвешенной скользящей средней.

Метод взвешенной скользящей средней отличается от предыдущего метода сглаживания тем, что уровни, входящие в интервал сглаживания, суммируются с разными весами. Это связано с тем, что аппроксимация ряда в пределах интервала сглаживания осуществляется с использованием полинома не первой степени, как в предыдущем случае, а степени начиная со второй.

Используется формула средней арифметической взвешенной:

,

причем веса определяются с помощью метода наименьших квадратов. Эти веса рассчитаны для различных степеней аппроксимирующего полинома и различных интервалов сглаживания.

1. для полиномов второго и третьего порядков числовая последовательность весов при интервале сглаживания имеет вид: , а при имеет вид: ;

2. для полиномов четвертой и пятой степеней и при интервале сглаживания последовательность весов выглядит следующим образом: .

Распределение весов на протяжении интервала сглаживания, полученное на основе метода наименьших квадратов см. на диаграмме 1.



2.4.3. Метод экспоненциального сглаживания.

К той же группе методов относится метод экспоненциального сглаживания.

Его особенность заключается в том, что в процедуре нахождения сглаженного уровня используются значения только предшествующих уровней ряда, взятые с определенным весом, причем вес наблюдения уменьшается по мере удаления его от момента времени, для которого определяется сглаженное значение уровня ряда.

Если для исходного временного ряда

соответствующие сглаженные значения обозначить через , то экспоненциальное сглаживание осуществляется по формуле:

где параметр сглаживания ; величина называется коэффициентом дисконтирования.

Используя, приведенное рекуррентное соотношение для всех уровней ряда, начиная с первого и кончая моментом времени , можно получить, что экспоненциальная средняя, то есть сглаженное данным методом значение уровня ряда, является взвешенной средней всех предшествующих уровней.

Эконометрика 1 модуль
1. В каком законе выяснялись закономерности спроса на основе соотношений между урожаем зерновых и ценами на зерно?
в законе Кинга
2. Как называется мера разброса случайной величины?
дисперсия
3. При исследований каких моделей эконометрическое исследование может включать в себя выявление трендов, лагов, циклической компоненты?
моделей временных рядов
4. Какая из перечисленных шкал не относится к основным шкалам качественных признаков?
шкала отношений
5. Кто основал журнал «Эконометрика»?
Р. Фриш
6. Что из перечисленного может включать эконометрическое исследование на современном этапе развития при исследовании моделей по независимым неупорядоченным наблюдениям?
оценку параметров модели
7. В какой шкале есть естественная единица измерения, но нет естественного начала отсчета?
в шкале разностей
8. Кто из ученых создал теорию интегрированных моделей авторегрессии ¾ скользящего среднего?
Дж. Бокс и Г. Дженкинс
9. В какой системе каждая объясняемая переменная рассматривается как функция одного и того же набора факторов?
в системе независимых уравнений
10. Какая шкала измерений относится к шкалам количественных признаков?
шкала интервалов
11. Какие эконометрические модели разработали в 80 - в начале 90-х гг. Р.Э. Игл, Т. Боллеслев и Нельсон?
модели авторегрессионной условной гетероскедастичности
12. Какие шкалы измерений являются наиболее распространенными и удобными?
шкалы отношений
13. Какому ученому в 1980 г. присуждена Нобелевская премия за применение эконометрических моделей к анализу экономических колебаний и в экономической политике?
Л. Клейну
14. В какой стране было создано первое международное эконометрическое общество?
в США
15. Что из перечисленного является постоянной составляющей случайной величины?
среднеарифметическое значение
16. Что является целью эконометрики как науки? (по Э. Маленво)
эмпирический анализ экономических законов
17. Кто из исследователей придавал широкое толкование эконометрике, интерпретируя ее как любое применение математики или статистических методов к изучению экономических явлений?
Э. Маленво
18. Какие компоненты входят в состав случайных величин в процессе анализа?
постоянная и случайная компоненты
19. Чему равно среднее случайной компоненты, или остатка?
0
20. Кто впервые ввел термин «эконометрия»?
П. Цьемпа
21. Кто из отечественных ученых на союзном уровне описал динамику урожайности зерновых культур уравнениями с малым числом параметров?
В. Обухов
22. Какие разделы содержит эконометрика?
моделирование данных, неупорядоченных во времени, и теория временных рядов
23. Какие характеристики экономики невозможно измерить непосредственно?
латентные характеристики
24. Кто из ученых занимался проблемой цикличности?
К. Жюгляр
25. Кто является автором первой книги по эконометрике «Законы заработной платы: эссе по статистической экономике»?
Г. Мур

