Простой алгоритм определения пересечения двух отрезков. Координаты точки пересечения графиков функций

О-о-о-о-о… ну и жесть, словно вам сам себе приговор зачитал =) Впрочем, потом релаксация поможет, тем более, сегодня купил подходящие аксессуары. Поэтому приступим к первому разделу, надеюсь, к концу статьи сохраню бодрое расположение духа.

Взаимное расположение двух прямых

Тот случай, когда зал подпевает хором. Две прямые могут :

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Справка для чайников : пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны , то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны , то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность, который мы рассматривали на уроке Понятие линейной (не) зависимости векторов. Базис векторов . Но существует более цивилизованная упаковка:

Пример 1

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .


, значит, векторы не коллинеарны и прямые пересекаются.

На всякий случай поставлю на распутье камень с указателями:

Остальные перепрыгивают камень и следуют дальше, прямо к Кащею Бессмертному =)

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при неизвестных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны либо совпадают.

Коэффициент пропорциональности «лямбда» нетрудно усмотреть прямо из соотношения коллинеарных направляющих векторов . Впрочем, его можно найти и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Ответ :

Очень скоро вы научитесь (или даже уже научились) решать рассмотренную задачу устно буквально в считанные секунды. В этой связи не вижу смысла предлагать что-либо для самостоятельного решения, лучше заложим ещё один важный кирпич в геометрический фундамент:

Как построить прямую, параллельную данной?

За незнание этой простейшей задачи сурово наказывает Соловей-Разбойник.

Пример 2

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение : Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Ответ :

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими. Потому что вам ещё придётся тягаться с Бабой-Ягой, а она, знаете, любительница всяких загадок.

Пример 3

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Существует рациональный и не очень рациональный способ решения. Самый короткий путь – в конце урока.

С параллельными прямыми немного поработали и к ним ещё вернёмся. Случай совпадающих прямых малоинтересен, поэтому рассмотрим задачу, которая хорошо знакома вам из школьной программы:

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Пример 4

Найти точку пересечения прямых

Решение : Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение прямой, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений. Чтобы наработать соответствующие навыки, посетите урок Как решить систему уравнений?

Ответ :

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Пример 5

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце урока:

Ещё не стоптана и пара башмаков, как мы подобрались ко второму разделу урока:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Начнём с типовой и очень важной задачи. В первой части мы узнали, как построить прямую, параллельную данной, а сейчас избушка на курьих ножках развернётся на 90 градусов:

Как построить прямую, перпендикулярную данной?

Пример 6

Прямая задана уравнением . Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение : По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ :

Развернём геометрический этюд:

М-да… Оранжевое небо, оранжевое море, оранжевый верблюд.

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Пример 7

Найти точку пересечения перпендикулярных прямых , если известно уравнение и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Наше увлекательное путешествие продолжается:

Расстояние от точки до прямой

Перед нами прямая полоса реки и наша задача состоит в том, чтобы дойти до неё кратчайшим путём. Препятствий нет, и самым оптимальным маршрутом будет движение по перпендикуляру. То есть, расстояние от точки до прямой – это длина перпендикулярного отрезка.

Расстояние в геометрии традиционно обозначают греческой буквой «ро», например: – расстояние от точки «эм» до прямой «дэ».

Расстояние от точки до прямой выражается формулой

Пример 8

Найти расстояние от точки до прямой

Решение : всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ :

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .

Оба действия подробно разобраны в рамках данного урока.

3) Точка является серединой отрезка . Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим .

Не лишним будет проверить, что расстояние тоже равно 2,2 единицам.

Трудности здесь могут возникнуть в вычислениях, но в вышке здорово выручает микрокалькулятор, позволяющий считать обыкновенные дроби. Неоднократно советовал, посоветую и снова.

Как найти расстояние между двумя параллельными прямыми?

Пример 9

Найти расстояние между двумя параллельными прямыми

Это очередной пример для самостоятельного решения. Немного подскажу: тут бесконечно много способов решения. Разбор полётов в конце урока, но лучше постарайтесь догадаться сами, думаю, вашу смекалку удалось неплохо разогнать.

Угол между двумя прямыми

Что ни угол, то косяк:


В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4 углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Как найти угол между двумя прямыми? Существуют две рабочие формулы:

Пример 10

Найти угол между прямыми

Решение и Способ первый

Рассмотрим две прямые, заданные уравнениями в общем виде:

Если прямые не перпендикулярны , то ориентированный угол между ними можно вычислить с помощью формулы:

Самое пристальное внимание обратим на знаменатель – это в точности скалярное произведение направляющих векторов прямых:

Если , то знаменатель формулы обращается в ноль, а векторы будут ортогональны и прямые перпендикулярны. Именно поэтому сделана оговорка о неперпендикулярности прямых в формулировке.

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса (см. Графики и свойства элементарных функций ):

Ответ :

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Если очень хочется получить положительный угол, нужно поменять прямые местами, то есть коэффициенты взять из второго уравнения , а коэффициенты взять из первого уравнения . Короче говоря, начать необходимо с прямой .

Не прошло и минуты, как я создал новый вёрдовский файл и продолжил столь увлекательную тему. Нужно ловить моменты рабочего настроя, поэтому лирического вступления не будет. Будет прозаическая порка =)

Две прямые пространства могут:

1) скрещиваться;

2) пересекаться в точке ;

3) быть параллельными ;

4) совпадать.

