Реагируют ли основные оксиды с основаниями. Химические свойства кислотных оксидов

Вы можете приобрести видеоурок (запись вебинара, 1,5 часа) и комплект теории по теме «Оксиды: получение и химические свойства». Стоимость материалов — 500 рублей. Оплата через систему Яндекс.Деньги (Visa, Mastercard, МИР, Maestro) по ссылке .

Внимание! После оплаты необходимо прислать сообщение с пометкой «Оксиды» с указанием адреса электронной почты, на которую можно выслать ссылку для скачивания и просмотра вебинара. В течение суток после оплаты заказа и получения сообщения материалы вебинара поступят на вашу почту. Сообщение можно прислать одним из следующих способов:

  • через смс, Viber или whatsapp на номер +7-977-834-56-28;
  • через e-mail: [email protected]

Без сообщения мы не сможем идентифицировать платеж и отправить Вам материалы.

Химические свойства кислотных оксидов

1. Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей.

При этом действует правило — хотя бы одному из оксидов должен соответствовать сильный гидроксид (кислота или щелочь).

Кислотные оксиды сильных и растворимых кислот взаимодействуют с любыми основными оксидами и основаниями:

SO 3 + CuO = CuSO 4

SO 3 + Cu(OH) 2 = CuSO 4 + H 2 O

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

SO 3 + Na 2 O = Na 2 SO 4

Кислотные оксиды нерастворимых в воде и неустойчивых или летучих кислот взаимодействуют только с сильными основаниями (щелочами) и их оксидами. При этом возможно образование кислых и основных солей, в зависимости от соотношения и состава реагентов.

Например , оксид натрия взаимодействует с оксидом углерода (IV), а оксид меди (II), которому соответствует нерастворимое основание Cu(OH) 2 — практически не взаимодействует с оксидом углерода (IV):

Na 2 O + CO 2 = Na 2 CO 3

CuO + CO 2 ≠

2. Кислотные оксиды взаимодействуют с водой с образованием кислот.

Исключение оксид кремния, которому соответствует нерастворимая кремниевая кислота. Оксиды, которым соответствуют неустойчивые кислоты, как правило, реагируют с водой обратимо и в очень малой степени.

SO 3 + H 2 O = H 2 SO 4

3. Кислотные оксиды взаимодействуют с амфотерными оксидами и гидроксидами с образованием соли или соли и воды.

Обратите внимание — с амфотерными оксидами и гидроксидами взаимодействуют, как правило, только оксиды сильных или средних кислот!

Например , ангидрид серной кислоты (оксид серы (VI)) взаимодействует с оксидом алюминия и гидроксидом алюминия с образованием соли — сульфата алюминия:

3SO 3 + Al 2 O 3 = Al 2 (SO 4) 3

3SO 3 + 2Al(OH) 3 = Al 2 (SO 4) 3 + 3H 2 O

А вот оксид углерода (IV), которому соответствует слабая угольная кислота, с оксидом алюминия и гидроксидом алюминия уже не взаимодействует:

CO 2 + Al 2 O 3 ≠

CO 2 + Al(OH) 3 ≠

4. Кислотные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей .

Например , твердый оксид кремния SiO 2 вытеснит более летучий углекислый газ из карбоната кальция при сплавлении:

CaCO 3 + SiO 2 = CaSiO 3 + CO 2

5. Кислотные оксиды способны проявлять окислительные свойства.

Как правило, оксиды элементов в высшей степени окисления — типичные (SO 3 , N 2 O 5 , CrO 3 и др.) . Сильные окислительные свойства проявляют и некоторые элементы с промежуточной степенью окисления (NO 2 и др.).

6. Восстановительные свойства.

Восстановительные свойства, как правило, проявляют оксиды элементов в промежуточной степени окисления (CO, NO, SO 2 и др.). При этом они окисляются до высшей или ближайшей устойчивой степени окисления.