2 модуль
1. Если регрессия значима, то
Fнабл>Fкрит
2. Что показывает величина коэффициента регрессии?
среднее изменение результата с изменением фактора на одну единицу
3. Что означает совпадение среднего от выборочной оценки с искомой неизвестной величиной соответствующего параметра для генеральной совокупности?
несмещенность
4. Какой является регрессия, если k= 2?
множественной
5. Чем характеризуется рассеяние (отклонение) точек наблюдения относительно кривой регрессии?
остаточной регрессией
6. Какой коэффициент является показателем тесноты связи?
линейный коэффициент корреляции
7. Какая величина равна просто средней от суммы квадратов остатков (отклонений)?
остаточная регрессия
8. Каким выражением определяется коэффициент корреляции, являющийся мерой линейной связи между случайными величинами x и y?
r(x, y)=…
9. Какого значения не должна превышать средняя ошибка аппроксимации?
7-8%
10. Кто ввел термин «регрессия»?
Ф. Гальтон
11. Какой коэффициент в функции потребления используется для расчета мультипликатора?
коэффициент регрессии
12. С помощью какого коэффициента определяется качество подбора линейной функции?
с помощью коэффициента детерминации
13. Каким выражением определяется выборочный коэффициент корреляции?
r(x,y) с квадратами
14. Что называют результативным признаком в регрессионном анализе?
зависимую переменную
15. Дисперсию какой переменной исследует дисперсионный анализ?
зависимой переменной
16. Какая регрессия характеризуется прозрачной интерпретацией параметров модели?
линейная регрессия
17. Какой коэффициент характеризует долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака y?
коэффициент детерминации
18. Какой коэффициент показывает, на сколько процентов в среднем по совокупности изменится результат y от своей средней величины при изменении фактора x на 1% от его (фактора x) среднего значения?
коэффициент эластичности
19. Чему равна величина остаточной дисперсии, если фактические значения результативного признака совпадают с теоретическими или расчетными значениями?
0
20. Какой метод применяют для оценки параметров a, b уравнения регрессии?
метод наименьших квадратов (МНК)
21. Какой метод основан на требовании минимизации суммы квадратов отклонений фактических значений результативного признака от расчетных?
метод наименьших квадратов
22. При каком значении k регрессия называется парной?
k= 1
23. Что из перечисленного не относится к нелинейным регрессиям по оцениваемым параметрам?
показательная функция
24. Суть какой теоремы в том, что если случайная величина является общим результатом взаимодействия большого числа других случайных величин, ни одна из которых не оказывает преобладающего влияния на общий результат, то такая результирующая случайная величина будет описываться приблизительно нормальным распределением?
центральной предельной теоремы
25. Каким уравнением описывается линейная регрессия?
y = a + bx + ε
(3 ошибки)

