Программирование в эконометрике. Точечный и интервальный прогноз

Идея экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится ив прогнозируемом будущем. В этом смысле прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективной, а в прошлое - ретроспективной.

Прогнозирование методом экстраполяции базируется на следующих предположениях:

  • а) развитие исследуемого явления в целом описывается плавной кривой;
  • б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;
  • в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.

Надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предположения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.

На основе построенной модели рассчитываются точечные и интервальные прогнозы.

Точечный прогноз для временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t= п + 1, п + 2,..., п + к, где к - период упреждения.

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции, имеет малую вероятность. Возникновение соответствующих отклонений объясняется следующими причинами:

  • 1) выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты;
  • 2) прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой; поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту;
  • 3) тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели (т.е. степени ее близости к фактическим данным), числа наблюдений, горизонта прогнозирования, выбранного пользователем уровня вероятности и других факторов.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид

где о е - стандартная ошибка (среднеквадратическое отклонение от линии тренда); п-р - число степеней свободы (для линейной модели у = a Q + a { t количество параметров р = 2).

Коэффициент / является табличным значением ^-статистики Стьюдента при заданном уровне значимости и числе наблюдений. (Примечание. Табличное значение t можно получить с помощью функции Excel стьюдраспобр.)

Для других моделей величина Щк) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.5.21), величина U(k) зависит прямо пропорционально от точности модели коэффициента доверительной вероятности / , степени углубления в будущее на к шагов вперед, т.е. на момент t=п + к, и обратно пропорциональна объему наблюдений.

Доверительный интервал прогноза будет иметь следующие границы:

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границами.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

Пример 3.5.4. Финансовый директор АО «Веста» рассматривает целесообразность ежемесячного финансирования инвестиционного проекта со следующими объемами нетто-платежей, тыс. руб.:

  • 1. Определить линейную модель зависимости объемов платежей от сроков (времени).
  • 2. Оценить качество (т.е. адекватность и точность) построенной модели на основе исследования:
    • а) случайности остаточной компоненты по критерию «пиков»;
    • б) независимости уровней ряда остатков по ^w-критерию (в качестве критических значений использовать уровни d x = 1,08 и d 2 = 1,36) и по первому коэффициенту автокорреляции, критический уровень которого г(1) = 0,36;
    • в) нормальности распределения остаточной компоненты по /^-критерию с критическими уровнями 2,7-3,7;
    • г) средней по модулю относительной ошибки.
  • 3. Определить размеры платежей на три последующих месяца (построить точечный и интервальный прогнозы на три шага вперед (при уровне значимости 0,1), отобразить на графике фактические данные, результаты расчетов и прогнозирования).

Оценить целесообразность финансирования этого проекта, если в следующем квартале на эти цели фирма может выделить только 120 тыс. руб.

  • 1. Построение модели
  • 1) Оценка параметров модели с помощью надстройки Excel Анализ данных. Построим линейную модель регрессии Y от /. Для проведения регрессионного анализа выполните следующие действия:
    • ? Выберите команду Сервис => Анализ данных.
    • ? В диалоговом окне Анализ данных выберите инструмент Регрессия, а затем нажмите кнопку ок.
    • ? В диалоговом окне Регрессия в поле Входной интервал У введите адрес одного диапазона ячеек, который представляет зависимую переменную. В поле Входной интервал X введите адрес диапазона, который содержит значения независимой переменной t. Если выделены и заголовки столбцов, установите флажок Метки в первой строке.
    • ? Выберите параметры вывода (в данном примере - Новая рабочая книга).
    • ? В поле График подбора поставьте флажок.
    • ? В поле Остатки поставьте необходимые флажки и нажмите кнопку ОК.

Результат регрессионного анализа будет получен в виде, приведенном на рис. 3.5.11 и 3.5.12.

Рис. 3.5.11.

Второй столбец на рис. 3.5.11 содержит коэффициенты уравнения регрессии а 0 , a v

Кривая роста зависимости объемов платежей от сроков (времени) имеет вид

2) Оценка параметров модели «вручную». В табл. 3.5.8 приведены промежуточные расчеты параметров линейной модели по формулам (3.5.16). В результате расчетов получаем те же значения:


Рис. 3.5.12.