Например , оксид серы (IV) окисляется кислородом до оксида серы (VI):

2SO 2 + O 2 = 2SO 3

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

Оксид неметалла Оксид металла
1) Степень окисления неметалла +1 или +2
Вывод: оксид несолеобразующий
Исключение: Cl 2 O не относится к несолеобразующим оксидам
1) Степень окисления металла +1 или +2
Вывод: оксид металла — основный
Исключение: BeO, ZnO и PbO не относятся к основным оксидам
2) Степень окисления больше либо равна +3
Вывод: оксид кислотный
Исключение: Cl 2 O относится к кислотным оксидам, несмотря на степень окисления хлора +1
2) Степень окисления металла +3 или +4
Вывод: оксид амфотерный
Исключение: BeO, ZnO и PbO амфотерны, несмотря на степень окисления +2 у металлов
3) Степень окисления металла +5, +6, +7
Вывод: оксид кислотный

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na 2 O, CaO, Rb 2 O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных оксидов . Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.
Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H 2 O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:
1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);
2) все кислотные оксиды, кроме диоксида кремния (SiO 2);

т.е. из вышесказанного следует, что с водой точно не реагируют :
1) все малоактивные основные оксиды;
2) все амфотерные оксиды;
3) несолеобразующие оксиды (NO, N 2 O, CO, SiO).

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды , реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K +1 2 O и Ba +2 O образуются соответствующие им гидроксиды K +1 OH и Ba +2 (OH) 2:

K 2 O + H 2 O = 2KOH – гидроксид калия

BaO + H 2 O = Ba(OH) 2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH) 2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами . Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим записать уравнение взаимодействия кислотного оксида SO 3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H 2 S, сернистая H 2 SO 3 и серная H 2 SO 4 кислоты. Cероводородная кислота H 2 S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO 3 с водой можно сразу исключить. Из кислот H 2 SO 3 и H 2 SO 4 серу в степени окисления +6, как в оксиде SO 3 , содержит только серная кислота H 2 SO 4 . Поэтому именно она и будет образовываться в реакции SO 3 с водой:

H 2 O + SO 3 = H 2 SO 4

Аналогично оксид N 2 O 5 , содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO 3 , но ни в коем случае не азотистую HNO 2 , поскольку в азотной кислоте степень окисления азота, как и в N 2 O 5 , равна +5, а в азотистой — +3:

N +5 2 O 5 + H 2 O = 2HN +5 O 3

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид ≠

3) амфотерный оксид + амфотерный оксид ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

Me x O y + кислотный оксид, где Me x O y – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного Me x O y) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

Na 2 O + P 2 O 5 и Al 2 O 3 + SO 3

В первой паре реагентов мы видим основный оксид (Na 2 O) и кислотный оксид (P 2 O 5). Во второй – амфотерный оксид (Al 2 O 3) и кислотный оксид (SO 3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na 2 O и P 2 O 5 должна образоваться соль, состоящая из катионов Na + (из Na 2 O) и кислотного остатка PO 4 3- , поскольку оксиду P +5 2 O 5 соответствует кислота H 3 P +5 O 4 . Т.е. в результате такого взаимодействия образуется фосфат натрия:

3Na 2 O + P 2 O 5 = 2Na 3 PO 4 — фосфат натрия

В свою очередь, при взаимодействии Al 2 O 3 и SO 3 должна образоваться соль, состоящая из катионов Al 3+ (из Al 2 O 3) и кислотного остатка SO 4 2- , поскольку оксиду S +6 O 3 соответствует кислота H 2 S +6 O 4 . Таким образом, в результате данной реакции получается сульфат алюминия:

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3 — сульфат алюминия

Более специфическим является взаимодействие между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO 2 x — , где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me +2 O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me +3 2 O 3 (например, Al 2 O 3 , Cr 2 O 3 и Fe 2 O 3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na 2 O и Al 2 O 3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me +2 O, а Na 2 O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na + (из Na 2 O) и «кислотного остатка»/аниона c формулой ZnO 2 2- , поскольку амфотерный оксид имеет общую формулу вида Me +2 O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na 2 ZnO 2:

ZnO + Na 2 O =t o => Na 2 ZnO 2

В случае взаимодействующей пары реагентов Al 2 O 3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me +3 2 O 3 , а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba 2+ (из BaO) и «кислотного остатка»/аниона AlO 2 — . Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO 2) 2 , а само уравнение взаимодействия запишется как:

Al 2 O 3 + BaO =t o => Ba(AlO 2) 2

Как мы уже писали выше, практически всегда протекает реакция:

Me x O y + кислотный оксид ,

где Me x O y – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO 2) и сернистый газ (SO 2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO 2 и SO 2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na 2 O и BaO, являясь активными основными оксидами, могут с ними реагировать:

