Самый быстрый поезд в мире. Высокоскоростное движение поездов

Высокоскоростное движение поездов

Сложилась следующая градация скоростей движения пассажирских поездов:

до 140-160 км/ч – движение поездов на обычных железных дорогах;

до 200 км/ч – скоростное движение поездов, как правило, на реконструированных линиях;

свыше 200 км/ч – высокоскоростное движение на специально построенных высокоскоростных магистралях (ВСМ) .

В истории развития железных дорог России прослеживается последовательное увеличение скоростей. Еще в 1901 г. на железной дороге Санкт-Петербург - Москва курьерские поезда обращались с максимальной скоростью 110 км/ч. В 1913 г. в опытных поездках с обычным паровозом серии С достигалась скорость 125 км/ч, а в 1915 г. с паровозом серии Л - максимальная скорость 117 км/ч.

В 1938 г. на магистрали Москва - Ленинград впервые в СССР была достигнута скорость 177 км/ч при испытании паровоза, изготовленного Коломенским заводом с осевой формулой 2-3-2 и нагрузкой на ось 20,5 т. Поездки (опытные и эксплуатационные) производились на рельсах массой 43,6 кг/м. В 1960-х годах между Москвой и Ленинградом был проведен комплекс опытных поездок, в которых максимальная скорость достигала 220 км/ч.

В 1972 г. в СССР были проведены опытные поездки пассажирского вагона с турбореактивным двигателем со скоростью 240 км/ч.

Первые проекты скоростной магистрали Москва - Ленинград разрабатывались еще в 1930-х годах (К.Н. Кашкин, Г.Д. Дубилер, И.В. Романов). Однако реально работы по организации железнодорожного движения с повышенными скоростями начались лишь в начале 1960-х годов.

После укладки бесстыкового пути из рельсов Р65, замены стрелочных переводов, завершения электрификации и использования электровозов серии ЧС2 в 1964 г. на линии Москва – Ленинград ввели в обращение дневной экспресс «Аврора» с маршрутной скоростью 130,4 км/ч.

Первый в СССР скоростной поезд ЭР 200 («Электропоезд Рижский»), имевший максимальную скорость 200 км/ч, разработан и изготовлен в 1968-74 г.г. С 1984 г. электропоезд ЭР 200 эксплуатировался на линии Москва – Ленинград. Время в пути этого поезда между конечными пунктами составляло 4 ч 30 мин, маршрутная скорость – 144 км/ч. Одновременно с ЭР 200 велась разработка еще одного скоростного поезда, получившего наименование «Русская тройка», рассчитанного на скорость до 200 км/ч. Поезд должен был представлять собой состав постоянного формирования из вагонов РТ 200 Калининского (с 1990 г. Тверского) вагоностроительного завода и электровоза ЧС 200 (производства ЧССР). Было изготовлено 8 опытных вагонов, которые показали на испытаниях хорошие результаты, однако в коммерческой эксплуатации поезд «Русская тройка» не использовался.

С 1994 г. в России осуществлялась отраслевая программа развития скоростного движения, в соответствии с которой были реализованы проекты создания специального подвижного состава на максимальные скорости движения до 200 км/ч: скоростных пассажирских электровозов ЭП 100 постоянного тока и ЭП 200 переменного тока, пассажирских вагонов разного класса для скоростного движения.

В 2009 г. на линии Москва – Санкт-Петербург начали эксплуатироваться скоростные поезда «Сапсан», произведенные в содружестве с компанией «Сименс». Максимальная скорость этих поездов 250 км/ч. Расстояние 650 км преодолевается за 3 ч 45 мин. За первый год перевезено 2 млн. пассажиров. Летом 2010 г. организовано движение поездов «Сапсан» на направлении Москва – Нижний Новгород.

В декабре 2010 г. началось регулярное движение скоростных поездов «Аллегро», производства компании Alstom, между Санкт-Петербургом и Хельсинки. Максимальная скорость движения нового электропоезда по территории России 200 км/ч, Финляндии – 220 км/ч. Время в пути на этом международном маршруте сократилось с 6 ч 18 мин до 3 ч 30 мин.

Одним из стратегических направлений инновационного развития ОАО «РЖД» на период до 2015 г. является расширение высокоскоростного движения пассажирских поездов (рис. 67). О значении, которое придается высокоскоростному движению пассажирских поездов, свидетельствует подписанный 16 марта 2010 г. Президентом Российской Федерации Указ «О мерах по организации движения высокоскоростного железнодорожного транспорта в Российской Федерации».

История развития железнодорожного транспорта насчитывает немало достижений в области повышения скорости движения, часто они являлись своего рода техническими сенсациями. Еще в 1847 г. в Англии на одном из участков Большой Западной железной дороги протяженностью 92 км пассажирские поезда достигали скорости 93 км/ч. В 1890 г. паровоз «Crampton» во Франции с поездом массой 157 т развил скорость 144 км/ч. Рубеж скорости 200 км/ч впервые преодолел немецкий электропоезд. В 1903 г. на участке Мариенфельде - Цоссен во время испытаний была достигнута скорость 210 км/ч.

Рис. 67. Развитие скоростного пассажирского движения в России

В 1955 г. во Франции впервые превышен рубеж 300 км/ч и установлен рекорд скорости - 331 км/ч. Этот рекорд был улучшен 28 февраля 1981 г.- поезд TGV достиг скорости 380 км/ч.

Продолжающиеся в этой области работы показывают, что традиционная транспортная система колесо - рельс не исчерпала своих возможностей. В 1988 г. в Германии при испытаниях экспериментального поезда ICE реализована скорость 406,9 км/ч. Но и этот рубеж вскоре был превзойден: в 1989 г. поезд TGV во Франции достиг скорости 412, затем 482,4 и, наконец, в мае 1990 г. был установлен невероятный рекорд скорости - 515,3 км/ч.

Впервые в мире идея высокоскоростного железнодорожного движения была реализована в Японии (рис. 68), между городами Токио и Осака, где в 1964 г. была сдана в эксплуатацию высокоскоростная магистраль Токайдо протяженностью 516 км. Максимальная скорость движения на новой линии составляла 210 км/ч, а поездка из Токио в Осака занимала 3 ч 10 мин.

Благодаря высокой скорости и комфорту высокоскоростные поезда завоевали широкое признание у населения. Уже через 5 лет перевозки пассажиров на этой линии возросли более чем в 2 раза и достигли 70 млн. чел. в год. Столь значительные объемы работы обеспечили прочную основу экономической эффективности высокоскоростной магистрали и позволили японским железным дорогам планировать дальнейшее строительство таких линий.