Случай № 1 принципиально отличается от других случаев. Две прямые скрещиваются, если они не лежат в одной плоскости . Поднимите одну руку вверх, а другую руку вытяните вперёд – вот вам и пример скрещивающихся прямых. В пунктах же № 2-4 прямые обязательно лежат в одной плоскости .

Как выяснить взаимное расположение прямых в пространстве?

Рассмотрим две прямые пространства:

– прямую , заданную точкой и направляющим вектором ;
– прямую , заданную точкой и направляющим вектором .

Для лучшего понимания выполним схематический чертёж:

На чертеже в качестве примера изображены скрещивающиеся прямые.

Как разобраться с этими прямыми?

Так как известны точки , то легко найти вектор .

Если прямые скрещиваются , то векторы не компланарны (см. урок Линейная (не) зависимость векторов. Базис векторов ), а, значит, определитель, составленный из их координат, ненулевой. Или, что фактически то же самое, будет отлично от нуля: .

В случаях № 2-4 наша конструкция «падает» в одну плоскость, при этом векторы компланарны , а смешанное произведение линейно зависимых векторов равняется нулю: .

Раскручиваем алгоритм дальше. Предположим, что , следовательно, прямые либо пересекаются, либо параллельны, либо совпадают.

Если направляющие векторы коллинеарны , то прямые либо параллельны, либо совпадают. Финальным гвоздём предлагаю следующий приём: берём какую-либо точку одной прямой и подставляем её координаты в уравнение второй прямой; если координаты «подошли», то прямые совпадают, если «не подошли», то прямые параллельны.

Ход алгоритма незатейлив, но практические примеры всё равно не помешают:

Пример 11

Выяснить взаимное расположение двух прямых

Решение : как и во многих задачах геометрии, решение удобно оформить по пунктам:

1) Вытаскиваем из уравнений точки и направляющие векторы:

2) Найдём вектор:

Таким образом, векторы компланарны, а значит, прямые лежат в одной плоскости и могут пересекаться, быть параллельными или совпадать.

4) Проверим направляющие векторы на коллинеарность.

Составим систему из соответствующих координат данных векторов:

Из каждого уравнения следует, что , следовательно, система совместна, соответствующие координаты векторов пропорциональны, и векторы коллинеарны.

Вывод: прямые параллельны либо совпадают.

5) Выясним, есть ли у прямых общие точки. Возьмём точку , принадлежащую первой прямой, и подставим её координаты в уравнения прямой :

Таким образом, общих точек у прямых нет, и им ничего не остаётся, как быть параллельными.

Ответ :

Интересный пример для самостоятельного решения:

Пример 12

Выяснить взаимное расположение прямых

Это пример для самостоятельного решения. Обратите внимание, что у второй прямой в качестве параметра выступает буква . Логично. В общем случае – это же две различные прямые, поэтому у каждой прямой свой параметр.

И снова призываю не пропускать примеры, пороть буду предлагаемые мной задачи далеко не случайны;-)

Задачи с прямой в пространстве

В заключительной части урока я постараюсь рассмотреть максимальное количество различных задач с пространственными прямыми. При этом будет соблюдён начатый порядок повествования: сначала мы рассмотрим задачи со скрещивающимися прямыми, затем с пересекающимися прямыми, и в конце поговорим о параллельных прямых в пространстве. Однако должен сказать, что некоторые задачи данного урока можно сформулировать сразу для нескольких случаев расположения прямых, и в этой связи разбиение раздела на параграфы несколько условно. Есть более простые примеры, есть более сложные примеры, и, надеюсь, каждый найдёт то, что нужно.

Скрещивающиеся прямые

Напоминаю, что прямые скрещиваются, если не существует плоскости, в которой бы они обе лежали. Когда я продумывал практику, в голову пришла задача-монстр, и сейчас рад представить вашему вниманию дракона с четырьмя головами:

Пример 13

Даны прямые . Требуется:

а) доказать, что прямые скрещиваются;

б) найти уравнения прямой , проходящей через точку перпендикулярно данным прямым;

в) составить уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых;

г) найти расстояние между прямыми.

Решение : Дорогу осилит идущий:

а) Докажем, что прямые скрещиваются. Найдём точки и направляющие векторы данных прямых:

Найдём вектор:

Вычислим смешанное произведение векторов :

Таким образом, векторы не компланарны , а значит, прямые скрещиваются, что и требовалось доказать.

Наверное, все уже давно подметили, что для скрещивающихся прямых алгоритм проверки получается короче всего.

б) Найдём уравнения прямой , которая проходит через точку и перпендикулярна прямым . Выполним схематический чертёж:

Для разнообразия я разместил прямую ЗА прямыми , посмотрите, как она немного стёрта в точках скрещивания. Скрещивания? Да, в общем случае прямая «дэ» будет скрещиваться с исходными прямыми. Хотя данный момент нас пока не интересует, надо просто построить перпендикулярную прямую и всё.

Что известно о прямой «дэ»? Известна принадлежащая ей точка . Не хватает направляющего вектора.

По условию прямая должна быть перпендикулярна прямым , а значит, её направляющий вектор будет ортогонален направляющим векторам . Уже знакомый из Примера № 9 мотив, найдём векторное произведение:

Составим уравнения прямой «дэ» по точке и направляющему вектору :

Готово. В принципе, можно сменить знаки в знаменателях и записать ответ в виде , но необходимости в этом нет никакой.

Для проверки необходимо подставить координаты точки в полученные уравнения прямой, затем с помощью скалярного произведения векторов убедиться, что вектор действительно ортогонален направляющим векторам «пэ один» и «пэ два».