CO 2 + Na 2 O = Na 2 CO 3

SO 2 + BaO = BaSO 3

В то время, как оксиды CuO и Al 2 O 3 , не относящиеся к активным основным оксидам, в реакцию с CO 2 и SO 2 не вступают:

CO 2 + CuO ≠

CO 2 + Al 2 O 3 ≠

SO 2 + CuO ≠

SO 2 + Al 2 O 3 ≠

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H 2 SO 4 = FeSO 4 + H 2 O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO 2 + 6HF = H 2 + 2H 2 O ,

а в случае недостатка HF:

SiO 2 + 4HF = SiF 4 + 2H 2 O

2) SO 2 , будучи кислотным оксидом, легко реагирует с сероводородной кислотой H 2 S по типу сопропорционирования :

S +4 O 2 + 2H 2 S -2 = 3S 0 + 2H 2 O

3) Оксид фосфора (III) P 2 O 3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P 2 O 3 + 2H 2 SO 4 + H 2 O =t o => 2SO 2 + 2H 3 PO 4
(конц.)
3 P 2 O 3 + 4HNO 3 + 7 H 2 O =t o => 4NO + 6 H 3 PO 4
(разб.)
2HNO 3 + 3SO 2 + 2H 2 O =t o => 3H 2 SO 4 + 2NO
(разб.)

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

P 2 O 5 + 6KOH = 2K 3 PO 4 + 3H 2 O

P 2 O 5 + 4KOH = 2K 2 HPO 4 + H 2 O

P 2 O 5 + 2KOH + H 2 O = 2KH 2 PO 4

«Привередливые» оксиды CO 2 и SO 2 , активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осно вные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH) 2 + CO 2 = (ZnOH) 2 CO 3 + H 2 O (в растворе)

2Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH) 3 , Cr(OH) 3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO 2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO 2 =t o => Na 2 SiO 3 + H 2 O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H 2 O = Na 2 — тетрагидроксоцинкат натрия

BeO + 2NaOH + H 2 O = Na 2 — тетрагидроксобериллат натрия

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na — тетрагидроксоалюминат натрия

Cr 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 — гексагидроксохромат (III) натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO 2 x — , где x = 2 в случае амфотерного оксида типа Me +2 O и x = 1 для амфотерного оксида вида Me 2 +2 O 3:

ZnO + 2NaOH =t o => Na 2 ZnO 2 + H 2 O

BeO + 2NaOH =t o => Na 2 BeO 2 + H 2 O

Al 2 O 3 + 2NaOH =t o => 2NaAlO 2 + H 2 O

Cr 2 O 3 + 2NaOH =t o => 2NaCrO 2 + H 2 O

Fe 2 O 3 + 2NaOH =t o => 2NaFeO 2 + H 2 O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na 2 =t o => Na 2 ZnO 2 + 2H 2 O

Na =t o => NaAlO 2 + 2H 2 O

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO 2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO 2) и углекислый (CO 2) газы соответственно. Например:

Al 2 O 3 + Na 2 CO 3 =t o => 2NaAlO 2 + CO 2

SiO 2 + K 2 SO 3 =t o => K 2 SiO 3 + SO 2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K 2 СO 3 + SO 2 = K 2 SO 3 + CO 2

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких трудновосстанавливаемых металлов, как хром и ванадий:

Cr 2 O 3 + 2Al =t o => Al 2 O 3 + 2Cr

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000 o C.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H 2), углеродом (C) и угарным газом (CO) при нагревании. Например:

Fe 2 O 3 + 3CO =t o => 2Fe + 3CO 2

CuO + C =t o => Cu + CO

FeO + H 2 =t o => Fe + H 2 O

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов. Например:

Fe 2 O 3 + CO =t o => 2FeO + CO 2

4CuO + C =t o => 2Cu 2 O + CO 2

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют .

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

2Al 2 O 3 + 9C =t o => Al 4 C 3 + 6CO

CaO + 3C =t o => CaC 2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными, щелочноземельными металлами и магнием:

CO 2 + 2Mg =t o => 2MgO + C

SiO 2 + 2Mg =t o => Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg 2 Si:

SiO 2 + 4Mg =t o => Mg 2 Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =t o => ZnO + N 2

NO 2 + 2Cu =t o => 2CuO + N 2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O 2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом реагировать не будут (!) .