Рис. 68. Первый высокоскоростной электропоезд (Япония)

В 1970 г. в Японии принят закон о создании общенациональной сети высокоскоростных железнодорожных линий, которая получила название Синкансен. Это дало новый импульс развитию высокоскоростного движения. В 1975 г. вступила в строй высокоскоростная линия Санье. Перешагнув через пролив, эта линия достигла города Фукуока, соединив два острова - Кюсю и Хонсю.

1982 г. ознаменовался открытием еще двух новых высокоскоростных магистралей (ВСМ): линии Тохоку, расположенной к северу от Токио и связывающей города Омия и Мариока, и линии Дзеэцу, пересекающей остров Хонсю от побережья Японского моря до побережья Тихого океана на маршруте Омия - Ниигата. В начале 2000-х годов протяженность высокоскоростной железнодорожной сети в Японии, включающей в себя шесть магистрали, превысила 2100 км, а максимальная скорость обращающихся по ней поездов составляет 240-260 км/ч (рис. 69).

Магистрали Синкансен предназначены только для пассажирского движения. В отличие от обычных железных дорог, которые имеют узкую колею, ширина колеи высокоскоростных, линий соответствует европейскому стандарту и составляет 1435 мм. В результате поезда типа Синкансен вынуждены обращаться в замкнутой системе. Высокоскоростные магистрали заходят непосредственно в центры городов и населенных пунктов, пересекая их на эстакадах высотой 25-30 м.

Рис. 69. Японский высокоскоростной электропоезд серии 300

При создании сети Синкансен японскими специалистами решен ряд сложнейших инженерных задач, связанных с выбором путевой структуры, созданием нового подвижного состава, искусственных сооружений и других технических средств.

Особое место в этих разработках занимают устройства обеспечения безопасности движения. Принцип их работы заключается в том, что при возникновении любой неисправности или нарушении режима работы, создающих угрозу безопасности, поезд немедленно останавливается. Для наземных видов транспорта это означает устранение опасности.

Практика доказала высокую эффективность применяемой системы безопасности. За все время эксплуатации линий Синкансен не было ни одной аварии или крушения, не погиб и не был ранен ни один пассажир. А перевезено к концу 1990-х годов около 3 млрд. человек.

Ежесуточно по магистрали Синкансен курсирует 427 скоростных экспрессов, которые перевозят более 440 тыс. чел.

Ведутся большие работы по созданию поездов нового поколения с целью достижения на уже имеющейся сети ВСМ Японии скорости 300-350 км/ч. Поскольку постоянные устройства этой сети были рассчитаны на скорость до 250 км/ч, потребовалось существенно снизить нагрузку на ось. Это было достигнуто – в опытном поезде нагрузка на ось составляет меньше 8 т.

Идеологом высокоскоростных железнодорожных систем в Европе является Франция. После двух лет теоретических разработок в 1976 г. общество железных дорог (SNCF): приступило к строительству высокоскоростной магистрали Париж - Лион, а в сентябре 1981 г. на этой линии был дан зеленый свет высокоскоростному поезду TGV (рис. 70). Проектирование системы TGV велось таким образом, чтобы поезда могли курсировать по новой линии со скоростью 270 км/ч и переходить на обычную железнодорожную сеть. Благодаря этому была обеспечена ускоренная железнодорожная связь Парижа с юго-восточными районами Франции. В настоящее время поезда TGV юго-восточного направления обслуживают более 50 населенных пунктов, в которых проживает 56% населения страны. Протяженность сети TGV - Юго-восток составляет 2487 км, из которых 417 км приходится на новую линию.

Резко возросла коммерческая скорость движения. В сообщении Париж - Лион она составляла 213 км/ч, а время в пути между этими городами сократилось до 2 ч.

Рис. 70. Французский высокоскоростной двухэтажный электропоезд TGV Duplex

Базируясь на первых успехах, французское общество железных дорог предложило, а президент республики и правительство, приняли решение о строительстве новой высокоскоростной линии ТGV - Атлантик, пуск в эксплуатацию которой состоялся в сентябре 1989 г. Общая длина магистрали составляет 285 км.

Так же, как и линия TGV - Юго-восток, новая высокоскоростная магистраль предназначена исключительно для пассажирских перевозок. Для атлантической линии создано новое поколение высокоскоростных поездов TGV - Атлантик, максимальная скорость которых при коммерческой эксплуатации на вновь построенных участках составляет 300, а на обычных железнодорожных линиях - 220 км/ч.

Затем были введены в эксплуатацию ВСМ «Север» - направление на Бельгию и к тоннелю под Ла-Маншем (332 км); обходная ВСМ вокруг Парижа, соединившая в единую сеть высокоскоростные линии Франции и ряда европейских стран (102 км). Общая протяженность ВСМ Франции к 2004 г. составляла почти 1500 км и строительство еще нескольких линий продолжается.

Французская концепция высокоскоростного подвижного состава предусматривает создание поездов постоянного формирования с локомотивной тягой. Два электровоза помещаются по концам состава, а между ними располагаются пассажирские вагоны. Особенностью французского поезда TGV является использование сочлененных вагонов на промежуточных тележках.

В Германии первая линия ВСМ появилась в 1991 г., сегодня здесь протяженность таких линий составляет 800 км (рис. 71). В Испании и Италии высокоскоростные магистрали длиной соответственно 471 и 236 км были введены в 1992 г.

Рис. 71. Немецкий высокоскоростной электропоезд ICE 3

В 1992 г. в Швеции начали курсировать поезда, состоящие из вагонов с принудительным наклоном кузовов. Такие поезда развивают скорость 220 км/ч. В разных странах уже создано до 20 типов таких вагонов.

В Великобритании усовершенствуются три основных маршрута: Лондон - Глазго, Лондон - Ньюкастл - Эдинбург и Лондон - Бристоль - Кардифф для реализации скоростей 225 км/ч.

Вслед за Европой и Японией высокоскоростное движение получает развитие и в США, где долгое время главную роль играли автомобильный и воздушный виды транспорта. В США имеется семь проектов создания систем высокоскоростного железнодорожного транспорта. Одни из них находятся в стадии рассмотрения, по другим проведены научные исследования и предпроектные разработки. В настоящее время наивысшая скорость (193 км/ч) для пассажирских поездов реализуется в так называемом Северо-Восточном коридоре на участке Вашингтон - Нью-Йорк. На новых магистралях скорости движения будут достигать 270-300 км/ч.

Наиболее близки к реализации проекты высокоскоростных железных дорог в штатах Техас и Флорида. Во Флориде линия протяженностью 540 км, рассчитанная на скорость 280 км/ч, будет построена между городами Майами, Орландо и Тампа по традиционной схеме колесо - рельс. В Техасе высокоскоростные линии соединят города Сан-Антонио, Даллас, Хьюстон.