Таблица 3.5.8

y t

(t-T)(y,-y)

у, =a 0 + a x t

Иногда для проверки расчетов полезно проверить введенные формулы. Для этого следует выбрать команду Сервис => Параметры и поставить флажок в окне формулы (рис. 3.5.13).


Рис. 3.5.13.

После этого на листе Excel расчетные значения будут заменены соответствующими формулами и функциями (табл. 3.5.9).

  • 2. Оценка качества модели
  • 1) Для оценки адекватности построенных моделей исследуются свойства остаточной компоненты, т.е. расхождения уровней, рассчитанных по модели, и фактических наблюдений (табл. 3.5.10).

При проверке независимости (отсутствияавтокорреляции) определяется отсутствие в ряде остатков систематической составляющей, например, с помощью ^w-критерия Дарбина - Уотсона по формуле (3.4.8):

0t-T)(y t -y )

9t= а о + a x t

=$С$18 + $С$16*А2

=(АЗ - $А$14)

=(ВЗ - $В$14)

=$С$18 + $С$16*АЗ

=$С$18 + $С$16*А4

=$С$18 + $С$16*А5

=$С$18 + $С$16*А6

=$С$18 + $С$16*А7

=$С$18 + $С$16*А8

=$С$18 + $С$16*А9

=(А10 - $А$14)

=(В10 - $В$14)

=$С$18 + $С$16*А10

=$С$18 + $С$16*А11

=(А12 - $А$14)

=(В12 - $В$14)

=$С$18 + $С$16*А12

=$С$18 + $С$16*А13

СРЗНАЧ(Е2:Е13)

Номер

наблюдения

Точки

поворота

е]

( е Г е,-) 2

Так как dw" = 1,88 попало в интервал от d 2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости (см. табл. 3.4.1). Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек [см. формулу (3.5.18)]. Количество поворотных точекр при п = 12 равно 5 (рис. 3.5.14):

Неравенство выполняется (5 > 4). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определим с помощью критерия:

где максимальный уровень ряда остатков е тах = 4,962, минимальный уровень ряда остатков e min = -5,283 (см. табл. 3.5.10), а среднеквадратическое отклонение


Рис. 3.5.14.

Получаем

Расчетное значение попадает в интервал (2,7-3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

Проверка равенства нулю математического ожидания уровней ряда остатков. В нашем случае ё = 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

Данные анализа ряда остатков приведены в табл. 3.5.11.

2) Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации Е оти (табл. 3.5.12).

Получаем

Вывод: - хороший уровень точности модели.

Проверяемое

свойство

Используемая

статистика

Граница

Вывод

Наименова

Значение

верх

Независимость

^-критерий Дарбина - Уотсона

dw = 2,12 dw" = 4-2,12 = = 1,88

Адекватна

Случайность

Критерий

(поворотных

Адекватна

Нормальность

/^-критерий

Адекватна

Среднее е,= 0

/-статистика

Стьюдента

Адекватна

Вывод: модель статистически адекватна

Таблица 3.5.12

Номер

наблю

дения

Номер

наблю

дения

3. Построение точечного и интервального прогнозов на три шага вперед

Для вычисления точечного прогноза в построенную модель подставляем соответствующие значения фактора t = n + к:

Для построения интервального прогноза рассчитаем доверительный интервал. При уровне значимости а = 0,1 доверительная вероятность равна 90%, а критерий Стьюдента при v = п - 2 = 10 равен 1,812. Ширину доверительного интервала вычислим по формуле (3.5.21):

где (можно взять из протокола регрессионного анализа), / = 1,812 (табличное значение можно получить в Excel с помощью функции стьюдраспобр), Т = 6,5,

(находим из табл. 3.5.8);

Таблица 3.5.13

Прогноз

Верхняя граница

Нижняя граница

U( 1) = 6,80

Щ2) = 7,04

Ответ. Модель имеет вид Y(t) = 38,23 + 1,81/. Размеры платежей составят 61,77; 63,58; 65,40 тыс. руб. Следовательно, денежных средств в объеме 120 тыс. руб. на финансирование этого инвеста-


Рис. 3.5.15.