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Все химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO 2):

2NO + O 2 = 2NO 2
бесцветный бурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si , P , S , Cu , Mn , Fe , Cr ) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

элемент

Отношение его оксидов к кислороду

С Минимальная среди основных положительных степеней окисления углерода равна +2 , а ближайшая к ней положительная — +4 . Таким образом, с кислородом из оксидов C +2 O и C +4 O 2 реагирует только CO. При этом протекает реакция:

2C +2 O + O 2 =t o => 2C +4 O 2

CO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Si Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si +2 O и Si +4 O 2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO 2 возможно окисление лишь части атомов кремния в оксиде Si +2 O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si 2 O 3 (Si +2 O·Si +4 O 2):

4Si +2 O + O 2 =t o => 2Si +2 ,+4 2 O 3 (Si +2 O·Si +4 O 2)

SiO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

P Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P +3 2 O 3 и P +5 2 O 5 реагирует только P 2 O 3 . При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P +3 2 O 3 + O 2 =t o => P +5 2 O 5

P +5 2 O 5 + O 2 ≠ — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

S Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S +4 O 2 , S +6 O 3 реагирует только SO 2 . При этом протекает реакция:

2S +4 O 2 + O 2 =t o => 2S +6 O 3

2S +6 O 3 + O 2 ≠ — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Cu Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu +1 2 O, Cu +2 O реагирует только Cu 2 O. При этом протекает реакция:

2Cu +1 2 O + O 2 =t o => 4Cu +2 O

CuO + O 2 ≠ — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Cr Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr +2 O, Cr +3 2 O 3 и Cr +6 O 3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

4Cr +2 O + O 2 =t o => 2Cr +3 2 O 3

Cr +3 2 O 3 + O 2 ≠ — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr +6 O 3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO 3 .

Cr +6 O 3 + O 2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Mn Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn +2 O, Mn +4 O 2 , Mn +6 O 3 и Mn +7 2 O 7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn +2 O + O 2 =t o => 2Mn +4 O 2

в то время, как:

Mn +4 O 2 + O 2 ≠ и Mn +6 O 3 + O 2 ≠ — реакции не протекают, несмотря на то что существует оксид марганца Mn 2 O 7 , содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn +4 O 2 и Mn +6 O 3 нагрев существенно превышает температуру разложения получаемых оксидов MnO 3 и Mn 2 O 7.

Mn +7 2 O 7 + O 2 ≠ — данная реакция невозможна в принципе, т.к. +7 – высшая степень окисления марганца.

Fe Минимальная среди основных положительных степеней окисления железа равна +2 , а ближайшая к ней среди возможных — +3 . Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO 3 , впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe +2 O, либо смешанный оксид железа Fe +2 ,+3 3 O 4 (железная окалина):

4Fe +2 O + O 2 =t o => 2Fe +3 2 O 3 или

6Fe +2 O + O 2 =t o => 2Fe +2,+3 3 O 4

смешанный оксид Fe +2,+3 3 O 4 может быть доокислен до Fe +3 2 O 3:

4Fe +2 ,+3 3 O 4 + O 2 =t o => 6Fe +3 2 O 3

Fe +3 2 O 3 + O 2 ≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

1. Металл + Неметалл. В данное взаимодействие не вступают инертные газы. Чем выше электроотрицательность неметалла, тем с большим числом металлов он будет реагировать. Например, фтор реагирует со всеми металлами, а водород – только с активными. Чем левее в ряду активности металлов находится металл, тем с большим числом неметаллов он может реагировать. Например, золото реагирует только с фтором, литий – со всеми неметаллами.

2. Неметалл + неметалл. При этом более электроотрицательный неметалл выступает окислителем, менее ЭО – восстановителем. Неметаллы с близкой электроотрицательностью плохо взаимодействуют между собой, например, взаимодействие фосфора с водородом и кремния с водородом практически не возможно, так как равновесие этих реакций смещено в сторону образования простых веществ. Не реагируют с неметаллами гелий, неон и аргон, остальные инертные газы в жестких условиях могут реагировать с фтором.
Не взаимодействуют кислород с хлором, бромом и йодом. Со фтором кислород может реагировать при низких температурах.