Работы по созданию сверхскоростных железнодорожных магистралей ведутся практически на всех континентах. О намерениях построить высокоскоростную линию между городами Сидней и Мельбурн объявила Австралия. Высокоскоростные поезда для нее будут поставляться ведущими фирмами Франции и ФРГ, которые преуспели в создании поездов типов TGV и ICE. Германские предприятия должны поставить Австралии сверхскоростные локомотивы, а французские - вагоны. На новой 870-километровой линии будут курсировать 30 пар поездов со средней скоростью 292 км/ч и максимальной 350 км/ч.

На высокоскоростных линиях конструкция пути, устройства СЦБ и связи в основном сохраняют традиционные принципы.

Однако они становятся качественно новыми по наукоемкости, надежности и способам содержания. Их необходимыми элементами являются микропроцессоры и ЭВМ, диагностические и информационные датчики, приборы тонкой чувствительности для определения землетрясений, снегопадов и других ситуаций. Все это в двойном, а иногда в тройном резервировании обеспечивает 100%-ную безопасность движения.

Основными тенденциями в создании новых типов высокоскоростных электропоездов являются максимальное облегчение конструкции вагонов, уменьшение энергопотребления благодаря высоким аэродинамическим показателям, применение микроЭВМ и микропроцессорных устройств, а также новых более экономичных и надежных систем электрооборудования для тяги.

В настоящее время система ВСМ технически, технологически и экономически апробирована. Высокоскоростные магистрали уже построены, строятся или проектируются во многих странах мира на протяжении почти 50 лет. Высокая эффективность ВСМ доказана, и поэтому, сегодня любая страна, если для этого имеются необходимые экономические условия, может проектировать и строить ВСМ, используя известные технические и технологические решения

Список литературы

1. Аксенов И.Я. Регулирование перевозок на зарубежных железных дорогах. М. Трансжелдориздат, 1958, 179 с.

2. Боровой Н.Е. Маршрутизация перевозок грузов. М. «Транспорт», 1978, 216 с.

3. Введенский В.А. Заметки и критические очерки по вопросам эксплуатации русских железных дорог. С. Петербург. 1903 г. 110 с.

4. Величко В.И., Сотников Е.А., Голубев Б.Л. Система фирменного транспортного обслуживания. М. Интекст, 2001, 184 с.

5. Виргинский В.С. Возникновение железных дорог в России до начала 40-х годов XIX века. – М.: Трансжелдориздат, 1949. – 278 с.

6. Витте С.Ю. Воспоминания. – М.: Издательство социально-экономической литературы. Т. 1, 1960 – 556 с.

7. Галицинский Ф.А. Пропускная способность железных дорог и замешательства в движении. – СПб, 1899. – 249 с.

8. Головачев А.А. История железнодорожного дела в России. – СПб, 1881. – 404 с.

9. Д-р Мартенс. Тридцать лет (1882-1911 г.г.) русской железнодорожной политики и ее экономическое значение. Изд. НКПС. Перевод с немецкого издания 1919 г., 285 с.

10. Железнодорожники в Великой Отечественной войне /Под ред. Н.С. Конарева. М.: Транспорт, 1987. 590 с.

11. Зензинов Н.А., Рыжак С.А. Выдающиеся инженеры и ученые железнодорожного транспорта. – М.: Транспорт, 1978. – 327 с.

12. Информатизация на железнодорожном транспорте. История и современность /В.С. Наговицын, Э.С. Поддавашкин, И.В. Харланович, Ю.С. Хандкаров. – М.: «Вече», 2005. – 720 с.

13. Исторический очерк развития организации Ведомства путей сообщения. – СПб. 1910. – 115 с.

14. История железнодорожного транспорта России. Том 1, 2, 3, СПб, 1994, 336 с., 1997, 416 с., 2004, 631 с.

15. Краткие сведения о развитии отечественных железных дорог с 1838 по 2000 г.г., сост. Г.М. Афонина М., 2002 г., 232 с.

16. Крейнис З.Л. Очерки истории железных дорог. – М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2007. – 335 с.

17. Кудрявцев В.А. Управление движением на железнодорожном транспорте. – М.: Маршрут, 2003. 203 с.

18. Левин Д.Ю. Диспетчерские центры и технология управления перевозочным процессом. М. Маршрут, 2005, 760 с.

19. Мельников П.П. – инженер, ученый, государственный деятель – СПб, Гуманистика, 2003, 472 с.

20. Отчет Министра путей сообщения Павла Петровича Мельникова Императору Александру II за 1866 г. Опубликовано в журнале Министерства путей сообщения. Том девятый. Санкт-Петербург, 1868.

21. Петров А.П. План формирования поездов. – М.: Трансжелдориздат, 1950. 278 с.

22. Правила эксплуатации, пономерного учета и расчетов за пользование грузовыми вагонами собственности других государств. Совет по железнодорожному транспорту государств-участников СНГ, 2004 г., 87 с.

23. Сенин А.С. Московский железнодорожный узел 1917-1922. М. Едиториал УРСС, 2004, 576 с.

24. Сотников Е.А. История и перспективы мирового и российского железнодорожного транспорта (1800-2100 г.г.) – М.: Интекст, 2005 – 112 с.

25. Сотников Е.А. Железные дороги мира из XIX в XXI век. – М.: Транспорт, 1993. – 200 с.

26. Сотников Е.А., Левин Д.Ю., Алексеев Г.А. История развития системы управления перевозочным процессом на железнодорожном транспорте (отечественный и зарубежный опыт). – М.: Техинформ, 2007. – 237 с.

27. Станция Санкт-Петербург Сортировочный Московский 120 лет (1879-1999), СПб., 1999, 96 с.

28. Технический железнодорожный словарь. М. Государственное транспортное железнодорожное издательство. М. 1946, 606 с.

29. Технический справочник железнодорожника. М. Государственное транспортное железнодорожное издательство. 1956, 739 с.

30. Тишкин Е.М. Информационно-управляющие технологии эксплуатации вагонного парка. Труды ВНИИАС, вып. 4. М.: 2005. 188 с.

31. Тулупов Л.П. и др. Автоматизация управления перевозочным процессом с помощью электронной вычислительной техники, М., 1966 г. Транспорт, 167 с.

32. Шавкин Г.Б. Схемы и оснащение сортировочных станций железных дорог США и Западной Европы. М. ВИНИТИ АН СССР, 1960, 63 с.

33. Шаров В.А. Технологическое обеспечение перевозок грузов. М. Интекст, 2001, 198 с.