ционного проекта на три последующих месяца будет недостаточно, поэтому нужно либо изыскать дополнительные средства, либо отказаться от этого проекта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В данной работе необходимо выполнить следующие задания в соответствии со своим вариантом:

1) построить линейную модель Y(t) = a 0 + a 1 t, параметры которой оценить методом наименьших квадратов (МНК);

2) оценить адекватность построенной модели на основе исследования:

случайной остаточной компоненты по критерию пиков;

независимости уровней ряда остатков по d-критерию и по первому коэффициенту автокорреляции;

нормальности распределения остаточной компоненты по RS-критерию;

3) построить точечный и интервальный прогнозы на два шага вперед;

4) отобразить на графике фактические данные, результаты расчетов и прогнозирования;

5) для данного ряда выбрать наилучший вид тренда.

Пусть имеются данные о динамике объемов ВВП США (в ценах 1997 г., млрд долл. США)

Объем ВВП США, млрд. долл.

Объем ВВП США, млрд. долл.

Порядок выполнения.

1. Оценка параметров модели

Оценим параметры с помощью надстройки Excel Анализ данных .

Для этого выполним следующие действия:

введем исходные данные (рис. 1):

Рис. 1. Исходные данные

выберем команду Сервис + Анализ данных ;

в появившемся окне выберем инструмент Регрессия , а затем щелкнем по кнопке ОК (рис. 2).

Рис. 2. Диалоговое окно Анализ данных

в диалоговом окне Регрессия в поле Входной интервал Y введем диапазон ячеек зависимой переменной (Котировки). В поле Входной интервал Х введем диапазон ячеек, который содержит значения независимой переменной (t). Если выделить и заголовки столбцов, то необходимо установить флажок в поле Метки.

Для параметров вывода выберем поле Новый рабочий лист.

Для анализа остатков выберем поля Остатки и График подбора.

Диалоговое окно будет выглядеть следующим образом (рис. 3).

Рис. 3. Диалоговое окно Регрессия

Результат регрессионного анализа будет выведен на новый лист рабочей книги Excel. Анализ содержит таблицу регрессионной статистики и дисперсионного анализа, таблицу регрессионного анализа, а также график подбора (рис. 4).

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

Переменная X 1

Вывод остатка

Наблюдение

Предсказанное Y

Рис. 4. График подбора

В результате расчетов получено линейное уравнение зависимости y t (урожайность) от t (время) в виде:

Y(t) = 3151,126 + 105,0833t

Оценка параметров модели "вручную ". Расчеты коэффициентов модели будем проводить по формулам кривых роста оцененных МНК:

где, - средние значения уровней ряда и моментов наблюдения соответственно.

Оценка параметров регрессии:

а 0 = 4096,876471 - 105,083 9 3151,1294.

В результате ручного расчета получено линейное уравнение зависимости y t (объем ВВП) от t (время) в виде:

Y(t) = 3151,1294 + 105,083t.

Оценка параметров модели средствами мастера диаграмм представлена на рис.

(t-tср)(y-yср)

Рис. 5. Корреляционное поле и тренд

Оценка качества построенной модели

Для этого исследуем адекватность модели. Модель является адекватной, если математическое ожидание значений остатков близко или равно нулю, и если значения остаточного ряда случайны, независимы и подчинены нормальному закону распределения;

Проверка равенства нулю математического ожидания уровней ряда остатков

Для этого найдем значения ряда остатков и произведем суммирование

Объем ВВП США, млрд. долл. (yt)

В нашем случае 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется. Модель по данному свойству адекватна .

Проверка независимости (отсутствие автокорреляции)

Данное свойство проверяют с помощью критерия Дарбина-Уотсона. Для этого находится статистика Дарбина-Уотсона (d-статистика):

Для проверки используют два пороговых значения d в и d н, зависящие только от числа наблюдений, числа регрессоров и уровня значимости.

Расчетное значение d равно:

Значение рассчитанного параметра d больше d в и меньше 4d в, поэтому принимаем гипотезу об отсутствии автокорреляции по критерию Дарбина-Уотсона.