3. Металл + кислотный оксид. Металл восстанавливает неметалл из оксида. После этого избыток металла может реагировать с получившимся неметаллом. Например:

2 Mg + SiO 2 = 2 MgO + Si (при недостатке магния)

2 Mg + SiO 2 = 2 MgO + Mg 2 Si (при избытке магния)

4. Металл + кислота. Металлы, стоящие в ряду напряжений левее водорода, реагируют с кислотами с выделением водорода.

Исключение составляют кислоты – окислители (серная концентрированная и любая азотная), которые могут реагировать с металлами, стоящими в ряду напряжений правее водорода, в реакциях не выделяется водород, а получается вода и продукт восстановления кислоты.

Нужно обратить внимание на то, что при взаимодействии металла с избытком многоосновной кислоты может получиться кислая соль: Mg +2 H 3 PO 4 = Mg (H 2 PO 4 ) 2 + H 2 .

Если продуктом взаимодействия кислоты и металла является нерастворимая соль, то металл пассивируется, так как поверхность металла защищается нерастворимой солью от действия кислоты. Например, действие разбавленной серной кислоты на свинец, барий или кальций.

5. Металл + соль. В растворе в данную реакцию вступают металл, стоящий в ряду напряжений правее магния, включая сам магний, но левее металла соли. Если металл активнее магния, то он реагирует не с солью, а с водой с образованием щелочи, которая в дальнейшем реагирует с солью. При этом исходная соль и получающаяся соль должны быть растворимыми. Нерастворимый продукт пассивирует металл.

Однако, из этого правила бывают исключения:

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 ;

2FeCl 3 + Fe = 3FeCl 2 . Так как железо имеет промежуточную степень окисления, то его соль в высшей степени окисления легко восстанавливается до соли в промежуточной степени окисления, окисляя даже менее активные металлы.

В расплавах ряд напряжений металлов не действует. Определить, возможна ли реакция между солью и металлом, можно только с помощью термодинамических расчетов. Например, натрий может вытеснить калий из расплава хлорида калия, так как калий более летучий: Na + KCl = NaCl + K (эту реакцию определяет энтропийный фактор). С другой стороны алюминий получали вытеснением из хлорида натрием: 3 Na + AlCl 3 = 3 NaCl + Al . Этот процесс экзотермический, его определяет энтальпийный фактор.

Возможен вариант, что соль при нагревании разлагается, и продукты ее разложения могут реагировать с металлом, например нитрат алюминия и железо. Нитрат алюминия разлагается при нагревании на оксид алюминия, оксид азота (IV ) и кислород, кислород и оксид азота будут окислять железо:

10Fe + 2Al(NO 3) 3 = 5Fe 2 O 3 + Al 2 O 3 + 3N 2

6. Металл + основный оксид. Также, как и в расплавах солей, возможность этих реакций определяется термодинамически. В качестве восстановителей часто используют алюминий, магний и натрий. Например: 8 Al + 3 Fe 3 O 4 = 4 Al 2 O 3 + 9 Fe реакция экзотермическая, энтальпийный фактор);2 Al + 3 Rb 2 O = 6 Rb + Al 2 O 3 (рубидий летучий, энтальпийный фактор).

8. Неметалл + основание. Как правило, реакция идет между неметаллом и щелочью.Не все неметаллы могут реагировать с щелочами: нужно помнить, что в это взаимодействие вступают галогены (по-разному в зависимости от температуры), сера (при нагревании), кремний, фосфор.

KOH + Cl 2 = KClO + KCl + H 2 O (на холоде)

6 KOH + 3 Cl 2 = KClO 3 + 5 KCl + 3 H 2 O (в горячем растворе)

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O

2KOH + Si + H 2 O = K 2 SiO 3 + 2H 2

3KOH + 4P + 3H 2 O = PH 3 + 3KPH 2 O 2

1) неметалл – восстановитель (водород, углерод):

СО 2 + С = 2СО;

2NO 2 + 4H 2 = 4H 2 O + N 2 ;

SiO 2 + C = CO 2 + Si. Если получившийся неметалл может реагировать с металлом, использованным в качестве восстановителя, то реакция пойдет дальше (при избытке углерода) SiO 2 + 2 C = CO 2 + Si С

2) неметалл – окислитель (кислород, озон, галогены):

2С O + O 2 = 2СО 2 .

С O + Cl 2 = СО Cl 2 .

2 NO + O 2 = 2 N О 2 .

10. Кислотный оксид + основный оксид . Реакция идёт, если получающаяся соль в принципе существует. Например, оксид алюминия может реагировать с серным ангидридом с образованием сульфата алюминия, но не может реагировать с углекислым газом, так как соответствующей соли не существует.