Как найти уравнения прямой, содержащей общий перпендикуляр?

в) Эта задачка посложнее будет. Чайникам рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить, дело в том, что по сложности пример надо бы поставить последним в статье, но по логике изложения он должен располагаться здесь.

Итак, требуется найти уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых.

– это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец: – общий перпендикуляр скрещивающихся прямых . Он единственный. Другого такого нет. Нам же требуется составить уравнения прямой , которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу…. Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО . Если точка принадлежит данной прямой, то её координатам соответствует , обозначим его через . Тогда координаты точки запишутся в виде:

Жизнь налаживается, одна неизвестная – всё-таки не три неизвестных.

2) Такое же надругательство нужно осуществить над второй точкой. Перепишем уравнения второй прямой в параметрическом виде:

Если точка принадлежит данной прямой, то при вполне конкретном значении её координаты должны удовлетворять параметрическим уравнениям:

Или:

3) Вектор , как и ранее найденный вектор , будет направляющим вектором прямой . Как составить вектор по двум точкам, рассматривалось в незапамятные времена на уроке Векторы для чайников . Сейчас отличие состоит в том, что координаты векторов записаны с неизвестными значениям параметров. Ну и что? Никто же не запрещает из координат конца вектора вычесть соответствующие координаты начала вектора.

Есть две точки: .

Находим вектор:

4) Поскольку направляющие векторы коллинеарны, то один вектор линейно выражается через другой с некоторым коэффициентом пропорциональности «лямбда»:

Или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера . Но здесь есть возможность отделаться малой кровью, из третьего уравнения выразим «лямбду» и подставим её в первое и второе уравнение:

Таким образом: , а «лямбда» нам не потребуется. То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения в наши точки:

Направляющий вектор особо не нужен, так как уже найден его коллега .

После длинного пути всегда интересно выполнить проверку.

:

Получены верные равенства.

Подставим координаты точки в уравнения :

Получены верные равенства.

6) Заключительный аккорд: составим уравнения прямой по точке (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

Как найти расстояние между скрещивающимися прямыми?

г) Срубаем четвёртую голову дракона.

Способ первый . Даже не способ, а небольшой частный случай. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра: .

Крайние точки общего перпендикуляра найдены в предыдущем пункте, и задача элементарна:

Способ второй . На практике чаще всего концы общего перпендикуляра неизвестны, поэтому используют другой подход. Через две скрещивающиеся прямые можно провести параллельные плоскости, и расстояние между данными плоскостями равно расстоянию между данными прямыми. В частности, между этими плоскостями и торчит общий перпендикуляр.

В курсе аналитической геометрии из вышесказанных соображений выведена формула нахождения расстояния между скрещивающимися прямыми:
(вместо наших точек «эм один, два» можно взять произвольные точки прямых).

Смешанное произведение векторов уже найдено в пункте «а»: .

Векторное произведение векторов найдено в пункте «бэ»: , вычислим его длину:

Таким образом:

Гордо выложим трофеи в один ряд:

Ответ :
а) , значит, прямые скрещиваются, что и требовалось доказать;
б) ;
в) ;
г)

Что ещё можно рассказать про скрещивающиеся прямые? Между ними определён угол. Но универсальную формулу угла рассмотрим в следующем параграфе:

Пересекающиеся прямые пространства обязательно лежат в одной плоскости:

Первая мысль – всеми силами навалиться на точку пересечения . И сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Пример 14

Найти точку пересечения прямых

Решение : Перепишем уравнения прямых в параметрической форме:

Данная задача подробно рассматривалась в Примере № 7 данного урока (см. Уравнения прямой в пространстве ). А сами прямые, к слову, я взял из Примера № 12. Врать не буду, новые лень придумывать.

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых принадлежит прямой , поэтому её координаты удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными. Если прямые пересекаются (что доказано в Примере № 12), то система обязательно совместна и имеет единственное решение. Её можно решить методом Гаусса , но уж таким детсадовским фетишизмом грешить не будем, поступим проще: из первого уравнения выразим «тэ нулевое» и подставим его во второе и третье уравнение:

Последние два уравнения получились, по сути, одинаковыми, и из них следует, что . Тогда:

Подставим найденное значение параметра в уравнения:

Ответ :

Для проверки подставим найденное значение параметра в уравнения:
Получены те же самые координаты, что и требовалось проверить. Дотошные читатели могу подставить координаты точки и в исходные канонические уравнения прямых.

Кстати, можно было поступить наоборот: точку найти через «эс нулевое», а проверить – через «тэ нулевое».

Известная математический примета гласит: там, где обсуждают пересечение прямых, всегда пахнет перпендикулярами.

Как построить прямую пространства, перпендикулярную данной?

(прямые пересекаются)

Пример 15

а) Составить уравнения прямой, проходящей через точку перпендикулярно прямой (прямые пересекаются).

б) Найти расстояние от точки до прямой .

Примечание : оговорка «прямые пересекаются» – существенна . Через точку
можно провести бесконечно много перпендикулярных прямых, которые будут скрещиваться с прямой «эль». Единственное решение имеет место в случае, когда через данную точку проводится прямая, перпендикулярная двум заданным прямым (см. Пример № 13, пункт «б»).

а) Решение : Неизвестную прямую обозначим через . Выполним схематический чертёж:

Что известно о прямой ? По условию дана точка . Для того, чтобы составить уравнения прямой, необходимо найти направляющий вектор. В качестве такого вектора вполне подойдёт вектор , им и займемся. Точнее, возьмём за шкирку неизвестный конец вектора.

