Решение дифференциального уравнения называется частным если. Как решать дифференциальные уравнения

На сегодняшний день одним из важнейших навыков для любого специалиста является умение решать дифференциальные уравнения. Решение дифференциальных уравнений – без этого не обходится ни одна прикладная задача, будь это расчет какого-либо физического параметра или моделирование изменений в результате принятой макроэкономической политики. Эти уравнения также важны для ряда других наук, таких как химия, биология, медицина и т.д. Ниже мы приведем пример использования дифференциальных уравнений в экономике, но перед этим кратко расскажем об основных типах уравнений.

Дифференциальные уравнения – простейшие виды

Мудрецы говорили, что законы нашей вселенной написаны на математическом языке. Конечно, в алгебре есть много примеров различных уравнений, но это, большей частью, учебные примеры, неприменимые на практике. По-настоящему интересная математика начинается, когда мы хотим описать процессы, протекающие в реальной жизни. Но как отразить фактор времени, которому подчиняются реальные процессы – инфляция, выработка продукции или демографические показатели?

Вспомним одно важное определение из курса математики, касающееся производной функции. Производная является скоростью изменения функции, следовательно, она может помочь нам отразить фактор времени в уравнении.

То есть, мы составляем уравнение с функцией, которая описывает интересующий нас показатель и добавляем в уравнение производную этой функции. Это и есть дифференциальное уравнение. А теперь перейдем к простейшим типам дифференциальных уравнений для чайников .

Простейшее дифференциальное уравнение имеет вид $y’(x)=f(x)$, где $f(x)$ – некоторая функция, а $y’(x)$ – производная или скорость изменения искомой функции. Оно решается обычным интегрированием: $$y(x)=\int f(x)dx.$$

Второй простейший тип называется дифференциальным уравнением с разделяющимися переменными. Такое уравнение выглядит следующим образом $y’(x)=f(x)\cdot g(y)$. Видно, что зависимая переменная $y$ также входит в состав конструируемой функции. Уравнение решается очень просто – нужно "разделить переменные", то есть привести его к виду $y’(x)/g(y)=f(x)$ или $dy/g(y)=f(x)dx$. Остается проинтегрировать обе части $$\int \frac{dy}{g(y)}=\int f(x)dx$$ – это и есть решение дифференциального уравнения разделяющегося типа.

Последний простой тип – это линейное дифференциальное уравнение первого порядка. Оно имеет вид $y’+p(x)y=q(x)$. Здесь $p(x)$ и $q(x)$ – некоторые функции, а $y=y(x)$ – искомая функция. Для решения такого уравнения применяют уже специальные методы (метод Лагранжа вариации произвольной постоянной, метод подстановки Бернулли).

Есть более сложные виды уравнений – уравнения второго, третьего и вообще произвольного порядка, однородные и неоднородные уравнения, а также системы дифференциальных уравнений. Для их решения нужна предварительная подготовка и опыт решения более простых задач.

Большое значение для физики и, что неожиданно, финансов имеют так называемые дифференциальные уравнения в частных производных. Это значит, что искомая функция зависит от нескольких переменных одновременно. Например, уравнение Блека-Шоулса из области финансового инжиниринга описывает стоимость опциона (вид ценной бумаги) в зависимости от его доходности, размера выплат, а также сроков начала и конца выплат. Решение дифференциального уравнения в частных производных довольно сложное, обычно нужно использовать специальные программы, такие как Matlab или Maple.

Пример применения дифференциального уравнения в экономике

Приведем, как и было обещано, простой пример решения дифференциального уравнения. Вначале поставим задачу.

Для некоторой фирмы функция маржинальной выручки от продажи своей продукции имеет вид $MR=10-0,2q$. Здесь $MR$ – маржинальная выручка фирмы, а $q$ – объем продукции. Нужно найти общую выручку.

Как видно из задачи, это прикладной пример из микроэкономики. Множество фирм и предприятий постоянно сталкивается с подобными расчетами в ходе своей деятельности.