В настоящий момент в Европе и Китае идет процесс вытеснения авиаперевозчиков ж/д компаниями. В некоторой степени это связано с тем, что самые быстрые в мире поезда способны посоревноваться в скорости с авиалайнером. Некоторые современные железнодорожные машины развивают скорость свыше 600 км/ч, тогда как некоторые пассажирские самолеты разгоняются в воздушном пространстве лишь до 510 км/ч (Як-40). Добиться таких высоких скоростных показателей удалось, благодаря инновационной технологии магнитного подвеса поездов. Сверхбыстрые машины, изготовленные по этой технологии, получили название маглевы или магнитопланы.

В топ 10 вошли самые быстрые в мире поезда за всю историю существования железнодорожных путей.

Скорость 412 км/ч

Transrapid 06 (Германия) открывает десятку самых быстрых поездов в мире. Его предшественник Transrapid 05, созданный в 1979 году, являлся первым в мире магнитопланом. Трансрапид 06 представляет собой двухуровневый маглев, способный набирать максимальную скорость, равную 412 км/ч. Рекорд был поставлен январе 1988 года.

Скорость 430 км/ч

Aerotrain I80HV (Франция) занимает девятое место в топе самых быстрых поездов в мире. Уникальность этой экспериментальной модели заключалась в том, что инженеры использовали для запуска машины не электрические двигатели, а реактивный двигатель, схожий с тем, что устанавливают на самолетах. Экспериментальный проект Aerotrain разрабатывался с 1965 по 1977 год инженером Жаном Бертеном. Предельная скорость, которую показал этот поезд, составила 430 км/ч. Испытания состоялись 5 марта 1974 года. На протяжении 15 лет этот мировой рекорд не удавалось побить ни одной железнодорожной машине. Но затем появилась серия поездов TGV, которые и превзошли легендарный Aerotrain I80HV по скорости. В настоящее время от проекта осталась лишь одна восстановленная ретро модель Aerotrain 02, которая находится в Париже. Остальные прототипы были уничтожены во время сильного пожара.

Скорость 431 км/ч

MLU 002 N (Япония) - высокоскоростной маглев, один из самых быстрых поездов мира. Его разработали в 1994 году как пробную тестовую модель. Во время испытаний MLU002N набрал скорость 431 км/ч, благодаря чему и попал в наш список. Уникальность магнитопланов состоит в том, что даже на максимально предельной скорости они могут резко остановиться в необходимом месте.

Скорость 442,5 км/ч

(Япония) занимает седьмую строчку в списке самых быстрых поездов. Супер-экспресс в результате испытаний разогнался до 442,5 км/ч. Его построили для скоростных перевозок пассажиров. Синкасэны в Японии ходят по специальным скоростным путям, которые отделимы от других поездов, и имеют собственные платформы. Система синкасэнов представляет собой главнейшую транспортную артерию Японии. Средняя скорость магнитопланов этой серии составляет 320 км/ч. Shinkansen также считаются самыми безопасными высокоскоростными поездами в мире: за полвека не было зарегистрировано ни одного инцидента со смертельным исходом или тяжелыми увечьями.

Скорость 450 км/ч

Transrapid 07 (Германия) - один из самых высокоскоростных поездов в мире, являющийся последователем Трансрапида 06. Его создавали с целью перевоза пассажиров из Берлина в Гамбург. Но из-за недостаточного финансирования проект пришлось свернуть. В ходе тестирования, проводимого в 1993 году, Трансрапид набрал скорость до 450 км/ч, тем самым войдя в историю, как один из самых быстрых магнитопланов.

Скорость 486,1 км/ч

Или CRH380A (Китай) занимает пятую строчку рейтинга самых быстрых поездов мира. Рекорд был поставлен в ходе тестового прохода состава «Хэсе-380А» на участке между городами Цзаочжуан и Бэнпу на скоростной железной дороге Пекин-Шанхай в 2010 году. В ходе испытаний он преодолел участок в 220 км со скоростью 486,1 км/час. А это уже вполне на уровне нового регионального самолёта Ан-140. Правительство КНР активно инвестирует в развитие высокоскоростных железных дорог на протяжении всего 21-го века.

Скорость 500 км/ч

Transrapid 08 (Китай) или Шанхайский Маглев - один из самых быстрых поездов в мире. Предельная скорость, развиваемая магнитопланом, составляет 500 км/ч. Трансрапид 08 работает ежедневно 14 часов на трассе и может перевозить до 440 пассажиров за одну поездку. В среднем (по состоянию на конец 2007 года) были доставлены каждый день около 7500 пассажиров. Средняя скорость железнодорожного сверхбыстрого транспорта - 300 км/ч.

Скорость 517 км/ч

ML -500 R (Япония) открывает тройку высокоскоростных поездов в мире с абсолютной скоростью 517 км/ч. Магнитоплан никогда не использовался в качестве общественного транспорта. Это один из первых прототипов, созданный японцами с целью тестирования и послуживший примером для создания других быстрых поездов на магнитной подвеске.

Скорость 574,8 км/ч

TGV Est V 150 (Франция) занимает вторую строчку в рейтинге самых быстрых поездов мира. В ходе эксперимента 3 апреля 2007 года, рекорд скорости для рельсовой машины с традиционными колесами составил 574,8 км/ч. Электропоезд был сформирован из двух головных моторных вагонов от TGV POS № 4402, который подвергли модернизации, и трёх промежуточных вагонов от TGV Duplex. Моторные вагоны были оборудованы более мощными тяговыми электродвигателями, из-за чего выходная мощность электропоезда возросла с 9,3 МВт до 19,6 МВт, колёса были заменены на новые с наибольшим диаметром (1020 мм, вместо 920 мм), а для снижения воздушного сопротивления промежутки между вагонами были закрыты. Также напряжение в контактной сети было поднято с 25 кВ до 31 кВ, а на составе были размещены более 600 различных датчиков. В начале 2007 года на линии проводились опытные поездки, в ходе которых 13 февраля был установлен неофициальный рекорд в 554,3 км/ч, а 3 апреля при большом количестве журналистов и корреспондентов поезд разогнали до скорости 574,8 км/ч, тем самым официально установив новый мировой рекорд скорости для рельсовых поездов. Управляющий TGV Est V150 машинист Эрик Пьезак после испытаний рассказал, что машину ему разрешено было разогнать до скорости не превышающую 575 км/ч.