1) Вытащим из уравнений прямой «эль» её направляющий вектор , а сами уравнения перепишем в параметрической форме:

Многие догадались, сейчас уже в третий раз за урок фокусник достанет белого лебедя из шляпы. Рассмотрим точку с неизвестными координатами. Поскольку точка , то её координаты удовлетворяют параметрическим уравнениям прямой «эль» и им соответствует конкретное значение параметра:

Или одной строкой:

2) По условию прямые должны быть перпендикулярны, следовательно, их направляющие векторы – ортогональны. А если векторы ортогональны, то их скалярное произведение равно нулю:

Что получилось? Простейшее линейное уравнение с одной неизвестной:

3) Значение параметра известно, найдём точку:

И направляющий вектор:
.

4) Уравнения прямой составим по точке и направляющему вектору :

Знаменатели пропорции получились дробные, и это как раз тот случай, когда от дробей уместно избавиться. Я просто умножу их на –2:

Ответ :

Примечание : более строгая концовка решения оформляется так: составим уравнения прямой по точке и направляющему вектору . Действительно, если вектор является навправляющим вектором прямой, то коллинеарный ему вектор , естественно, тоже будет направляющим вектором данной прямой.

Проверка состоит из двух этапов:

1) проверяем направляющие векторы прямых на ортогональность;

2) подставляем координаты точки в уравнения каждой прямой, они должны «подходить» и там и там.

О типовых действиях говорилось очень много, поэтому я выполнил проверку на черновике.

Кстати, запамятовал ещё пунктик – построить точку «зю» симметричную точке «эн» относительно прямой «эль». Впрочем, есть хороший «плоский аналог», с которым можно ознакомиться в статье Простейшие задачи с прямой на плоскости . Здесь же всё отличие будет в дополнительной «зетовой» координате.

Как найти расстояние от точки до прямой в пространстве?

б) Решение : Найдём расстояние от точки до прямой .

Способ первый . Данное расстояние в точности равно длине перпендикуляра : . Решение очевидно: если известны точки , то:

Способ второй . В практических задачах основание перпендикуляра частенько тайна за семью печатями, поэтому рациональнее пользоваться готовой формулой.

Расстояние от точки до прямой выражается формулой:
, где – направляющий вектор прямой «эль», а – произвольная точка, принадлежащая данной прямой.

1) Из уравнений прямой достаём направляющий вектор и самую доступную точку .

2) Точка известна из условия, заточим вектор:

3) Найдём векторное произведение и вычислим его длину:

4) Рассчитаем длину направляющего вектора:

5) Таким образом, расстояние от точки до прямой:

При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

В разделе взаимное расположение прямых на плоскости показано, что две прямые на плоскости могут либо совпадать (при этом они имеют бесконечно много общих точек), либо быть параллельными (при этом две прямые не имеют общих точек), либо пересекаться, имея одну общую точку. Вариантов взаимного расположения двух прямых в пространстве больше – они могут совпадать (иметь бесконечно много общих точек), могут быть параллельными (то есть, лежать в одной плоскости и не пересекаться), могут быть скрещивающимися (не лежащими в одной плоскости), а также могут иметь одну общую точку, то есть, пересекаться. Итак, две прямые и на плоскости и в пространстве называются пересекающимися, если они имеют одну общую точку.

Из определения пересекающихся прямых следует определение точки пересечения прямых : точка, в которой пересекаются две прямые, называется точкой пересечения этих прямых. Другими словами, единственная общая точка двух пересекающихся прямых есть точка пересечения этих прямых.

Приведем для наглядности графическую иллюстрацию точки пересечения двух прямых на плоскости и в пространстве.

К началу страницы

Нахождение координат точки пересечения двух прямых на плоскости.

Прежде чем находить координаты точки пересечения двух прямых на плоскости по их известным уравнениям, рассмотрим вспомогательную задачу.

Oxy a и b . Будем считать, что прямой a соответствует общее уравнение прямой вида , а прямой b – вида . Пусть – некоторая точка плоскости, и требуется выяснить, является ли точка М 0 точкой пересечения заданных прямых.

Решим поставленную задачу.

Если M 0 a и b , то по определению она принадлежит и прямой a и прямой b , то есть, ее координаты должны удовлетворять одновременно и уравнению и уравнению . Следовательно, нам нужно подставить координаты точки М 0 в уравнения заданных прямых и посмотреть, получаются ли при этом два верных равенства. Если координаты точки М 0 удовлетворяют обоим уравнениям и , то – точка пересечения прямых a и b , в противном случае М 0 .

Является ли точка М 0 с координатами (2, -3) точкой пересечения прямых 5x-2y-16=0 и2x-5y-19=0 ?

Если М 0 действительно точка пересечения заданных прямых, то ее координаты удовлетворяют уравнениям прямых. Проверим это, подставив координаты точки М 0 в заданные уравнения:

Получили два верных равенства, следовательно, М 0 (2, -3) - точка пересечения прямых5x-2y-16=0 и 2x-5y-19=0 .

Для наглядности приведем чертеж, на котором изображены прямые и видны координаты точки их пересечения.

да, точка М 0 (2, -3) является точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0 .

Пересекаются ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M 0 (2, -3) ?

Подставим координаты точки М 0 в уравнения прямых, этим действием будем осуществлена проверка принадлежности точки М 0 обеим прямым одновременно:

Так как второе уравнение при подстановке в него координат точки М 0 не обратилось в верное равенство, то точка М 0 не принадлежит прямой 7x-2y+11=0 . Из этого факта можно сделать вывод о том, что точка М 0 не является точкой пересечения заданных прямых.