3 модуль ()1 ошибка
1. Как проверяется гетероскедастичность моделей в асимптотическом тесте Бреуша и Пагана?
по критерию c2(r)
2. Какой критерий позволяет выбирать наилучшую модель из множества различных спецификаций и численно построен так, чтобы учесть влияние на качество подгонки модели двух противоположных тенденций?
критерий Шварца
3. По какой величине судят о качестве модели?
по средней относительной ошибке аппроксимации
4. Каким выражением описывается условие однородности (гомоскедастичности) наблюдений?
s2(yu) =s2(hu+eu) =s2(eu) =s2
5. Какой метод применим при условии диагональности матрицы ковариаций вектора ошибок?
метод наименьших квадратов
6. Каким выражением определяется абсолютная ошибка аппроксимации?
yi-y1i=e
7. Что понимается под мультиколлинеарностью?
высокая степень коррелированности объясняющих переменных
8. Какие переменные представляют собой исходные переменные, из которых вычитаются соответствующие средние, а полученная разность делится на стандартное отклонение?
стандартизованные переменные
9. Какая ошибка на контрольной выборке свидетельствует о хорошем качестве построенной модели?
4-9%
10. Каким методом может быть проведена оценка значимости мультиколлинеарности факторов?
методом испытания гипотезы о независимости переменных
11. Какая переменная должна выражаться в виде линейной функции от неизвестной переменной?
замещающая переменная
12. Дисперсии и ковариации ошибок наблюдений в обобщенной линейной модели множественной регрессии
могут быть произвольными
13. В чем заключается второй подход к решению проблемы гетероскедастичности?
в построении моделей, учитывающих гетероскедастичность ошибок наблюдений
14. Чем в простейшем случае парной регрессии является стандартизованный коэффициент регрессии?
линейным коэффициентом корреляции
15. Что из перечисленного используют для проверки гипотезы, если исследователь предполагает, что за время наблюдений произошли резкие структурные изменения в виде связей между зависимой и независимыми переменными?
тест Чоу
16. Чему равен определитель матрицы, если между факторами имеется полная линейная зависимость и все коэффициенты корреляции равны 1?
0
17. По какой формуле производят расчет коэффициентов модели при использовании метода гребневой регрессии?
bгр= (XTX+DгрIk+ 1)-1XTY
18. По какой формуле, согласно теореме Айткена, производится оценка коэффициентов модели?
b= (X¢W-1X)-1X¢W-1Y
19. Какой из перечисленных тестов не требует предположения о нормальности распределения регрессионных остатков?
тест ранговой корреляции Спирмена
20. Как называют переменную, которая должна быть в модели согласно правильной теории?
существенной
21. Чем ближе к единице значение определителя матрицы межфакторной корреляции, тем
меньше мультиколлинеарность факторов
22. Какой критерий используется для оценки значимости уравнения регрессии в целом?
F-критерия Фишера
23. Какой показатель фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов?
показатель детерминации
24. Какие коэффициенты позволяют исключать из модели дублирующие факторы?
коэффициенты интеркорреляции
25. Чему равно число степеней свободы остаточной суммы квадратов при линейной регрессии?
n- 2
Модуль 4
1. Какие этапы включает в себя процесс структурного моделирования?
все перечисленные этапы
2. Суть какого метода заключается в частичной замене непригодной объясняющей переменной на такую переменную, которая не коррелирована со случайным членом?
метода инструментальных переменных
3. Что представляет переменная x, входящая в выражение?
возмущающий процесс
4. При каком условии общее решение разностного уравнения вида носит «взрывной» характер?
при |a1|> 2
5. Как называются взаимозависимые переменные, которые определяются внутри модели (внутри самой системы) и обозначаются у?
эндогенными переменными
6. В какой модели на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента?
в сверхидентифицируемой
7. Какие коэффициенты называются структурными коэффициентами модели?
коэффициенты при эндогенных и экзогенных переменных в структурной форме модели
8. Какой метод при ограниченной информации, называется методом наименьшего дисперсионного отношения?
метод максимального правдоподобия
9. Как называются переменные, относящиеся к предыдущим моментам времени?
лаговыми переменными
10. Если набор чисел X связан с другим набором чисел Y зависимостью Y= 4X, то дисперсия Y должна быть
в 16 раз больше, чем дисперсия X
11. Какой метод применяется для решения идентифицируемой системы?
косвенный метод наименьших квадратов
12. Какие переменные понимаются под предопределенными переменными?
экзогенные переменные и лаговые эндогенные переменные
13. Какой метод используют, если нужно всего лишь уточнить характер связей переменных?
метод путевого анализа
14. Что позволяет сделать построение моделей корреляционной структуры?
проверить гипотезу о том, что матрица корреляции имеет определенный вид
15. Какой является модель, если все ее структурные коэффициенты однозначно определяются по коэффициентам приведенной формы модели и при этом число параметров в обеих формах модели одинаково?
идентифицируемой
16. Каким выражением определяется зависимость потребления в год с номером t от дохода в предыдущий период y(t- 1)?
C(t) =b+cy(t- 1)
17. Как называются независимые переменные, которые определяются вне системы и обозначаются как х?
экзогенными переменными
18. При каком условии вся модель считается идентифицируемой?
если идентифицируемо хотя бы одно уравнение системы
19. В каком случае модель является неидентифицируемой?
если число приведенных коэффициентов меньше числа структурных коэффициентов
20. Какие переменные часто приходится вводить для учета влияния качественных факторов?
фиктивные переменные
21. Что позволяет сделать построение моделей структуры средних?
исследовать структуру средних одновременно с анализом дисперсий и ковариаций
22. Какие переменные могут включать в себя причинные модели?
явные и латентные переменные
23. При каком условии уравнение неидентифицируемо?
если число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе, увеличенное на единицу, меньше числа эндогенных переменных в уравнении
24. При решении выражения способом движения «назад» ошибки ei
накапливаются
25. Что позволяет сделать моделирование ковариационной структуры?
проверить гипотезу о том, что матрица ковариации имеет определенный вид