Приступаем к решению. Как известно из микроэкономики, маржинальная выручка представляет собой производную от общей выручки, причем выручка равна нулю при нулевом уровне продаж.

С математической точки задача свелась к решению дифференциального уравнения $R’=10-0,2q$ при условии $R(0)=0$.

Проинтегрируем уравнение, взяв первообразную функцию от обеих частей, получим общее решение: $$R(q) = \int (10-0,2q)dq = 10 q-0,1q^2+C. $$

Чтобы найти константу $C$, вспомним условие $R(0)=0$. Подставим: $$R(0) =0-0+C = 0. $$ Значит C=0 и наша функция общей выручки принимает вид $R(q)=10q-0,1q^2$. Задача решена.

Другие примеры по разным типам ДУ собраны на странице:

Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного : линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Задачи на дифференциальное и интегральное исчисление являются важными элементами закрепления теории математического анализа, раздела высшей математики, изучаемой в вузах. Дифференциальное уравнение решается методом интегрирования.

Инструкция

Дифференциальное исчисление исследует свойства . И наоборот, интегрирование функции позволяет по данным свойствам, т.е. производным или дифференциалам функции найти ее саму. В этом и заключается решение дифференциального уравнения.

Любое является соотношением между неизвестной величиной и известными данными. В случае дифференциального уравнения роль неизвестного играет функция, а роль известных величин – ее производные. Кроме этого, соотношение может содержать независимую переменную:F(x, y(x), y’(x), y’’(x),…, y^n(x)) = 0, где x – неизвестная переменная, y(x) – функция, которую нужно определить, порядок уравнения – это максимальный порядок производной (n).

Такое уравнение называется обыкновенным дифференциальным уравнением. Если же в соотношении несколько независимых переменных и частные производные (дифференциалы) функции по этим переменным, то уравнение называется дифференциальным уравнением с частными производными и имеет вид:x∂z/∂y - ∂z/∂x = 0, где z(x, y) – искомая функция.

Итак, чтобы научиться решать дифференциальные уравнения, необходимо уметь находить первообразные, т.е. решать задачу, обратную дифференцированию. Например:Решите уравнение первого порядка y’ = -y/x.

РешениеЗамените y’ на dy/dx: dy/dx = -y/x.

Приведите уравнение к виду, удобному для интегрирования. Для этого умножьте обе части на dx и разделите на y:dy/y = -dx/x.

Проинтегрируйте:∫dy/y = - ∫dx/x + Сln |y| = - ln |x| + C.

Это решение называется общим дифференциального уравнения. С – это константа, множество значений которой определяет множество решений уравнения. При любом конкретном значении С решение будет единственным. Такое решение является частным решением дифференциального уравнения.

Решение большинства уравнений высших степеней не имеет четкой формулы, как нахождение корней квадратного уравнения . Однако существует несколько способов приведения, которые позволяют преобразовать уравнение высшей степени к более наглядному виду.

Инструкция

Наиболее распространенным методом решения уравнений высших степеней является разложение . Этот подход представляет собой комбинацию подбора целочисленных корней, делителей свободного члена, и последующее деление общего многочлена на вида (x – x0).

Например, решите уравнение x^4 + x³ + 2·x² – x – 3 = 0.Решение.Свободным членом данного многочлена является -3, следовательно, его целочисленными делителями могут быть числа ±1 и ±3. Подставьте их по очереди в уравнение и выясните, получится ли тождество:1: 1 + 1 + 2 – 1 – 3 = 0.

Второй корень x = -1. Поделите на выражение (x + 1). Запишите получившееся уравнение (x - 1)·(x + 1)·(x² + x + 3) = 0. Степень понизилась до второй, следовательно, уравнение может иметь еще два корня. Чтобы найти их, решите квадратное уравнение:x² + x + 3 = 0D = 1 – 12 = -11

Дискриминант – отрицательная величина, значит, действительных корней у уравнения больше нет. Найдите комплексные корни уравнения:x = (-2 + i·√11)/2 и x = (-2 – i·√11)/2.