На чертеже также хорошо видно, что точка М 0 не является точкой пересечения прямых5x+3y-1=0 и 7x-2y+11=0 . Очевидно, заданные прямые пересекаются в точке с координатами (-1, 2) .

М 0 (2, -3) не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0 .

Теперь можно переходить к задаче нахождения координат точки пересечения двух прямых по заданным уравнениям прямых на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b уравнениями и соответственно. Обозначим точку пересечения заданных прямых как М 0 и решим следующую задачу: найти координаты точки пересечения двух прямых a и b по известным уравнениям этих прямых и .

Точка M 0 принадлежит каждой из пересекающихся прямых a и b по определению. Тогда координаты точки пересечения прямых a и b удовлетворяют одновременно и уравнению и уравнению . Следовательно, координаты точки пересечения двух прямых a и b являются решением системы уравнений (смотрите статью решение систем линейных алгебраических уравнений).

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

M 0 (4, 2) – точка пересечения прямых x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду, а уже после этого находить координаты точки пересечения.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения метод Крамера:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Определите координаты точки пересечения прямых и .

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

уравнения и определяют в прямоугольной системе координатOxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Найдите координаты точки пересечения прямых и , если это возможно.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения метод Гаусса, так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

Нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение условия коллинеарности векторов и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, - точка пересечения прямых 2x-1=0 и .

К началу страницы

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Пусть пересекающиеся прямые a и b заданы в прямоугольной системе координат Oxyz уравнениями двух пересекающихся плоскостей, то есть, прямая a определяется системой вида , а прямая b - . Пусть М 0 – точка пересечения прямых a и b . Тогда точка М 0 по определению принадлежит и прямой a и прямойb , следовательно, ее координаты удовлетворяют уравнениям обеих прямых. Таким образом, координаты точки пересечения прямых a и b представляют собой решение системы линейных уравнений вида . Здесь нам пригодится информация из разделарешение систем линейных уравнений, в которых число уравнений не совпадает с числом неизвестных переменных.

Рассмотрим решения примеров.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим ранг матрицы А и ранг матрицы T . Используем метод окаймляющих миноров, при этом не будем подробно описывать вычисление определителей (при необходимости обращайтесь к статье вычисление определителя матрицы):

Таким образом, ранг основной матрицы равен рангу расширенной матрицы и равен трем.

Следовательно, система уравнений имеет единственное решение.

Базисным минором примем определитель , поэтому из системы уравнений следует исключить последнее уравнение, так как оно не участвует в образовании базисного минора. Итак,

Решение полученной системы легко находится:

Таким образом, точка пересечения прямых и имеет координаты (1, -3, 0) .

(1, -3, 0) .

Следует отметить, что система уравнений имеет единственное решение тогда и только тогда, когда прямые a и b пересекаются. Если же прямые а и b параллельные или скрещивающиеся, то последняя система уравнений решений не имеет, так как в этом случае прямые не имеют общих точек. Если прямые a и b совпадают, то они имеют бесконечное множество общих точек, следовательно, указанная система уравнений имеет бесконечное множество решений. Однако в этих случаях мы не можем говорить о нахождении координат точки пересечения прямых, так как прямые не являются пересекающимися.

Таким образом, если мы заранее не знаем, пересекаются заданные прямые a и b или нет, то разумно составить систему уравнений вида и решить ее методом Гаусса. Если получим единственное решение, то оно будет соответствовать координатам точки пересечения прямых a и b . Если система окажется несовместной, то прямые a и b не пересекаются. Если же система будет иметь бесконечное множество решений, то прямые a и b совпадают.

Можно обойтись и без использования метода Гаусса. Как вариант, можно вычислить ранги основной и расширенной матриц этой системы, и на основании полученных данных и теоремы Кронекера-Капелли сделать вывод или о существовании единственного решения, или о существовании множества решений, или об отсутствии решений. Это дело вкуса.

Если прямые и пересекаются, то определите координаты точки пересечения.

Составим систему из заданных уравнений: . Решим ее методом Гаусса в матричной форме:

Стало видно, что система уравнений не имеет решений, следовательно, заданные прямые не пересекаются, и не может быть и речи о поиске координат точки пересечения этих прямых.

мы не можем найти координаты точки пересечения заданных прямых, так как эти прямые не пересекаются.

Когда пересекающиеся прямые заданы каноническими уравнениями прямой в пространствеили параметрическими уравнениями прямой в пространстве, то следует сначала получить их уравнения в виде двух пересекающихся плоскостей, а уже после этого находить координаты точки пересечения.

Две пересекающиеся прямые заданы в прямоугольной системе координат Oxyz уравнениями и . Найдите координаты точки пересечения этих прямых.

Зададим исходные прямые уравнениями двух пересекающихся плоскостей:

Для нахождения координат точки пересечения прямых осталось решить систему уравнений . Ранг основной матрицы этой системы равен рангу расширенной матрицы и равен трем (рекомендуем проверить этот факт). В качестве базисного минора примем , следовательно, из системы можно исключить последнее уравнение . Решив полученную систему любым методом (например методом Крамера) получаем решение . Таким образом, точка пересечения прямых и имеет координаты (-2, 3, -5) .

Точка пересечения прямых

Пусть нам даны две прямые, заданные своими коэффициентами и . Требуется найти их точку пересечения, или выяснить, что прямые параллельны.