Также для проверки наличия автокорреляции можно воспользоваться первым коэффициентом автокорреляции:

Для принятия решения об отсутствии или наличие автокорреляции в исследуемом ряду расчетное значение r(1) сопоставляют с табличным (критическим) значением r для = 0,05. Если r(1) < r , то гипотеза об отсутствии автокорреляции в исследуемом ряду может быть принята, иначе - делают вывод о наличии автокорреляции в ряду.

Вычислим r(1) для нашего примера:

r(1) = = 0,6205.

Рассчитанное значение меньше табличного. Это означает, что гипотеза об отсутствии автокорреляции в ряду урожайности может быть принята.

Модель по параметру независимости адекватна .

Проверка случайности возникновения отдельных отклонений от тренда

Используем критерий, основанный на поворотных точках.

Значение случайной переменной считается поворотной точкой, если оно одновременно больше (меньше) соседних с ним элементов. Если остатки случайны, то поворотная точка приходится примерно на каждые 1,5 наблюдения. Если их больше, то возмущения быстро колеблются, и это не может быть объяснено только случайностью. Если же их меньше, то последовательные значения случайного компонента положительно коррелированны.

Критерий случайности отклонений от тренда при уровне вероятности 0,95 можно представить как

где р фактическое количество поворотных точек в случайном ряду; 1,96 квантиль нормального распределения для 5%-го уровня значимости.

Квадратные скобки означают, что от результата вычисления следует взять целую часть (не путать с процедурой округления!).

Если неравенство не соблюдается, то ряд остатков нельзя считать случайным (т.е. он содержит регулярную компоненту), стало быть, модель не является адекватной.

Построим график остатков.

Рис. 6. График остатков

Количество поворотных точек равно 3.

Значение = = 6.

Неравенство выполняется 3 < 6. Следовательно, свойство случайности выполняется. Модель по данному параметру не адекватна .

Соответствие ряда остатков нормальному закону распределения

Данное соответствие можно проверить с помощью RS-критерия:

где max , min - соответственно максимальный и минимальный уровни ряда остатков; S среднеквадратическое отклонение ряда остатков.

Если расчетное значение RS попадает между табулированными границами с заданным уровнем вероятности, то гипотеза о нормальном распределении ряда остатков принимается. В этом случае допустимо строить доверительный интервал прогноза.

Среднеквадратическое отклонение ряда остатков S = 3,6912.

Расчетное значение попадает в интервал , следовательно, выполняется свойство нормального распределения. Модель по этому параметру адекватна .

Если все пункты проверки дают положительный результат, то выбранная трендовая модель является адекватной реальному ряду экономической динамики, и, следовательно, ее можно использовать для построения прогнозных оценок. В противном случае модель надо улучшать.

Точечный и интервальный прогнозы на два шага вперед

Точечный прогноз - это прогноз, которым называется единственное значение прогнозируемого показателя. Это значение определяется подстановкой в полученное (рассчитанное) уравнение выбранной кривой роста величины времени t, соответствующей периоду упреждения:

t = n + 1; t = n + 2 и т.д.

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, имеет малую вероятность. Возникновение соответствующих отклонений объясняется следующими причинами.

1. Выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты.

2. Прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой. Поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту.

3. Тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет следующий вид

где р - число факторных переменных; k - период прогнозирования; t б - табличное значение t-статистики Стьюдента при заданном уровне значимости и числе наблюдений (значение t б можно получить с помощью встроенной функции Excel СТЬЮДРАСПОБР);

Стандартная ошибка (среднеквадратическое отклонение от модели).

Для других моделей величина U(k) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы, величина U зависит прямо пропорционально от точности модели, коэффициента доверительной вероятности t б, степени углубления в будущее на k шагов вперед, т.е. на момент t = n + k, и обратно пропорциональна объему наблюдений. Доверительный интервал прогноза будет иметь следующий вид:

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границей.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

Построим прогнозы на два шага вперед (k = 1 и k = 2):

1) точечный

2) интервальный

Рассчитаем стандартную ошибку:

Тогда значение U(k) для расчета доверительного интервала будет равно:

Данные расчета верхних и нижних границ доверительного интервала приведены в таблице.