Другой метод решения уравнения высшей степени – замена переменных для приведения его к квадратному. Такой подход используется, когда все степени уравнения четные, например:x^4 – 13·x² + 36 = 0

Теперь найдите корни исходного уравнения:x1 = √9 = ±3; x2 = √4 = ±2.

Совет 10: Как определить окислительно-восстановительные уравнения

Химическая реакция – это процесс превращения веществ, протекающий с изменением их состава. Те вещества, которые вступают в реакцию, называются исходными, а те, которые образуются в результате этого процесса – продуктами. Бывает так, что в ходе химической реакции элементы, входящие в состав исходных веществ, изменяют свою степень окисления. То есть они могут принять чужие электроны и отдать свои. И в том, и в другом случае меняется их заряд. Такие реакции называются окислительно-восстановительными.

Вспомним задачу, которая стояла перед нами при нахождении определенных интегралов:

или dy = f(x)dx. Ее решение:

и сводится она к вычислению неопределенного интеграла. На практике чаще встречается более сложная задача: найти функцию y , если известно, что она удовлетворяет соотношению вида

Это соотношение связывает независимую переменную x , неизвестную функцию y и ее производные до порядка n включительно, называются .

В дифференциальное уравнение входит функция под знаком производных (или дифференциалов) того или иного порядка. Порядок наивысшей называется порядком (9.1).

Дифференциальные уравнения:

- первого порядка,

Второго порядка,

- пятого порядка и т. д.

Функция, которая удовлетворяет данному дифференциальному уравнению, называется его решением, или интегралом. Решить его - значит найти все его решения. Если для искомой функции y удалось получить формулу, которая дает все решения, то мы говорим, что нашли его общее решение, или общий интеграл.

Общее решение содержит n произвольных постоянных и имеет вид

Если получено соотношение, которое связывает x, y и n произвольных постоянных, в виде, не разрешенном относительно y -

то такое соотношение называется общим интегралом уравнения (9.1).

Задача Коши

Каждое конкретное решение, т. е. каждая конкретная функция, которая удовлетворяет данному дифференциальному уравнению и не зависит от произвольных постоянных, называется частным решением, или частным интегралом. Чтобы получить частные решения (интегралы) из общих, надо постоянным придают конкретные числовые значения.

График частного решения называется интегральной кривой. Общее решение, которое содержит все частные решения, представляет собой семейство интегральных кривых. Для уравнения первого порядка это семейство зависит от одной произвольной постоянной, для уравнения n -го порядка - от n произвольных постоянных.

Задача Коши заключается в нахождении частного решение для уравнения n -го порядка, удовлетворяющее n начальным условиям:

по которым определяются n постоянных с 1 , с 2 ,..., c n.

Дифференциальные уравнения 1-го порядка

Для неразрешенного относительно производной дифференциальное уравнения 1-го порядка имеет вид

или для разрешенного относительно

Пример 3.46 . Найти общее решение уравнения

Решение. Интегрируя, получим

где С - произвольная постоянная. Если придадим С конкретные числовые значения, то получим частные решения, например,

Пример 3.47 . Рассмотрим возрастающую денежную сумму, положенную в банк при условии начисления 100 r сложных процентов в год. Пусть Yo начальная денежная сумма, а Yx - по истечении x лет. При начислении процентов один раз в год,получим

где x = 0, 1, 2, 3,.... При начислении процентов два раза в год, получим

где x = 0, 1/2, 1, 3/2,.... При начислении процентов n раз в год и если x принимает последовательно значения 0, 1/n, 2/n, 3/n,..., тогда

Обозначить 1/n = h , тогда предыдущее равенство будет иметь вид:

При н еограниченном увеличении n (при ) в пределе приходем к процессу возрастания денежной суммы при непрерывном начислении процентов:

таким образом видно, что при непрерывном изменении x закон изменения денежной массы выражается дифференциальным уравнением 1- го порядка. Где Y x - неизвестная функция, x - независимая переменная, r - постоянная. Решим данное уравнение, для этого перепишем его следующим образом:

откуда , или , где через P обозначено e C .