Решение

Если две прямые не параллельны, то они пересекаются. Чтобы найти точку пересечения, достаточно составить из двух уравнений прямых систему и решить её:

Пользуясь формулой Крамера, сразу находим решение системы, которое и будет искомой точкой пересечения :



Если знаменатель нулевой, т.е.

то система решений не имеет (прямые параллельны и не совпадают) или имеет бесконечно много (прямые совпадают ). Если необходимо различить эти два случая, надо проверить, что коэффициенты прямых пропорциональны с тем же коэффициентом пропорциональности, что и коэффициенты и , для чего достаточно посчитать два определителя, если они оба равны нулю, то прямые совпадают:

Реализация

struct pt {double x, y;}; struct line {double a, b, c;}; constdouble EPS =1e-9; double det (double a, double b, double c, double d){return a * d — b * c;} bool intersect (line m, line n, pt & res){double zn = det (m.a, m.b, n.a, n.b);if(abs(zn)< EPS)returnfalse; res.x=- det (m.c, m.b, n.c, n.b)/ zn; res.y=- det (m.a, m.c, n.a, n.c)/ zn;returntrue;} bool parallel (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS;} bool equivalent (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS &&abs(det (m.a, m.c, n.a, n.c))< EPS &&abs(det (m.b, m.c, n.b, n.c))< EPS;}

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Совет 1: Как найти координаты точки пересечения двух прямых

Напишем еще три новые функции.

Функция LinesCross() будет определять, пересекаются ли два отрезка . В ней взаимное расположение отрезков определяется с помощью векторных произведений. Для вычисления векторных произведений напишем функцию – VektorMulti().

Функция RealLess() будет использоваться для реализации операции сравнения “<” (строго меньше) для вещественных чисел.

Задача1. Два отрезка заданы своими координатами. Составить программу, которая определяет, пересекаются ли эти отрезки , не находя точку пересечения.

Решение
. Второй задан точками .



Рассмотрим отрезок и точки и .

Точка лежит слева от прямой , для нее векторное произведение > 0, так как векторы положительно ориентированы.

Точка расположена справа от прямой, для нее векторное произведение < 0, так как векторы отрицательно ориентированы.

Для того чтобы точки и , лежали по разные стороны от прямой , достаточно, чтобы выполнялось условие < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка и точек и .

Итак, если , то отрезки пересекаются.

Для проверки этого условия используется функцию LinesCross(), а для вычисления векторных произведений – функция VektorMulti().

ax, ay – координаты первого вектора,

bx, by – координаты второго вектора.

Program geometr4; {Пересекаются ли 2 отрезка?} Const _Eps: Real=1e-4; {точность вычслений} var x1,y1,x2,y2,x3,y3,x4,y4: real; var v1,v2,v3,v4: real;function RealLess(Const a, b: Real): Boolean; {Строго меньше} begin RealLess:= b-a> _Eps end; {RealLess}function VektorMulti(ax,ay,bx,by:real): real; {ax,ay — координаты a bx,by — координаты b } begin vektormulti:= ax*by-bx*ay; end;Function LinesCross(x1,y1,x2,y2,x3,y3,x4,y4:real): boolean; {Пересекаются ли отрезки?} begin v1:=vektormulti(x4-x3,y4-y3,x1-x3,y1-y3); v2:=vektormulti(x4-x3,y4-y3,x2-x3,y2-y3); v3:=vektormulti(x2-x1,y2-y1,x3-x1,y3-y1); v4:=vektormulti(x2-x1,y2-y1,x4-x1,y4-y1); if RealLess(v1*v2,0) and RealLess(v3*v4,0) {v1v2<0 и v3v4<0, отрезки пересекаются} then LinesCross:= true else LinesCross:= false end; {LinesCross}begin {main} writeln(‘Введите координаты отрезков: x1,y1,x2,y2,x3,y3,x4,y4’); readln(x1,y1,x2,y2,x3,y3,x4,y4); if LinesCross(x1,y1,x2,y2,x3,y3,x4,y4) then writeln (‘Да’) else writeln (‘Нет’) end.

Результаты выполнения программы:

Введите координаты отрезков: -1 1 2 2.52 2 1 -1 3
Да.

Мы написали программу, определяющую, пересекаются ли отрезки, заданные своими координатами.

На следующем уроке мы составим алгоритм, с помощью которого можно будет определить, лежит ли точка внутри треугольника.

Уважаемый читатель.

Вы уже познакомились с несколькими уроками из серии «Геометрические алгоритмы». Все ли доступно написано? Я буду Вам очень признательна, если Вы оставите отзыв об этих уроках. Возможно, что-то нужно еще доработать.

С уважением, Вера Господарец.

Пусть даны два отрезка. Первый задан точками P 1 (x 1 ;y 1) и P 2 (x 2 ;y 2) . Второй задан точками P 3 (x 3 ;y 3) и P 4 (x 4 ;y 4) .

Взаимное расположение отрезков можно проверить с помощью векторных произведений:

Рассмотрим отрезок P 3 P 4 и точки P 1 и P 2 .

Точка P 1 лежит слева от прямой P 3 P 4 , для нее векторное произведение v 1 > 0 , так как векторы положительно ориентированы.
Точка P 2 расположена справа от прямой, для нее векторное произведение v 2 < 0 , так как векторы отрицательно ориентированы.

Для того чтобы точки P 1 и P 2 лежали по разные стороны от прямой P 3 P 4 , достаточно, чтобы выполнялось условие v 1 v 2 < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка P 1 P 2 и точек P 3 и P 4 .