Верхняя граница

Нижняя граница

График фактических данных, результатов расчета и прогнозирования

Для построения графика прогнозирования воспользуемся инструментом Excel Мастер диаграмм.

Для этого необходимо:

1. Выделить диапазоны ячеек значений t, урожайности и оценки урожайности.

2. Запустить Мастер диаграмм, в диалоговом окне мастера выбрать тип диаграммы Точечный, на котором значения соединены отрезками.

3. В диалоговом окне Исходные данные на вкладке Ряд добавить ряды для значений точечного и интервального прогноза. Для этого выбрать кнопку Добавить, в поле Имя указать название ряда, в поле Значение Х диапазон прогноза, в поле Значение Y диапазон либо точного, либо интервального прогнозов.

В результате график прогноза выглядит следующим образом (рис. 7).

Рис. 7. Результаты моделирования и прогнозирования

Выбор наилучшего тренда для оценки временного ряда

При анализе временных рядов широко используются графические методы, которые задают направление его дальнейшего анализа. В Excel для этого можно использовать средство Мастер диаграмм.

Для создания диаграммы необходимо выделить данные, которые будут отображены на диаграмме. Сюда следует включить как числовые данные, так и подписи к ним. Excel автоматически распознает подписи и использует их при построении диаграммы.

Работа мастера состоит из четырех основных шагов.

Шаг 1. Выбор типа и вида диаграммы. Во вкладке Стандартные можно увидеть основные типы диаграмм. Выбрав тип диаграммы, нажать кнопку Далее (рис. 8).

Рис. 8. Окно выбора типа диаграммы

Шаг 2. Выбор и уточнение ориентации диапазона данных и ряда.

Следующее диалоговое окно позволяет выполнить следующие действия:

выбрать (или изменить) диапазон данных листа. Если перед началом работы с мастером данные не были выделены, то, используя это поле, можно выбрать их сейчас;

уточнить ориентацию диапазона данных диаграммы с помощью переключателя Ряды в строках столбцах;

добавлять и удалять ряды;

присваивать рядам имена;

Шаг 3. Настройка диаграммы. Это наиболее сложный этап работы мастера. В появившемся окне предлагается большое количество самых различных параметров диаграммы. Если параметры не изменяются, то используются установленные по умолчанию значения.

Шаг 4. Выбор месторасположения диаграммы. На этом шаге определяется месторасположение созданной диаграммы.

Построение линий тренда

Для описания закономерностей в исследуемом временном ряду строятся линии тренда. В табл. приведены типы линий тренда, используемые в Excel.

Для добавления линии тренда в диаграмму необходимо выполнить следующие действия: excel автокорреляция точечный

1) щелкнуть правой кнопкой мыши по ряду данных;

2) в динамическом меню выбрать команду Добавить линию тренда.

На экране появится окно Линия тренда;

3) выбрать вид зависимости регрессии. Если выбран тип Полиномиальная, то необходимо обязательно выбрать степень полинома. Если выбран тип Линейная фильтрация (данный тип не является регрессией, производится сглаживание данных методом скользящей средней), то в поле точки необходимо ввести число точек для расчета средней величины;

4) перейти на вкладку Параметры. В списке Название аппроксимирующей (сглаженной) кривой установить переключатель Автоматическое или Другое, после чего введите название кривой и оно появится в легенде диаграммы;

5) если линия тренда регрессия, то можно задать прогнозируемое количество периодов, которые будут добавлены к линии тренда;

6) в случае необходимости можно задать остальные параметры.

На один график корреляционного поля можно нанести несколько линий тренда и по параметру R^2 (коэффициент детерминации) определить вид тренда для предложенного временного ряда.

Для нашего примера график для выбора наилучшей модели выглядит следующим образом (рис. 9).

Рис. 9. Выбор наилучшей модели

В качестве лучшего можно выбрать тренд полиномиальный шестого порядка.

Размещено на Allbest.ru

...

Подобные документы

    Предварительный анализ заданного временного ряда на предмет наличия тренда. Обоснование наличия сезонности по графическому представлению одноименных элементов ряда разных лет. Применение модели для прогноза. Выбор типа остатков и корректировка модели.