11. Вода + основный оксид . Реакция возможна, если образуется щелочь, то есть растворимое основание (или мало растворимое, в случае кальция). Если основание нерастворимое или мало растворимое, то идёт обратная реакция разложения основания на оксид и воду.

12. Основный оксид + кислота . Реакция возможна, если образующаяся соль существует. Если получающаяся соль нерастворима, то реакция может пассивироваться из-за перекрытия доступа кислоты к поверхности оксида. В случае избытка многоосновной кислоты возможно образование кислой соли.

13. Кислотный оксид + основание . Как правило, реакция идет между щелочью и кислотным оксидом. Если кислотный оксид соответствует многоосновной кислоте, может получиться кислая соль: CO 2 + KOH = KHCO 3 .

Кислотные оксиды, соответствующие сильным кислотам, могут реагировать и с нерастворимыми основаниями.

Иногда с нерастворимыми основаниями реагируют оксиды, соответствующие слабым кислотам, при этом может получиться средняя или основная соль (как правило, получается менее растворимое вещество): 2 Mg (OH ) 2 + CO 2 = (MgOH ) 2 CO 3 + H 2 O .

14. Кислотный оксид + соль. Реакция может идти в расплаве и в растворе. В расплаве менее летучий оксид вытесняет из соли более летучий. В растворе оксид, соответствующий более сильной кислоте, вытесняет оксид, соответствующий более слабой кислоте. Например, Na 2 CO 3 + SiO 2 = Na 2 SiO 3 + CO 2 , в прямом направлении эта реакция идет в расплаве, углекислый газ более летучий, чем оксид кремния; в обратном направлении реакция идет в растворе, угольная кислота сильнее кремниевой, к тому же оксид кремния выпадает в осадок.

Возможно соединение кислотного оксида с собственной солью, например, из хромата можно получить дихромат, и сульфата – дисульфат, из сульфита – дисульфит:

Na 2 SO 3 + SO 2 = Na 2 S 2 O 5

Для этого нужно взять кристаллическую соль и чистый оксид, или насыщенный раствор соли и избыток кислотного оксида.

В растворе соли могут реагировать с собственными кислотными оксидами с образованием кислых солей: Na 2 SO 3 + H 2 O + SO 2 = 2 NaHSO 3

15. Вода + кислотный оксид . Реакция возможна, если образуется растворимая или мало растворимая кислота. Если кислота нерастворимая или мало растворимая то идёт обратная реакция разложения кислоты на оксид и воду. Например, для серной кислоты характерна реакция получения из оксида и воды, реакция разложения практически не идёт, кремниевую кислоту нельзя получить из воды и оксида, но она легко разлагается на эти составляющие, а вот угольная и сернистая кислоты могут участвовать как в прямых, так и обратных реакциях.

16. Основание + кислота. Реакция идет, если хотя бы одно из реагирующих веществ растворимо. В зависимости от соотношения реагентов могут получаться средние, кислые и основные соли.

17. Основание + соль. Реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

18. Соль + кислота. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

Сильная кислота может реагировать с нерастворимыми солями слабых кислот (карбонатами, сульфидами, сульфитами, нитритами), при этом выделяется газообразный продукт.

Реакции между концентрированными кислотами и кристаллическими солями возможны, если при этом получается более летучая кислота: например, хлороводород можно получить действием концентрированной серной кислоты на кристаллический хлорид натрия, бромоводород и йодоводород – действием ортофосфорной кислоты на соответствующие соли. Можно действовать кислотой на собственную соль для получения кислой соли, например: BaSO 4 + H 2 SO 4 = Ba (HSO 4 ) 2 .

19. Соль + соль. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит.

1) соль не существует, потому что необратимо гидролизуется . Это большинство карбонатов, сульфитов, сульфидов, силикатов трехвалентных металлов, а так же некоторые соли двухвалентных металлов и аммония. Соли трехвалентных металлов гидролизуются до соответствующего основания и кислоты, а соли двухвалентных металлов – до менее растворимых основных солей.