4 модуль
1. О чем свидетельствуют большие значения, близкие к 1, величины (1 -а1) модели корректировки ошибок (МКО)?
о том, что экономические факторы сильно изменяют результат
2. На какое количество участков разбивается последовательность для проверки условия стационарности ряда?
на два участка
3. Для уменьшения амплитуды колебаний у сглаженного ряда Y(t)необходимо
увеличивать ширину интервала сглаживания m
4. Какое предположение является одним из априорных предположений при применении параметрических тестов для проверки стационарности?
предположение о нормальном законе распределения значений временного ряда
5. Что называется временным рядом?
последовательность значений признака, принимаемых в течение нескольких последовательных моментов времени или периодов
6. Как изменяется дисперсия сглаженного по квадратичному полиному ряда Y(t) при увеличении числа m уравнений?
уменьшается
7. Какие тренды коррелируют между собой?
временные
8. Что из перечисленного используют для проверки стационарности временного ряда?
сериальный критерий стационарности
9. Как называют корреляционную зависимость между последовательными уровнями временного ряда?
автокорреляцией уровней ряда
10. Как называется случайная переменная с переменной дисперсией?
гетероскедастической
11. При каком условии сглаживание ряда называется центрированным?
при k=l
12. Каким путем может быть исключен временной тренд из результирующей переменной?
путем построения регрессии этой переменной по времени и перехода к остаткам, которые образуют новую стационарную переменную, уже свободную от тренда
13. По какой формуле рассчитываются коэффициенты,если в качестве сглаживающего многочлена взять прямую?
ar= 1/m
14. Какая компонента объясняет отклонения от тренда с периодичностью от 2 до 10 лет?
циклическая компонента
15. Что в выражении обозначают параметром L?
функцию правдоподобия
16. Какая последовательность является белым шумом?
если каждая случайная величина последовательности имеет нулевое среднее и некоррелирована с другими элементами последовательности
17. К какому классу принадлежит ряд, если он содержит единичные корни и интегрируем с порядком d?
I(d)
18. Как называется стохастическая переменная с постоянной дисперсией?
гомоскедастическая переменная
19. Какой принцип разработки прогнозов предполагает соответствие, максимальное приближение теоретических моделей к реальным производственно-экономическим процессам?
адекватность прогнозирования
20. Как называется число значений исходного ряда, одновременно участвующих в сглаживании?
шириной интервала сглаживания
21. Что относится к основным принципам разработки прогнозов?
системность, адекватность, альтернативность
22. Для чего применяется сериальный критерий стационарности?
для проверки стационарности временного ряда
23. Как называется модель вида?
авторегрессионной условной гетероскедастической моделью (АРУГ-моделью)
24. Что представляет уравнение?
АРСС-процесс для {et2}-последовательности
25. Какие переменные используются в процессе случайного блуждания?
некоррелированные нестационарные переме

Министерство образования Российской Федерации

Всероссийский заочный финансово – экономический институт

Ярославский филиал

Кафедра статистики

Курсовая работа

по дисциплине:

«Статистика»

задание № 19

Студент: Курашова Анастасия Юрьевна

Специальность «Финансы и кредит»

3 курс, периферия

Руководитель: Сергеев В.П.