    контрольная работа , добавлен 12.09.2011

    Проведение анализа динамики валового регионального продукта и расчета его точечного прогноза при помощи встроенных функций Excel. Применение корреляционно-регрессионного анализа с целью выяснения зависимости между основными фондами и объемом ВРП.

    реферат , добавлен 20.05.2010

    Ознакомление с разнообразными надстройками, входящими в состав Microsoft Excel; особенности их использования. Примеры решения задач линейного программирования с помощью вспомогательных программ "Подбор параметра", "Поиск решения" и "Анализ данных".

    реферат , добавлен 25.04.2013

    Построение графика на основе табличных данных, их анализ с использованием математического метода наименьших квадратов. Зависимость электрического сопротивления медного стержня от температуры. Использование линий тренда в MS Excel для прогнозирования.

    контрольная работа , добавлен 24.04.2011

    Анализ возможностей текстового редактора Word и электронных таблиц Excel для решения экономических задач. Описание общих формул, математических моделей и финансовых функций Excel, используемых для расчета скорости оборота инвестиций. Анализ результатов.

    курсовая работа , добавлен 21.11.2012

    Использование функции Excel для расчета экспоненциального роста на основании имеющихся данных. Построение графика прогноза по методу скользящей средней. Определение коэффициента детерминации. Полиномиальная зависимость между исследуемыми показателями.

    лабораторная работа , добавлен 01.12.2011

    Создание макроса на языке Statistica Visual Basic (SVB) для проверки гипотезы о нормальности остатков множественной регрессии. Возможности программирования на языке SVB в пакете STATISTICA. Проверка гипотезы в модели вторичного рынка жилья в г. Минске.

    курсовая работа , добавлен 02.10.2009

    Определение доли перевозчиков в их общем количестве средствами Excel. Автоматическое и ручное прогнозирование линейной и экспоненциальной зависимости. Вычисление тенденций с помощью добавления линии тренда на диаграмму. Возможности процессора MathCAD.

    контрольная работа , добавлен 03.04.2012

    Составление отчетной ведомости "Магазины" в Excel 2013. Работа с таблицами семейства Microsoft Office. Построение круговой диаграммы и гистограммы, графиков. Разработка процедур для табулирования функций. Программирование функций пользователя на VBA.

    курсовая работа , добавлен 03.04.2014

    Рассмотрение и ознакомление с одним из наиболее используемых языков программирования - С++. Его применение в процессе работы со строковыми типами данных и символами. Исследование кодов написания программ в режиме разработки консольного приложения.

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения xp:

уp = a + b* xp

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin , уpmax интервала, содержащего точную величину для прогнозного значения yp (ypmin < yp < ypmin ) с заданной вероятностью.

При построении доверительного интервала прогноза используется стандартная ошибка прогноза :

Где

Строится доверительный интервал прогноза :

Множественный регрессионный анализ

(слайд 1) Множественная регрессия применяется в ситуациях, когда из множества факторов, влияющих на результативный признак, нельзя выделить один доминирующий фактор и необходимо учитывать влияние нескольких факторов. Например, объем выпуска продукции определяется величиной основных и оборотных средств, численностью персонала, уровнем менеджмента и т. д., уровень спроса зависит не только от цены, но и от имеющихся у населения денежных средств.

Основная цель множественной регрессии – построить модель с несколькими факторами и определить при этом влияние каждого фактора в отдельности, а также их совместное воздействие на изучаемый показатель.

Таким образом, множественная регрессия – это уравнение связи с несколькими независимыми переменными:

(слайд 2) Построение уравнения множественной регрессии

1. Постановка задачи

По имеющимся данным n наблюдений (табл. 3.1) за совместным изменением p +1 параметра y и xj и ((yi,xj,i ); j =1, 2, ..., p ; i =1, 2, ..., n ) необходимо определить аналитическую зависимость ŷ = f(x1 ,x2 ,...,xp) , наилучшим образом описывающую данные наблюдений.

Таблица 3.1

Данные наблюдений

x1 1

х1 2

х1 n

x 2 n

Каждая строка таблицы представляет собой результат одного наблюдения. Наблюдения различаются условиями их проведения.