Скорость 603 км/ч

(Япония) - самый быстрый поезд в мире, абсолютный рекорд которого равняется 603 км/ч. В основе высокоскоростной машины заложена технология магнитной подвески. Предшествующие поезда этой же серии на протяжении полувека являлись символом надежности и скорости. В 2003 году поезд из этой серии смог разогнаться до 581 км/ч с пассажирами на борту, а в апреле 2015 года был поставлен абсолютный мировой рекорд - 603 км/ч. MLX 01 является абсолютным флагманом среди поездов всего мира. Средняя его скорость составляет порядка 300 км/ч.

Первый поезд, построенный в Англии, развивал скорость 38 км/ч, удивляя горожан и давая конным дилижансам XIX века сотню очков вперед. Сегодня, когда приоритет дальних поездок отдан авиатранспорту, появление поезда, развивающего скорость до 603 км/ч, способно перевернуть и наше представление.

Технологически поезда эволюционировали в такой последовательности: паровозная тяга, электротяга, магнитная подушка. Электротяга практически полностью заменила паровую через 80-90 лет после появления первого паровоза, но до сих пор не исчерпала своего потенциала, несмотря на освоение магнитной левитации (маглева).

Японские инженеры пошли сразу в двух направлениях: улучшать существующие технологии и прорабатывать новые. Еще в 1964 году в Японии открыта высокоскоростная магистраль Синкансен. Поезда развивают скорость до 320 км/ч за счет улучшенных аэродинамических характеристик, новых типов двигателей и других конструкционных улучшений. По этому пути пошли и другие производители высокоскоростных поездов: французский Alstom, американский Bombardier, испанский Talgo и немецкий Siemens. Каждая из компаний имеет в числе своих разработок высокоскоростные поезда, способные развивать скорость свыше 200 км/ч. Эра высокоскоростных поездов в России началась в 2009 году, когда по маршруту Москва — Санкт-Петербург был запущен первый «Сапсан», изготовленный компанией Siemens на базе модели высокоскоростного поезда Velaro E и адаптированный для нашей страны.

Японские поезда Синкансен занимают третье место в рейтинге самых скоростных поездов в мире.

Самый быстрый действующий поезд на магнитной подушке работает в Китае — это Шанхайский маглев. Слово «маглев» происходит от сокращения двух: магнитная левитация. Суть технологии заключается во взаимном действии магнитов, одноименные полюса которых отталкиваются. Так преодолевается главная проблема рельсовых поездов — трение о поверхность. Новая технология потребовала не только новых поездов без колесных пар, но и новой инфраструктуры: специальное Т-образное рельсовое полотно укладывается на бетонную подушку. Визуально поезд охватывает рельс со всех сторон, приподнимаясь в движении всего на 1-2 см над полотном. Шанхайский маглев преодолевает маршрут в 30 км за 7 минут и 20 секунд. Максимальная скорость достигает 430 км/ч.

Шанхайский маглев — серебряный чемпион скоростного движения среди поездов.

Недавно определившимся скоростным лидером стал другой японский поезд — JR-Маглев. Именно его экспериментальные поездки показали скорость в 603 км/ч. Японская технология магнитной левитации несколько отличается от реализованной в Китае — левитация осуществляется с помощью сверхпроводящих магнитов. На практике это означает большую стабильность движения. Изменился вид железнодорожного полотна и конструкция самого поезда. Особенностью технологии является ее эффективность только на больших скоростях, что предполагает наличие колесных пар у поездов для движения на скорости менее 100 км/ч.

JR-Маглев — самый быстрый поезд в мире, промышленную эксплуатацию которого планируется начать в 2027 году. Максимальная скорость достигает 603 км/ч.

Пока в большинстве стран начинается внедрение высокоскоростных электропоездов, ученые обсуждают развитие магнитной левитации: если поезд на магнитной подушке будет ходить в вакуумном туннеле, можно избежать воздушного сопротивления. Теоретически скорость движения таких поездов будет достигать 6000-8000 км/ч.

Тысячи людей каждый год пропадают без вести, и случаи этих исчезновений становятся поистине обескураживающими, когда у следователей нет фактически ничего, с чем можно было бы работать - ситуации, в которых никто ничего не видел, и нет никаких разумных объяснений.

Некоторые из этих людей пропадают навсегда, однако более часто пропавших без вести людей находят - мёртвыми - спустя несколько недель/месяцев после их таинственного исчезновения, причём их находят в тех местах, которые поисковые группы прочёсывали десятки раз. Официальная причина смерти либо неизвестна, либо абсурдна.

Следует признать, что во многих случаях причины исчезновения людей довольно тривиальны: от семейных и денежных проблем до серийных убийц. Таинственными являются те случаи, когда люди исчезают при очень странных обстоятельствах (буквально растворяются в воздухе; причём иногда находящиеся поблизости камеры скрытого наблюдения либо выходят временно из строя либо "случайно" смотрят "не туда") и/или когда их тела находят в необычных местах и в странном состоянии (без обуви или лишь в нижнем белье, причём в крови всегда находят аномально высокую концентрацию алкоголя). Именно эти необъяснимые случаи исчезновения людей и стали предметом изучения Дэвида Полидеса, о которых мы поговорим в дальнейшем.

Дэвид Полидес , бывший американский полицейский, закончил свою карьеру в 2008 г. и полностью посвятил себя изучению загадочных случаев исчезновения людей в США, Канаде и Европе. Он написал целую серию книг Missing 411, в которых он с детективной тщательностью рассматривает факты (и только факты), отказываясь строить необоснованные предположения. Большинство из его книг этой серии посвящены таинственным исчезновениям людей в национальных парках США и Канады. В его последней книге он рассматривает случаи исчезновения людей в городах США и Канады. Давайте рассмотрим общие признаки, присущие этим загадочным исчезновениям людей (пропавших как в национальных парках, так и в крупных городах):

Интересным фактом является то, что официальные власти и СМИ похоже стараются скрывать масштаб и детали исчезновений. Дэвид Полидес описывает в своих книгах, как он неоднократно пытался воспользоваться законом о свободе информации и получить от службы национальных парков США списки пропавших без вести. Каждый раз с него либо требовали баснословные суммы за эти списки, либо говорили, что таких списков не существует в природе! Довольно подозрительным является также тот факт, что несмотря на противоречивые факты официальной версией всегда был "несчастный случай" или "самоубийство". Кстати официальным вердиктом в случае с найденной мёртвой Элизой Лэм также был: "несчастный случай в результате утопления"! Очевидно, что власти знают намного больше, чем они признают. Но что же они пытаются от нас скрыть? Может быть природу тех сущностей, которые похищают людей и водят за нос озадаченных сыщиков? Кто играет в кошки-мышки с человеческой расой?