Рассмотрим примеры:

2 FeCl 3 + 3 Na 2 CO 3 = Fe 2 ( CO 3 ) 3 + 6 NaCl (1)

Fe 2 (CO 3) 3 + 6H 2 O = 2Fe(OH) 3 + 3H 2 CO 3

H 2 CO 3 разлагается на воду и углекислый газ, вода в левой и правой части сокращается и получается: Fe 2 ( CO 3 ) 3 + 3 H 2 O = 2 Fe (OH ) 3 + 3 CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат железа, мы получим суммарное уравнение, отражающее взаимодействие хлорида железа (III ) и карбоната натрия: 2 FeCl 3 + 3 Na 2 CO 3 + 3 H 2 O = 2 Fe (OH ) 3 + 3 CO 2 + 6 NaCl

CuSO 4 + Na 2 CO 3 = CuCO 3 + Na 2 SO 4 (1)

Подчеркнутая соль не существует из-за необратимого гидролиза:

2CuCO 3 + H 2 O = (CuOH) 2 CO 3 +CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат меди, мы получим суммарное уравнение, отражающее взаимодействие сульфата (II ) и карбоната натрия:

2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 + CO 2 + 2Na 2 SO 4

Na 2 О + H 2 O = 2NaОH;

CaO + H 2 O = Ca(OH) 2 ;

    с соединениями кислотного характера (кислотными оксидами, кислотами) с образованием солей и воды:

CaO + СО 2 = СаСО 3 ;

CaO + 2HCl = CaCl 2 + H 2 O;

3) с соединениями амфотерного характера:

Li 2 O + Al 2 O 3 = 2Li AlO 2 ;

3NaOH + Al(OН) 3 = Na 3 AlO 3 + 3Н 2 О;

Кислотные оксиды реагируют:

1) с водой с образованием кислот:

SO 3 + H 2 O = H 2 SO 4 ;

2) с соединениями основного характера (основными оксидами и основаниями) с образованием солей и воды:

SO 2 + Na 2 O = Na 2 SO 3 ;

CO 2 + 2NaОH = Na 2 CO 3 + H 2 O;

    с соединениями амфотерного характера

СО 2 + ZnO = ZnCO 3 ;

СО 2 + Zn(OH) 2 = ZnСО 3 + H 2 O;

Амфотерные оксиды проявляют свойства как основных, так и кислотных оксидов. Им отвечают амфотерные гидроксиды:

кислая среда щелочная среда Ве(ОН) 2 ВеО Н 2 ВеО 2

Zn(OH) 2 ZnO Н 2 ZnО 2

Аl(OН) 3 Al 2 O 3 H 3 AlО 3 , НАlO 2

Cr(OН) 3 Сr 2 O 3 HCrO 2

Pb(OH) 2 PbO Н 2 PbО 2

Sn(OH) 2 SnO Н 2 SnО 2

Амфотерные оксиды взаимодействуют с соеднинениями кислого и основного характера:

ZnO + SiO 2 = ZnSiO 3 ;

ZnO + H 2 SiO 3 = ZnSiO 3 + H 2 O;

Al 2 O 3 + 3Na 2 O = 2Na 3 AlO 3 ;

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O.

Металлы с переменной валентностью могут образовывать оксиды всех трех типов. Например:

CrO основной Cr(OH) 2 ;

Cr 2 O 3 амфотерный Cr(OH) 3 ;

Cr 2 O 7 кислотный H 2 Cr 2 O 7 ;

MnO, Mn 2 O 3 основной;

MnO 2 амфотерный;

Mn 2 O 7 кислотный HMnO 4 .

    Основания

Основания – сложные вещества, в состав которых входят атомы металла и одна или несколько гидроксидных групп (ОН ‾). Общая формула оснований – Ме(ОН) у, где у – число гидроксидных групп, равное валентности металла.

      Номенклатура

Название основания складывается из слова «гидроксид» + название металла.

Если металл имеет переменную валентность, то ее указывают в конце в скобках. Например: CuOH – гидроксид меди (I), Cu(OH) 2 – гидроксид меди (II), NaОH – гидроксид натрия.

Основания (гидроксиды) являются электролитами. Электролитами называются вещества, которые в расплавах или растворах полярных жидкостей распадаются на ионы: положительно заряженные катионы и отрицательно заряженные анионы. Распад вещества на ионы на­зывается электролитической диссоциацией.

Bсe электролиты можно разделить на две группы: сильные и слабые. Сильные электролиты в водных растворах диссоциированы практически нацело. Слабые электролиты диссоциируют только частично и в растворах устанавливается динамическое равновесие между недиссоциированными молекулами и ионами: NН 4 ОН NH 4 + + ОН - .