Ярославль, 2002 г.

1. Введение……………………………………………………………3 стр.

2. Теоретическая часть…………………………………………… …4 стр.

2.1 Основные понятия о рядах динамики…………………………...4 стр.

2.2 Методы сглаживания и выравнивания динамических рядов……………………………………………………………….6 стр.

2.2.1 Методы «механического сглаживания»………………………6 стр.

2.2.2 Методы «аналитического» выравнивания…………………. 8 стр.

3. Расчетная часть……………………………………………… ……11 стр.

4. Аналитическая часть……………………………………………. .16 стр.

5. Заключение ………………………………………………………. 25 стр.

6. Список литературы……………………………………………… 26 стр.

7. Приложения………………………………………………………. 27 стр.


Введение

Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Вся информация, имеющая народнохозяйственную значимость, в конечном счете, обрабатывается и анализируется с помощью статистики.

Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы.

Овладение статистической методологией - одно из условий познания конъюнктуры рынка, изучения тенденций и прогнозирования, принятия оптимальных решений на всех уровнях деятельности.

Сложной, трудоемкой и ответственной является заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязь между изучаемыми явлениями и процессами.

На всех стадиях исследования статистика использует различные методы. Методы статистики - это особые приемы и способы изучения массовых общественных явлений.

I. Теоретическая часть.

1.1 Основные понятия о рядах динамики.

Ряды динамики – статистические данные, отображающие развитие во времени изучаемого явления. Их также называют динамическими рядами, временными рядами.

В каждом ряду динамики имеется два основных элемента:

1) показатель времени t ;

2) соответствующие им уровни развития изучаемого явления y;

В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы, кварталы, месяцы, сутки).

Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

Ряды динамики различаются по следующим признакам:

1) По времени. В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам. В соответствии с этим ряды динамики подразделяются на моментные и интервальные.

Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени. Примером моментного ряда динамики является следующая информация о списочной численности работников магазина в 1991 году (таб. 1):

Таблица 1

Списочная численность работников магазина в 1991 году

Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Хотя и в моментном ряду есть интервалы – промежутки между соседними в ряду датами, -- величина того или иного конкретного уровня не зависит от продолжительности периода между двумя датами. Так, основная часть персонала магазина, составляющая списочную численность на 1.01.1991 , продолжающая работать в течение данного года, отображена в уровнях последующих периодов. Поэтому при суммировании уровней моментного ряда может возникнуть повторный счет.

Посредством моментных рядов динамики в торговле изучаются товарные запасы, состояние кадров, количество оборудования и других показателей, отображающих состояние изучаемых явлений на отдельные даты (моменты) времени.

Интервальные ряды динамики отражают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени.

Примером интервального ряда могут служить данные о розничном товарообороте магазина в 1987 – 1991 гг. (таб. 2):

Таблица 2

Объем розничного товарооборота магазина в 1987 - 1991 гг.

Объем розничного товарооборота, тыс. р.

885.7 932.6 980.1 1028.7 1088.4

Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней.

Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы (субпериоды) времени. Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а суммируя товарооборот за четыре квартала, получают его величину за год, и т. д. При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.

Свойство суммирования уровней за последовательные интервалы времени позволяет получить ряды динамики более укрупненных периодов.

Посредством интервальных рядов динамики в торговле изучают изменения во времени поступления и реализации товаров, суммы издержек обращения и других показателей, отображающих итоги функционирования изучаемого явления за отдельные периоды.

Структура ряда динамики:

Всякий ряд динамики теоретически может быть представлен в виде составляющих:

1) тренд – основная тенденция развития динамического ряда (к увеличению или снижению его уровней) ;

2) циклические (периодические колебания, в том числе сезонные);

случайные колебания.

1. 2. Методы сглаживания и выравнивания динамических рядов.

Исключение случайных колебаний значений уровней ряда осуществляется с помощью нахождения «усредненных» значений. Способы устранения случайных факторов делятся на две больше группы:

1. Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.

2. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.

1.2. 1 Методы «механического» сглаживания.