  • Множество исчезновений происходили вблизи кустов с ягодами и больших гранитных глыб.
  • Тела пропавших часто находили в воде (в реках, прудах, водоёмах, болотах и даже в пересохших ручьях), поэтому официальное заключение о причине смерти часто звучало как "утопление", несмотря на то, что многие другие факты, говорящие против этого.
  • Полное отсутствие свидетелей исчезновения. Пропавшие часто просто растворялись в воздухе в нескольких метрах от своих родителей/друзей, однако никто не видел самого момента исчезновения.
  • Пропавших часто находили в труднодоступных местах очень далеко от места исчезновения. Например, тела нескольких детей возрастом до 5 лет находили на склоне высоких гор, куда даже опытным альпинистам не было возможно добраться. Или вспомните известный случай исчезновения Элизы Лэм : её тело было найдено на запертой крыше отеля (на которой была установлена сигнализация и несколько камер видеонаблюдения) в закрытой (!) водоцистерне, к которой можно было добраться лишь с помощью приставной лестницы.
  • Жертвы, найденные замёрзшими во льду, находились в вертикальном положении (!). У некоторых жертв голова и плечи находились над поверхностью льда.
  • В большинстве случаев многие факты указывают на то, что жертвы не находились в течение всего периода пропажи в воде (об этом часто свидетельствует нехарактерный (минимальный) уровень разложения трупа), несмотря на то, что тела были найдены в воде. Это также противоречит официальным заключениям об "утоплении".
  • Присутствие алкоголя в крови. Он варьировался от аномально высокого до среднего, однако не мог быть объяснён ни количеством выпитого в вечер исчезновения алкоголя, ни стадией разложения тела (при разложении в теле образуется определённое количество алкоголя).
  • На основе анализа 1200 случаев в США и Канаде Дэвид Полидес идентифицировал 52 кластера пропавших людей, т.е. в определённых местах (по большому счёту в национальных парках) люди исчезают намного чаще. Несколько из крупнейших кластеров находятся вокруг Великих озёр в США.
  • Натренированные собаки-ищейки вдруг теряли нюх и были не в состоянии взять след пропавших людей. В день исчезновения Элизы Лэм полицейские безрезультатно обыскивали с помощью поисковых собак весь отель, в т.ч. и крышу, где было позже найдено её тело.
  • Потеря памяти. Оставшиеся в живых не могли вспомнить детали их исчезновения. Часто их находили в бессознательном или полубессознательном состоянии.
  • Потеря чувства времени. В большинстве случаев, изученных Дэвидом Полидесем, жертвы не могли вспомнить, что они делали в определённые промежутки времени.
  • Уровень интеллекта жертв. Во многих случаях пропавшими были либо студенты с высоким уровнем интеллекта (и многообещающим будущим), либо студенты-атлеты. В других же случаях пропавшими были, наоборот, либо тяжело (душевно) больные дети/студенты, либо инвалиды. Т.е. в обоих случаях мы имеем дело не со обычными среднестатистическими людьми.
  • Множество пропавших в США/Канаде имели либо наследственные немецкие корни (вплоть до многих поколений в прошлом), либо изучали немецкий язык и свободно говорили на нём.
  • Большинство тел жертв находили в местах, которые многократно и тщательно прочёсывались десятками поисковиков (часто с собаками-ищейками).
  • Потеря одежды и/или обуви. Жертв часто находили без обуви, штанов и т.д. при обстоятельствах, которые не могли объяснить эту потерю. Были также случаи, в которых ремни были необычно закреплены на штанах. Как и почему жертвы теряли свою одежду (часто при неблагоприятных погодных условиях), остаётся загадкой.
  • Пропажа в зданиях. Несколько детей пропадали из домов с установленной и исправной сигнализацией, которая никогда не срабатывала в момент исчезновения. Множество молодых людей исчезали в барах с установленными камерами видеонаблюдения: на камерах было видно, как они входили в бар, однако момент их выхода из бара никогда не фиксировался на камеру, несмотря на их исправность и бесперебойную работу. В других случаях вращающиеся камеры видеонаблюдения, направленные на берег рек/водоёмов фиксировали жертву, однако несколько мгновений спустя при очередном повороте камеры жертвы буквально растворялись в воздухе.
  • Странные и краткосрочные погодные изменения в месте пропажи. В ночь пропажи часто наблюдались внезапные ливни, штормы или снегопады. Множество исчезновений происходили перед началом страшных ураганов. Это как если бы кто-то пытался помешать поисковым командам искать пропавшего.
  • Большинство исчезновений происходили в ночной период: от полуночи до утренней зари.
  • Выход из строя мобильных телефонов. Большинство найденных мобильных телефонов были либо разбиты, либо найдены с севшими батареями. В некоторых случаях исчезновение происходило прямо во время телефонного разговора! Жертвы внезапно становились нервозными и говорили о том, что их кто-то преследует. После чего их речь становилась бессвязной и был слышен лишь свист ветра (как будто их кто-то внезапно поднимал в воздух), после чего связь обрывалась.
  • Иррациональное поведение. Будучи на вечеринке, молодые люди часто жаловались на внезапное плохое самочувствие или необходимость идти домой пешком, несмотря на расстояния порой в несколько километров и возможность воспользоваться такси/общественным транспортом. Родители/знакомые пропавших студентов также часто сообщали об их странном, ничем не объяснимом поведении в день исчезновения. Вспомните также историю об исчезновении тургруппы Дятлова в 1959 г. на Урале: в тот вечер они не разожгли костёр (и это при минусовых температурах!) и не приготовили ужин, а вместо этого посвятили свой вечер изготовлению стенгазеты.
  • Наличие удостоверяющих документов. У пропавших, которых находили в реках и тела которых, находившиеся в воде судя по стадии разложения несколько дней, должны были по идее проплыть по течению несколько километров, практически всегда находили удостоверяющие документы, несмотря на то, что из-за сильного течения у них отсутствовали некоторые части одежды и/или обувь. Как будто кто-то очень хотел, чтобы найденные были быстро опознаны!
  • Некоторых пропавших находили вверх по течению от места пропажи , что также противоречило официальной версии об "утоплении".
  • В некоторых случаях в телах жертв полностью отсутствовала кровь! Причём следователям никогда не удавалось установить, каким образом кровь была удалена из тела. Ведь для полного удаления крови из тела (если мы имеем дело с маньяком) необходимо специальное оборудование, которое всегда оставляет определённые порезы на теле. Такие порезы/следы от иглы никогда не были обнаружены. Следует также отметить, что Дэвид Полидес расследовал эти случаи как частное лицо (а не как полицейский), поэтому вся информация в его книгах базируется лишь на опубликованных фактах или свидетельствах очевидцев. В то же время некоторые детали судмедэкспертизы часто не публиковались вообще (потому что результаты могли бы шокировать общественность? Или может быть отсутствие крови делало саму судмедэкспертизу невозможной?), что говорит о том, что кровь возможно отсутствовала даже у большего количества найденных жертв. Кстати в теле Элизы Лэм также не было найдено ни капли крови!
  • В телах нескольких жертв была найдена гамма-оксимасляная кислота (ГОМК). ГОМК - это природная оксикислота, выполняющая важную роль в центральной нервной системе человека. ГОМК в высокой концентрации может применяться как анестетик и седативное средство (во многих странах она находится вне закона), так как она способна парализовать мышцы человека, не вызывая потерю сознания. Т.е. если жертвам была введена определённая доза ГОМК, после чего они (ещё живые) были помещены в воду, то они (полностью осознавая происходящее) были бы не в состоянии выбраться из воды и в конечном счёте тонули. Полубессознательное состояние и несвязная речь оставшихся в живых жертв также говорят о возможном использовании ГОМК.