2.2. Классификация

а) по числу гидроксидных групп в молекуле. Количество гидроксидных групп в молекуле основания зависит от валентности металла и определяет кислотность основания.

Основания делятся на:

Однокислотные, молекулы которых содержат одну гидроксидную группу: NaOH, KOH, LiOH и др.;

Двухкислотные, молекулы которых содержат две гидроксидные группы: Ca(OH) 2 , Fe(OH) 2 и др.;

Трехкислотные, молекулы которых содержат три гидроксидные группы: Ni(OH) 3 , Bi(OH) 3 и др.

Двух- и трехкислотные основания называются многокислотными.

б) по силе основания делятся на:

Сильные (щелочи): LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 ;

Слабые: Cu(OH) 2 , Fe(OH) 2 , Fe(OH) 3 и др.

Сильные основания растворимы в воде, а слабые – нерастворимы.

Диссоциация оснований

Сильные основания диссоциируют практически полностью:

Са(ОН) 2 = Са 2+ + 2ОН - .

Слабые основания диссоциируют ступенчато. При после­довательном отщеплении гидроксид-иона от многокислотных основа­ний образуются основные остатки гидроксокатионы, например:

Fe(OH) 3 OH - + Fe(OH) 2 + дигидроксокатионы железа;

Fe(OH) 2 + OH - + FeOH 2+ гидроксокатионы железа;

Fe(OH) 2+ OH - + Fe 3+ катионы железа.

Число основных остатков равно кислотности основания.

При изучении химических свойств воды вы узнали, что многие оксиды (окислы) неметаллов, вступая в реакцию с водой, образуют кислоты, например:

SO 3 + H 2 O = H 2 SO 4 + Q

Некоторые оксиды металлов, взаимодействуя с водой, образуют основания (щелочи), например:

CaO + H 2 O = Ca(OH) 2 + Q

Однако свойство оксидов вступать в реакцию с водой не является общим для всех веществ этого класса. Многие оксиды, например двуокись кремния SiO 2 , оксид углерода СО, оксид азота NO, оксид меди CuO, оксид железа Fe 2 O 3 и др., не взаимодействуют с водой.

Взаимодействие оксидов с кислотами

Вам известно, что некоторые оксиды металлов вступают в реакцию с кислотами с образованием соли и воды, например:

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Взаимодействие оксидов с основаниями

Некоторые оксиды (углекислый газ СO 2 , сернистый газ SO 2 , фосфорный ангидрид Р 2 O 5 и др.) не вступают в реакцию с кислотами с образованием соли и воды. Выясним: не взаимодействуют ли они с основаниями?

Сухую колбу наполним углекислым газом и насыплем в нее едкий натр NaOH. Закроем колбу резиновой пробкой с вставленной в нее стеклянной трубкой и надетой на ее свободный конец резиновой трубкой с зажимом. Прикоснувшись рукой к колбе, мы ощутим разогревание стекла. На внутренних стенках колбы появились капли воды. Все это – признаки химической реакции . Если углекислый газ вступил в реакцию с едким натром, то можно предполагать, что в колбе создалось разрежение. Чтобы это проверить, после того когда колба охладится до комнатной температуры, опустим конец резиновой трубки прибора в кристаллизатор с водой и откроем зажим. Вода быстро устремится в колбу. Наше предположение о разрежении в колбе подтвердилось – углекислый газ взаимодействует с едким натром. Одним из продуктов реакции является вода. Каков состав образовавшегося твердого вещества?

NaOH + CO 2 = H 2 O + ? + Q

Известно, что углекислому газу соответствует гидрат оксида (окисла) – угольная кислота Н 2 СO 3 . Образовавшееся в колбе твердое вещество – соль угольной кислоты – углекислый натрий Na 2 CO 3 .

Для образования молекулы углекислого натрия потребуется две молекулы едкого натра:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O + Q

При взаимодействии углекислого газа с едким натром получилась соль углекислый натрий Na 2 CO 3 и вода.

Помимо углекислого газа, есть еще многие оксиды (окислы) (SO 2 , SO 3 , SiO 2 , Р 2 O 5 и др.), которые взаимодействуют со щелочами с образованием соли и воды.

Похожие публикации