Сюда относятся:

а. Метод усреднения по двум половинам ряда, когда ряд делится на две части. Затем, рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда. Очевидно, что такой тренд не достаточно полно отражает основную закономерность развития явления.

б. Метод укрупнения интервалов, при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.

в. Метод скользящей средней. Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период. Последовательность определения скользящей средней:

Устанавливается интервал сглаживания или число входящих в него уровней. Если при расчете средней учитываются три уровня, скользящая средняя называется трехчленной, пять уровней – пятичленной и т.д. Если сглаживаются мелкие, беспорядочные колебания уровней в ряду динамики, то интервал (число скользящей средней) увеличивают. Если волны следует сохранить, число членов уменьшают.

Исчисляют первый средний уровень по арифметической простой:

y1 = Sy1/m, где

y1 – I-ый уровень ряда;

m – членность скользящей средней.

Первый уровень отбрасывают, а в исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет y будет включен последний уровень исследуемого ряда динамики y n .

По ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления.

Отрицательной стороной использования метода скользящей средней является образование сдвигов в колебаниях уровней ряда, обусловленных «скольжением» интервалов укрупнения. Сглаживание с помощью скользящей средней может привести к появлению «обратных» колебаний, когда выпуклая «волна» заменяется на вогнутую.

В последнее время стала рассчитываться адаптивная скользящая средняя. Ее отличие состоит в том, что среднее значение признака, рассчитываемое также как описано выше, относится не к середине ряда, а к последнему промежутку времени в интервале укрупнения. Причем предполагается, что адаптивная средняя зависит от предыдущего уровня в меньшей степени, чем от текущего. То есть., чем больше промежутков времени между уровнем ряда и средним значением, тем меньшее влияние оказывает значение этого уровня ряда на величину средней.

г. Метод экспоненциальной средней. Экспоненциальная средняя – это адаптивная скользящая средняя, рассчитанная с применением весов, зависящих от степени «удаленности» отдельных уровней ряда от среднего значения. Величина веса убывает по мере удаления уровня по хронологической прямой от среднего значения в соответствии с экспоненциальной функцией, поэтому такая средняя называется экспоненциальной. На практике применяется многократное экспоненциальное сглаживания ряда динамики, которое используется для прогнозирования развития явления.

Вывод: способы, включенные в первую группу, ввиду применяемых методик расчета предоставляют исследователю очень упрощенное, неточное, представление о тенденции в ряду динамики. Однако корректное применение этих способов требует от исследователя глубины знаний о динамике различных социально - экономических явлений.

таблице 4.

Таблица 4.

Для данного ряда:К=8, L=-8.

8 3.703 3,46

Находим теоретические значения характеристики с (n-2) степенями

t 0,95,n 2=2,365,

т.е. с вероятностью

утверждать, что

имеется тенденция в дисперсии (t K t теор ) и имеется тенденция в среднем, так какt L t теор . Следовательно, можно говорить о наличии тренда во временном

Метод средних

5.3. Методы механического сглаживания временного ряда

Очень часто уровни экономических рядов динамики колеблются, при

этом тенденция развития экономического явления во времени скрыта случайными отклонениями уровней в ту или иную сторону. С целью более четкого выявления тенденции развития исследуемого процесса, в том числе для дальнейшего применения методов прогнозирования на основе трендовых

моделей, производят сглаживание (выравнивание) временных рядов.

Сглаживание всегда включает некоторый способ локального усреднения данных, при котором несистематические компоненты взаимно погашают друг друга.

Методы сглаживания временных рядов делятся на две основные группы:

1) механическое выравнивание отдельных уровней временного ряда с

использованием фактических значений соседних уровней.

2) аналитическое выравнивание с использованием кривой, проведенной

между конкретными уровнями ряда так, чтобы она отображала тенденцию, присущую ряду, и одновременно освобождала его от незначительных

колебаний;

Суть методов механического сглаживания заключается в следующем.

Берется несколько первых уровней временного ряда, образующих интервал сглаживания. Для них подбирается полином, степень которого должна быть меньше числа уровней, входящих в интервал сглаживания; с помощью полинома определяются новые, выровненные значения уровней в середине

Метод простой скользящей средней.