Современные высокоскоростные поезда в штатной эксплуатации развивают скорости до 350-400 км/ч, а в испытаниях и вовсе могут разгоняться до 560-580 км/ч. Благодаря быстроте обслуживания и высокой скорости движения они составляют серьёзную конкуренцию другим видам транспорта, сохраняя при этом такое свойство всех поездов, как низкая себестоимость перевозок при большом объёме пассажиропотока.

Впервые регулярное движение высокоскоростных поездов началось в 1964 году в Японии по проекту Синкансэн . В 1981 году поезда ВСНТ стали курсировать и во Франции, а вскоре бо́льшая часть западной Европы , включая даже островную Великобританию , стала связана единой высокоскоростной железнодорожной сетью. В начале XXI века мировым лидером по развитию сети высокоскоростных линий, а также эксплуатантом первого регулярного высокоскоростного маглева стал Китай .

В основном высокоскоростные поезда перевозят пассажиров, однако существуют разновидности, предназначенные и для перевозки грузов. Так, французская служба La Poste на протяжении 30 лет использовала специальные электропоезда TGV , служившие для перевозки почты и посылок (их эксплуатация завершена в июне 2015 года из-за сократившегося в последние годы объёма почтовых отправлений) .

В среднем по европейским стандартам строительство 1 км высокоскоростной магистрали стоит 20-25 миллионов евро, её годовое обслуживание - 80 тысяч евро. Стоимость одного поезда для ВСМ с 350 сидениями колеблется от 20 до 25 млн евро, его годовое содержание обходится в 1 млн евро.

Определение [ | ]

Понятие Высокоскоростной наземный транспорт (а также Высокоскоростной поезд ) относительно условно и может отличаться как по странам, так и по историческим периодам. Так, ещё в начале XX века высокоскоростными называли поезда, следующие со скоростями выше 150-160 км/ч. В связи с дальнейшим ростом скоростей поездов данная планка постепенно увеличивалась. В настоящее время, например, в России и Франции , (на обычных линиях) её величина составляет 200 км/ч, в Японии , а также в той же Франции (но для специализированных линий) - 250 км/ч, в США - около 190 км/ч и так далее.

Помимо этого, во многих странах объединены такие понятия, как Высокоскоростной поезд и Скоростной поезд . Несмотря на то, что советские/российские (использование) ЭР200 и ЧС200 (локомотив поездов «Аврора » и «Невский экспресс ») в испытательных поездках достигали скорости в 220 км/ч, высокоскоростными они не являются, так как их максимальная эксплуатационная скорость не превышает 200 км/ч.

Сфера применения [ | ]

Высокоскоростной наземный транспорт рациональнее применять между отдалёнными объектами, прежде всего, при наличии большого регулярного пассажиропотока , например, между городом и аэропортом, в курортных зонах или между двумя крупными городами. Этим и объясняется распространение высокоскоростных поездов в таких странах, как Япония , Франция , Германия и многих других, где высокая плотность населения городов . Учитывается возможность расположения станций в удобном для пассажиров месте, иначе жителям из пригородов будет быстрее добраться до другого города на автотранспорте , если дорога до железнодорожного вокзала занимает слишком много времени.

Также высокоскоростные поезда эффективны в условиях высоких цен на нефтепродукты , так как в основном питание для высокоскоростных поездов поступает от электростанций , которые могут использовать возобновляемые ресурсы (например, энергию падающей воды).

История [ | ]

Поезда увеличивают скорости [ | ]

Экспериментальная электромотриса фирмы: Siemens & Halske 1903 год

Вскоре после открытия первых общественных железных дорог публика весьма оценила возможность поездов как быстрого транспортного средства. Так, на проведённых в 1829 году Рейнхильских состязаниях паровоз «Ракета » достиг скорости 38,6 км/ч (по другим данным - 46,7 км/ч), что на то время являлось мировым рекордом скорости. В дальнейшем максимальные скорости поездов продолжали расти, и в сентябре 1839 года паровозом «Ураган» на дороге «Грейт Вестерн» (Великобритания) был преодолён скоростной рубеж в 160,9 км/ч. 10 мая 1893 года скоростной паровоз № 999 .

Скоростной рубеж в 200 км/ч был преодолён 6 октября 1903 года (за месяц до первого полёта самолёта) на тестовой линии Мариенфельде - Цоссен (пригород Берлина) экспериментальный электровагон, созданный компанией Siemens & Halske , показал рекордную скорость 206 км/ч . В конце того же месяца (28 октября) уже другой электровагон от фирмы AEG показал скорость в 210,2 км/ч .

Первые высокоскоростные магистрали [ | ]

Несмотря на многочисленные проекты в европейских странах, первая общественная высокоскоростная железная дорога появилась на другом конце континента - в Японии . В этой стране в середине 1950-х годов резко обострилась транспортная ситуация вдоль восточного побережья острова Хонсю , что было связано с высокой интенсивностью пассажирских перевозок между крупнейшими городами страны, особенно между Токио и Осака . Используя в основном иностранный опыт (особенно американский), Администрация японских железных дорог довольно быстро (1956-1958 гг.) создала проект высокоскоростной железной дороги между этими двумя городами. Строительство дороги началось 20 апреля 1959 года , а 1 октября 1964 года первая в мире ВСМ была запущена в эксплуатацию. Ей присвоили название «Токайдо », протяжённость трассы составляла 515,4 км, а максимальная допустимая скорость поездов 210 км/ч. Дорога быстро завоевала популярность у населения, о чём, например, свидетельствует прирост объёма выполненных на линии пассажирских перевозок :

  • с 1 октября 1964 по 31 марта 1965 - 11 млн пассажиров;
  • с 1 апреля 1966 по 31 марта 1967 - 43,8 млн пассажиров;
  • с 1 апреля 1971 по 31 марта 1972 - 85,4 млн пассажиров.