Из начальных условий Y(0) = Yo , найдем P: Yo = Pe o , откуда, Yo = P. Следовательно, решение имеет вид:

Рассмотрим вторую экономическую задачу. Макроэкономические модели тоже описываются линейным дифференциальным уравнениям 1-го порядка, описывающим изменение дохода или выпуска продукции Y как функций времени.

Пример 3.48 . Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине:

и пусть, дефицит в расходах правительства прямо пропорционален доходу Y с коэффициентом пропорциональности q . Дефицит в расходах приводит к возрастанию национального долга D:

Начальные условия Y = Yo и D = Do при t = 0. Из первого уравнения Y= Yoe kt . Подставляя Y получаем dD/dt = qYoe kt . Общее решение имеет вид
D = (q/ k) Yoe kt +С, где С = const, которая определяется из начальных условий. Подставляя начальные условия, получаем Do = (q/ k)Yo + С. Итак, окончательно,

D = Do +(q/ k)Yo (e kt -1),

отсюда видно, что национальный долг возрастает с той же относительной скоростью k , что и национальный доход.

Рассмотрим ростейшие дифференциальные уравнения n -го порядка, это уравнения вида

Его общее решение получитм с помощью n раз интегрирований.

Пример 3.49. Рассмотрим пример y """ = cos x.

Решение. Интегрируя, находим

Общее решение имеет вид

Линейные дифференциальные уравнения

В экономике большое применение имеют , рассмотрим решение таких уравнений. Если (9.1) имеет вид:

то оно называется линейным, где рo(x), р1(x),..., рn(x), f(x) - заданные функции. Если f(x) = 0, то (9.2) называется однородными, в противном случае - неоднородным. Общее решение уравнения (9.2) равно сумме какого-либо его частного решения y(x) и общего решения однородного уравнения соответствующего ему:

Если коэффициенты р o (x), р 1 (x),..., р n (x) постоянные, то (9.2)

(9.4) называется линейным дифференциальным уравнением с постоянными коэффициентами порядка n .

Для (9.4) имеет вид:

Можно положить без ограничения общности р o = 1 и записать (9.5) в виде

Будем искать решение (9.6) в виде y = e kx , где k - константа. Имеем: ; y " = ke kx , y "" = k 2 e kx , ..., y (n) = kne kx . Подставим полученные выражения в (9.6), будем иметь:

(9.7) есть алгебраическое уравнение, его неизвестным является k , оно называется характеристическим. Характеристическое уравнение имеет степень n и n корней, среди которых могут быть как кратные, так и комплексные. Пусть k 1 , k 2 ,..., k n - действительные и различные, тогда - частные решения (9.7), а общее

Рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами:

Его характеристическое уравнение имеет вид

(9.9)

его дискриминант D = р 2 - 4q в зависимости от знака D возможны три случая.

1. Если D>0, то корни k 1 и k 2 (9.9) действительны и различны, и общее решение имеет вид:

Решение. Характеристическое уравнение: k 2 + 9 = 0, откуда k = ± 3i, a = 0, b = 3, общее решение имеет вид:

y = C 1 cos 3x + C 2 sin 3x.