Самый простой метод сглаживания - скользящее среднее, в котором

дних членов, где m - ширина интервала сглаживания. Вместо среднего можно использовать медиану значений, попавших в интервал сглаживания.

Если необходимо сгладить мелкие беспорядочные колебания, то интервал сглаживания берут по возможности большим. Если нужно сохранить более мелкие колебания, интервал сглаживания уменьшают. При прочих равных условиях интервал сглаживания рекомендуется брать нечетным.

Для вычисления сглаженных уровней ряда Y t применяется формула:

Где p m 1 (при нечетномт);

В результате такой процедуры получаются (n-m+1 )сглаженных значений уровней ряда; при этом первыер и последниер уровней ряда теряются (не сглаживаются). -

При четных значениях т, после процедуры сглаживания обычно поводят центрирование полученного ряда (находят средние значения двух последовательных скользящих средних).

Данный метод применим применим лишь для рядов, имеющих линейную

тенденцию. Если для процесса характерно нелинейное развитие, то простая скользящая средняя может привести к существенным искажениям.

Когда тренд выравниваемого ряда имеет изгибы и для исследователя желательно сохранить волны, то предпочтительной является взвешенная

скользящая средняя. При построении взвешенной скользящей средней на

каждом интервале сглаживания значение центрального уровня заменяется на расчетное, определяемое по формуле взвешенной средней арифметической:

y tw i

где w i - весовые коэффициенты, определяемы методом наименьших

квадратов, при этом выравнивание на каждом интервале сглаживания осуществляется чаще всего с применением полиномов второго или третьего порядков11 .Например, весовые коэффициенты для интервала 5 будут

следующие: 35 1 [ 3, 12, 17, 12, 3] , а для интервала 7: 21 1 [ 2, 3, 6, 7, 6, 3, 2]

Пример . Задан временной ряд объема выпуска продукции (в тыс. руб). Уровни ряда Y (t ) приведены в таблице 5.

Выберем интервал сглаживания m=3 и проведем сглаживание простой скользящей средней (третья строка таблицы) После сглаживания явно видна возрастающая тенденция.

11 Михтарян В.С., Архипова М.Ю. и др. Эконометрика.: учеб./ под ред. Михтарян В.С. М.: ООО

«Проспект»,2008 , стр. 293

Таблица 5

S(t)ср

S(t)вз

интервал сглаживания

проведем

сглаживание

взвешенной

скользящей средней на основе полинома второй степени

(четвертая

таблицы), используя приведенные

выше весовые

коэффициенты.

Метод экспоненциального сглаживания.

При исследовании экономических данных иногда важным является влияние на процесс более поздних наблюдений. Этот вопрос решает метод

экспоненциального сглаживания. В этом случае текущее значение временного

ряда сглаживается с учетом сглаживающей константы (веса), обычно

обозначаемой. Расчет проводится по следующей формуле:

S t Y t (1) S t 1 , (5.4),

Рассматривая рекуррентный процесс разложения для величин S t 1 ,S t 2 и

т.д. по формуле (5.4), получим:

) j Y t j (1)t Y 0

S t(1

где j – число периодов отставания от моментаt . Согласно формуле (5.5)

относительный вес каждого предшествующего уровня снижается по экспоненте по мере удаления от момента, для которого вычисляется сглаженное значение.

Отсюда и название данного метода.

При практическом использовании метода возникают проблемы выбора параметра и определения начального уровня Y 0 . Чем больше значение

параметра, тем меньше сказывается влияние предшествующих уровней В каждом конкретном случае необходимо выбирать наиболее приемлемое

значение. Чаще всего это делается на основе проверки нескольких значений.

Задачу выбора начального значения Y 0 решают следующим образом: заY 0

принимается первое значение временного ряда или среднее арифметическое

нескольких первых членов ряда.

Рассмотрим предыдущий пример. Проведем экспоненциальное

сглаживание временного ряда (третья строка табли цы)

Первое сглаженное значение равняется первому уровню ряда.. Следующее сглаженное значение рассчитываем согласно формуле (5.3), где

Похожие публикации