Уже в 1967 году дорога стала приносить прибыль, а к 1971 полностью окупила затраты на строительство .

ВСМ объединяются в сеть [ | ]

Для проверки возможности реализации данной идеи была сформирована рабочая группа из специалистов из Международного союза железных дорог и, которая в 1989 году разработала «Предложения по Европейской высокоскоростной железнодорожной сети», на основании которых Совет министров ЕС образовал рабочую группу под названием «Группа высокого уровня» (известна также как группа «Высокая скорость»). В данную группу входили представители стран-членов ЕС, железнодорожных компаний, предприятий, выпускающих железнодорожную технику, а также ряда прочих заинтересованных компаний. 17 декабря 1990 года Совет министров ЕС одобрил разработанные Группой отчёт «Европейская сеть высокоскоростных поездов» и прилагаемый к нему генеральный план по развитию высокоскоростных железных дорог в Европе до 2010 года .

Технологии [ | ]

В своём большинстве применяемые на ВСНТ технологии аналогичны стандартным технологиям железнодорожного транспорта. Отличия же обусловлены прежде всего высокой скоростью движения, что влечёт за собой возрастание таких параметров, как центробежные силы (возникают при прохождении поездом кривых участков пути, могут вызвать состояние дискомфорта у пассажиров) и сопротивление движению. В целом повышение скорости движения поездов ограничивают следующие факторы :

Для улучшения аэродинамических показателей поезда имеют обтекаемую форму передней части и минимальное число выступающих частей, а выступающие (например, токоприёмники) оборудуются специальным обтекаемыми кожухами. Дополнительно подвагонное оборудование закрывается специальными щитами . За счёт применения таких конструктивных мероприятий снижается заодно и, то есть поезд становится менее шумным.

Механическое сопротивление в основном заключается во взаимодействии колесо-рельс, то есть для снижения сопротивления требуется снизить прогиб рельсов . Для этого прежде всего усиливают железнодорожный путь , для чего применяются рельсы тяжёлых типов, железобетонные шпалы , щебёночный балласт. Также снижают нагрузки от колёс на рельсы, для чего в материалах кузовов вагонов применяют алюминиевые сплавы и пластик.

Как одна из альтернативных возможностей высокоскоростного железнодорожного движения и для отработки высоких скоростей на железнодорожных путях, в 1930-х годах в Германии (Рельсовый Цеппелин), в 1960-х годах в США (M-497) и в 1970-х годах в СССР (Скоростной вагон-лаборатория) проходили испытания прототипы поездов, не имеющие моторной тяги тележек колёсных пар и приводившиеся в движение турбовинтовыми и турбореактивными двигателями .

Также с целью вообще избавиться от колёсного трения, то есть заставить поезд висеть над путями (нерельсовыми направляющими или полотном), были разработаны поезда на воздушной подушке с турбовинтовыми и турбореактивными двигателями (французские и др.), не вошедшие в широкую эксплуатацию, также поезда на магнитной левитации (маглевы) с линейными тяговыми электродвигателями и сверхпроводниками , получившие в мире некоторое распространение.

Для обеспечения высокой выходной мощности поезд должен иметь очень мощный. Этим и объясняется, что практически все высокоскоростные поезда (лишь за редким исключением) относятся к электроподвижному составу (электровозы , электропоезда). Тяговые электродвигатели на поездах первого поколения были коллекторными постоянного тока . Мощность такого двигателя ограничена прежде всего коллекторно-щёточным узлом (который к тому же ненадёжен), поэтому уже на поездах последующих поколений стали применяться бесколлекторные тяговые электродвигатели: синхронные (вентильные) и асинхронные . Такие двигатели имеют гораздо более высокую мощность, так, для сравнения: мощность ТЭД постоянного тока электропоезда TGV-PSE (1-е поколение) составляет 538 кВт, а синхронного ТЭД электропоезда TGV-A (2-е поколение) - 1100 кВт.

Для торможения высокоскоростных поездов прежде всего используется электрическое торможение , на высоких скоростях - рекуперативное , а на низких - реостатное . Однако современные (например, применяется на ЭПС 4-го поколения) позволяют применять на подвижном составе с бесколлекторными ТЭД и рекуперативное торможение практически во всём диапазоне скоростей.

ВСНТ и другие виды транспорта [ | ]

ВСНТ и авиация [ | ]

Сравнение общего времени поездки на поездах (красные линии) и самолёте (синяя линия)

На начало 2011 года высокоскоростные поезда ещё не достигли скоростей пассажирских реактивных самолётов - 900-950 км/ч. Из этого можно сделать вывод, что на самолёте из города в город можно добраться быстрее, чем на поезде. Однако, здесь вступает в силу то обстоятельство, что аэропорты в своём большинстве находятся далеко от центра городов (из-за обширной инфраструктуры и высокого шума от самолётов), и дорога до них может занимать значительное время. Помимо этого, довольно продолжительное время (около 1 часа) занимает регистрация перед посадкой, а также накладные расходы на взлёт и приземление. В свою очередь, высокоскоростные поезда могут отправляться с центральных вокзалов города, а время от покупки билета до отправления поезда может занимать около 15 минут. Таким образом, данная разница во времени позволяет поездам иметь некоторое преимущество перед самолётами. На рисунке приведены графики приблизительного времени поездки на поездах и самолёте с учётом времени на поездку до вокзала или аэропорта и регистрацию. Исходя из него, можно увидеть, что до определённого расстояния общее время поездки на поезде будет меньше, чем на самолёте.

Замена авиасообщения между городами на ВСНТ, прежде всего, позволяет высвободить значительное количество самолётов, что даёт экономию в дорогом авиационном топливе, а также позволяет разгрузить аэропорты . Последнее даёт возможность увеличить число дальних авиарейсов, в том числе и межконтинентальных. Стоит отметить, что уже с пуском первых ВСМ произошёл значительный отток пассажиропотока с внутренней авиации на ВСНТ, из-за чего авиакомпании были вынуждены либо сокращать число таких авиарейсов, либо привлекать пассажиров снижением стоимости билетов и ускорением обслуживания . Немалое обстоятельство здесь сыграл и фактор безопасности - в феврале-марте 1966 года в Японии произошла серия крупных авиакатастроф (4 февраля , 4 марта , 5 марта), что и вызвало подрыв доверия к авиации .

Высокоскоростной наземный транспорт по странам [ | ]

См. также [ | ]

Примечания [ | ]

  1. Железнодорожный транспорт: Энциклопедия / Гл. ред.
Похожие публикации