Линейные дифференциальные уравнения 2-го порядка применяются при изучении экономической модели паутинообразного типа с запасами товаров, где скорость изменения цены P зависит от величины запаса (см. параграф 10). В случае если спрос и предложение являются линейными функциями цены, то есть

а - есть постоянная, определяющая скорость реакции, то процесс изменения цены описывается дифференциальным уравнением:

За частное решения можно взять постоянную

имеющую смысл цены равновесия. Отклонение удовлетворяет однородному уравнению

(9.10)

Характеристическое уравнение будет следующее:

В случае член положителен. Обозначим . Корни характеристического уравнения k 1,2 = ± i w, поэтому общее решение (9.10) имеет вид:

где C и произвольные постоянные, они определяются из начальных условий. Получили закон изменения цены во времени:

Введите свое дифференциальное уравнение, для ввода производной используется апостроa """, нажмите submit получите решение

Или уже решены относительно производной , или их можно решить относительно производной .

Общее решение дифференциальных уравнений типа на интервале X , который задан, можно найти, взяв интеграл обоих частей этого равенства.

Получим .

Если посмотреть на свойства неопределенного интеграла, то найдем искомое общее решение:

y = F(x) + C ,

где F(x) - одна из первообразных функции f(x) на промежутке X , а С - произвольная постоянная.

Обратите внимание, что в большинстве задач интервал X не указывают. Это значит, что решение нужно находить для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Если нужно вычислить частное решение дифференциального уравнения , которое удовлетворяет начальному условию y(x 0) = y 0 , то после вычисления общего интеграла y = F(x) + C , еще необходимо определить значение постоянной C = C 0 , используя начальное условие. Т.е., константу C = C 0 определяют из уравнения F(x 0) + C = y 0 , и искомое частное решение дифференциального уравнения примет вид:

y = F(x) + C 0 .

Рассмотрим пример:

Найдем общее решение дифференциального уравнения , проверим правильность результата. Найдем частное решение этого уравнения, которое удовлетворяло бы начальному условию .

Решение:

После того, как мы проинтегрировали заданное дифференциальное уравнение, получаем:

.

Возьмем этот интеграл методом интегрирования по частям:


Т.о., является общим решением дифференциального уравнения.

Чтобы убедиться в правильности результата, сделаем проверку. Для этого подставляем решение, которое мы нашли, в заданное уравнение:


.

То есть, при исходное уравнение превращается в тождество:

поэтому общее решение дифференциального уравнения определили верно.

Решение, которое мы нашли, является общим решением дифференциального уравнения для каждого действительного значения аргумента x .

Осталось вычислить частное решение ОДУ, которое удовлетворяло бы начальному условию . Другими словами, необходимо вычислить значение константы С , при котором будет верно равенство:

.

.

Тогда, подставляя С = 2 в общее решение ОДУ, получаем частное решение дифференциального уравнения, которое удовлетворяет первоначальному условию:

.

Обыкновенное дифференциальное уравнение можно решить относительно производной, разделив 2 части равенства на f(x) . Это преобразование будет равнозначным, если f(x) не превращается в нуль ни при каких x из интервала интегрирования дифференциального уравнения X .

Вероятны ситуации, когда при некоторых значениях аргумента x X функции f(x) и g(x) одновременно превращаются в нуль. Для подобных значений x общим решением дифференциального уравнения будет всякая функция y , которая определена в них, т.к. .

Если для некоторых значений аргумента x X выполняется условие , значит, в этом случае у ОДУ решений нет.

Для всех других x из интервала X общее решение дифференциального уравнения определяется из преобразованного уравнения .

Разберем на примерах:

Пример 1.

Найдем общее решение ОДУ: .

Решение.

Из свойств основных элементарных функций ясно, что функция натурального логарифма определена для неотрицательных значений аргумента, поэтому областью определения выражения ln(x+3) есть интервал x > -3 . Значит, заданное дифференциальное уравнение имеет смысл для x > -3 . При этих значениях аргумента выражение x + 3 не обращается в нуль, поэтому можно решить ОДУ относительно производной, разделив 2 части на х + 3 .

Получаем .

Далее проинтегрируем полученное дифференциальное уравнение, решенное относительно производной: . Для взятия этого интеграла пользуемся методом подведения под знак дифференциала.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Похожие публикации