Итак, если v 1 v 2 < 0 и v 3 v 4 < 0 , то отрезки пересекаются.

Векторное произведение двух векторов вычисляется по формуле:

где:
ax , ay — координаты первого вектора,
bx , by — координаты второго вектора.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки:P 1 с координатами (x 1 ;y 1) и P 2 с координатами (x 2 ; y 2) .

Пересечение прямых

Соответственно вектор с началом в точке P 1 и концом в точке P 2 имеет координаты (x 2 -x 1 , y 2 -y 1) . Если P(x, y) – произвольная точка на прямой, то координаты вектора P 1 P равны (x — x 1 , y – y 1).

С помощью векторного произведения условие коллинеарности векторов P 1 P и P 1 P 2 можно записать так:
|P 1 P,P 1 P 2 |=0 , т.е. (x-x 1)(y 2 -y 1)-(y-y 1)(x 2 -x 1)=0
или
(y 2 -y 1)x + (x 1 -x 2)y + x 1 (y 1 -y 2) + y 1 (x 2 -x 1) = 0

Последнее уравнение переписывается следующим образом:
ax + by + c = 0, (1)
где
a = (y 2 -y 1),
b = (x 1 -x 2),
c = x 1 (y 1 -y 2) + y 1 (x 2 -x 1)

Итак, прямую можно задать уравнением вида (1).

Как найти точку пересечения прямых?
Очевидное решение состоит в том, чтобы решить систему уравнений прямых:

ax 1 +by 1 =-c 1
ax 2 +by 2 =-c 2
(2)

Ввести обозначения:

Здесь D – определитель системы, а D x ,D y — определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если D ≠ 0 , то система (2) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: x 1 =D x /D, y 1 =D y /D , которые называются формулами Крамера. Небольшое напоминание, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

В двумерном пространстве две прямые пересекаются только в одной точке, задаваемой координатами (х,y). Так как обе прямые проходят через точку их пересечения, то координаты (х,y) должны удовлетворять обоим уравнениям, которые описывают эти прямые. Воспользовавшись некоторыми дополнительными навыками вы сможете находить точки пересечения парабол и других квадратичных кривых.

Шаги

Точка пересечения двух прямых

    Запишите уравнение каждой прямой, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения. Возможно, данное вам уравнение вместо «у» будет содержать переменную f(x) или g(x); в этом случае обособьте такую переменную. Для обособления переменной выполните соответствующие математические операции на обеих сторонах уравнения.

    • Если уравнения прямых вам не даны, на основе известной вам информации.
    • Пример . Даны прямые, описываемые уравнениями и y − 12 = − 2 x {\displaystyle y-12=-2x} . Чтобы во втором уравнении обособить «у», прибавьте к обеим сторонам уравнения число 12:
  1. Вы ищете точку пересечения обеих прямых, то есть точку, координаты (х,у) которой удовлетворяют обоим уравнениям. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять. Запишите новое уравнение.

    • Пример . Так как y = x + 3 {\displaystyle y=x+3} и y = 12 − 2 x {\displaystyle y=12-2x} , то можно записать такое равенство: .
  2. Найдите значение переменной «х». Новое уравнение содержит только одну переменную «х». Для нахождения «х» обособьте эту переменную на левой стороне уравнения, выполнив соответствующие математические операции на обеих сторонах уравнения. Вы должны получить уравнение вида х = __ (если вы не можете это сделать, этого раздела).

    • Пример . x + 3 = 12 − 2 x {\displaystyle x+3=12-2x}
    • Прибавьте 2 x {\displaystyle 2x} к каждой стороне уравнения:
    • 3 x + 3 = 12 {\displaystyle 3x+3=12}
    • Вычтите 3 из каждой стороны уравнения:
    • 3 x = 9 {\displaystyle 3x=9}
    • Разделите каждую сторону уравнения на 3:
    • x = 3 {\displaystyle x=3} .
  3. Используйте найденное значение переменной «х» для вычисления значения переменной «у». Для этого подставьте найденное значение «х» в уравнение (любое) прямой.

    • Пример . x = 3 {\displaystyle x=3} и y = x + 3 {\displaystyle y=x+3}
    • y = 3 + 3 {\displaystyle y=3+3}
    • y = 6 {\displaystyle y=6}
  4. Проверьте ответ. Для этого подставьте значение «х» в другое уравнение прямой и найдите значение «у». Если вы получите разные значение «у», проверьте правильность ваших вычислений.

    • Пример: x = 3 {\displaystyle x=3} и y = 12 − 2 x {\displaystyle y=12-2x}
    • y = 12 − 2 (3) {\displaystyle y=12-2(3)}
    • y = 12 − 6 {\displaystyle y=12-6}
    • y = 6 {\displaystyle y=6}
    • Вы получили такое же значение «у», поэтому в ваших вычислениях ошибок нет.
  5. Запишите координаты (х,у). Вычислив значения «х» и «у», вы нашли координаты точки пересечения двух прямых. Запишите координаты точки пересечения в виде (х,у).

    • Пример . x = 3 {\displaystyle x=3} и y = 6 {\displaystyle y=6}
    • Таким образом, две прямые пересекаются в точке с координатами (3,6).
  6. Вычисления в особых случаях. В некоторых случаях значение переменной «х» найти нельзя. Но это не значит, что вы допустили ошибку. Особый случай имеет место при выполнении одного из следующих условий:

    • Если две прямые параллельны, они не пересекаются. При этом переменная «х» просто сократится, а ваше уравнение превратится в бессмысленное равенство (например, 0 = 1 {\displaystyle 0=1} ). В этом случае в ответе запишите, что прямые не пересекаются или решения нет.
    • Если оба уравнения описывают одну прямую, то точек пересечения будет бесконечное множество. При этом переменная «х» просто сократится, а ваше уравнение превратится в строгое равенство (например, 3 = 3 {\displaystyle 3=3} ). В этом случае в ответе запишите, что две прямые совпадают.

    Задачи с квадратичными функциями

    1. Определение квадратичной функции. В квадратичной функции одна или несколько переменных имеют вторую степень (но не выше), например, x 2 {\displaystyle x^{2}} или y 2 {\displaystyle y^{2}} . Графиками квадратичных функций являются кривые, которые могут не пересекаться или пересекаться в одной или двух точках. В этом разделе мы расскажем вам, как найти точку или точки пересечения квадратичных кривых.

    2. Перепишите каждое уравнение, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения.

      • Пример . Найдите точку (точки) пересечения графиков x 2 + 2 x − y = − 1 {\displaystyle x^{2}+2x-y=-1} и
      • Обособьте переменную «у» на левой стороне уравнения:
      • и y = x + 7 {\displaystyle y=x+7} .
      • В этом примере вам дана одна квадратичная функция и одна линейная функция. Помните, что если вам даны две квадратичные функции, вычисления аналогичны шагам, изложенным далее.
    3. Приравняйте выражения, расположенные с правой стороны каждого уравнения. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять.

      • Пример . y = x 2 + 2 x + 1 {\displaystyle y=x^{2}+2x+1} и y = x + 7 {\displaystyle y=x+7}
    4. Перенесите все члены полученного уравнения на его левую сторону, а на правой стороне запишите 0. Для этого выполните базовые математические операции. Это позволит вам решить полученное уравнение.

      • Пример . x 2 + 2 x + 1 = x + 7 {\displaystyle x^{2}+2x+1=x+7}
      • Вычтите «x» из обеих сторон уравнения:
      • x 2 + x + 1 = 7 {\displaystyle x^{2}+x+1=7}
      • Вычтите 7 из обеих сторон уравнения:
    5. Решите квадратное уравнение. Перенеся все члены уравнения на его левую сторону, вы получили квадратное уравнение. Его можно решить тремя способами: при помощи специальной формулы, и .

      • Пример . x 2 + x − 6 = 0 {\displaystyle x^{2}+x-6=0}
      • При разложении уравнения на множители вы получите два двучлена, при перемножении которых получается исходное уравнение. В нашем примере первый член x 2 {\displaystyle x^{2}} можно разложить на х*х. Сделайте следующую запись: (x)(x) = 0
      • В нашем примере свободный член -6 можно разложить на следующие множители: − 6 ∗ 1 {\displaystyle -6*1} , − 3 ∗ 2 {\displaystyle -3*2} , − 2 ∗ 3 {\displaystyle -2*3} , − 1 ∗ 6 {\displaystyle -1*6} .
      • В нашем примере второй член – это х (или 1x). Сложите каждую пару множителей свободного члена (в нашем примере -6), пока не получите 1. В нашем примере подходящей парой множителей свободного члена являются числа -2 и 3 ( − 2 ∗ 3 = − 6 {\displaystyle -2*3=-6} ), так как − 2 + 3 = 1 {\displaystyle -2+3=1} .
      • Заполните пробелы найденной парой чисел: .
    6. Не забудьте про вторую точку пересечения двух графиков. Если вы решаете задачу быстро и не очень внимательно, вы можете забыть про вторую точку пересечения. Вот как найти координаты «х» двух точек пересечения:

      • Пример (разложение на множители) . Если в уравнении (x − 2) (x + 3) = 0 {\displaystyle (x-2)(x+3)=0} одно из выражений в скобках будет равно 0, то все уравнение будет равно 0. Поэтому можно записать так: x − 2 = 0 {\displaystyle x-2=0} x = 2 {\displaystyle x=2} и x + 3 = 0 {\displaystyle x+3=0} x = − 3 {\displaystyle x=-3} (то есть вы нашли два корня уравнения).
      • Пример (использование формулы или дополнение до полного квадрата) . При использовании одного из этих методов в процессе решения появится квадратный корень. Например, уравнение из нашего примера примет вид x = (− 1 + 25) / 2 {\displaystyle x=(-1+{\sqrt {25}})/2} . Помните, что при извлечении квадратного корня вы получите два решения. В нашем случае: 25 = 5 ∗ 5 {\displaystyle {\sqrt {25}}=5*5} , и 25 = (− 5) ∗ (− 5) {\displaystyle {\sqrt {25}}=(-5)*(-5)} . Поэтому запишите два уравнения и найдите два значения «х».
    7. Графики пересекаются в одной точке или вообще не пересекаются. Такие ситуации имеют место при соблюдении следующих условий:

      • Если графики пересекаются в одной точке, то квадратное уравнение раскладывается на одинаковые множители, например, (х-1) (х-1) = 0, а в формуле появляется квадратный корень из 0 ( 0 {\displaystyle {\sqrt {0}}} ). В этом случае уравнение имеет только одно решение.
      • Если графики вообще не пересекаются, то уравнение на множители не раскладывается, а в формуле появляется квадратный корень из отрицательного числа (например, − 2 {\displaystyle {\sqrt {-2}}} ). В этом случае в ответе напишите, что решения нет.
Похожие публикации