Вопрос о том, какую зависимость следует считать наилучшей, решается на основе какого-либо критерия. В качестве такого критерия обычно используется минимум суммы квадратов отклонений расчетных значений результативного показателя ŷi от наблюдаемых значений yi:

2. Спецификация модели

(слайд 3) Спецификация модели включает в себя решение двух задач:

– отбор факторов, подлежащих включению в модель;

– выбор формы уравнения регрессии.

2.1. Отбор факторов при построении множественной регрессии

Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлениями исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями.

К факторам, включаемым в модель, предъявляются следующие требования :

1. Факторы должны быть количественно измеримы. Включение фактора в модель должно приводить к существенному увеличению доли объясненной части в общей вариации зависимой переменной. Поскольку данная величина характеризуется коэффициентом детерминации , включение нового фактора в модель должно приводить к заметному изменению коэффициента. Если этого не происходит, то включаемый в анализ фактор не улучшает модель и является лишним.

Например, если для регрессии, включающей 5 факторов, коэффициент детерминации составил 0,85, и включение шестого фактора дало коэффициент детерминации 0,86, то вряд ли целесообразно дополнять модель этим фактором.

Если необходимо включить в модель качественный фактор, не имеющий количественной оценки, то нужно придать ему количественную определенность. В этом случае в модель включается соответствующая ему «фиктивная» переменная , имеющая конечное количество формально численных значений, соответствующих градациям качественного фактора (балл, ранг).

Например, если нужно учесть влияние уровня образования (на размер заработной платы), то в уравнение регрессии можно включить переменную, принимающую значения: 0 – при начальном образовании, 1 – при среднем, 2 – при высшем.

Несмотря на то, что теоретически регрессионная модель позволяет учесть любое количество факторов, на практике в этом нет необходимости, т.к. неоправданное их увеличение приводит к затруднениям в интерпретации модели и снижению достоверности результатов.

2. Факторы не должны быть взаимно коррелированы и, тем более, находиться в точной функциональной связи. Наличие высокой степени коррелированности между факторами может привести к неустойчивости и ненадежности оценок коэффициентов регрессии, а также к невозможности выделить изолированное влияние факторов на результативный показатель. В результате параметры регрессии оказываются неинтерпретируемыми.

Пример . Рассмотрим регрессию себестоимости единицы продукции (у ) от заработной платы работника (х ) и производительности труда в час (z ).

Коэффициент регрессии при переменной z показывает, что с ростом производительности труда на 1 ед-цу в час себестоимость единицы продукции снижается в среднем на 10 руб. при постоянном уровне оплаты труда.

А параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии в данном случае обусловлено высокой корреляцией между х и z (0,95).

(слайд 4) Считается, что две переменные явно коллинеарны , т.е. находятся между собой в линейной зависимости, если коэффициент интеркорреляции (корреляции между двумя объясняющими переменными) ≥ 0,7. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из уравнения. Предпочтение при этом отдается не тому фактору, который более тесно связан с результатом, а тому, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Наряду с парной коллинеарностью может иметь место линейная зависимость между более чем двумя переменными – мультиколлинеарность , т.е. совокупное воздействие факторов друг на друга.

Наличие мультиколлинеарности факторов может означать, что некоторые факторы всегда будут действовать в унисон. В результате вариация в исходных данных перестанет быть полностью независимой, что не позволит оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

(слайд 5) Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам :

    затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;

    оценки параметров не надежны, имеют большие стандартные ошибки и меняются с изменением количества наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

(слайд 6) Для оценки мультиколлинеарности используется определитель матрицы парных коэффициентов интеркорреляции :

(!) Если факторы не коррелируют между собой , то матрица коэффициентов интеркорреляции является единичной, поскольку в этом случае все недиагональные элементы равны 0. Например, для уравнения с тремя переменными матрица коэффициентов интеркорреляции имела бы определитель, равный 1, поскольку
и
.

(слайд 7)

(!) Если между факторами существует полная линейная зависимость и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0 (Если две строки матрицы совпадают, то её определитель равен нулю).

Чем ближе к 0 определитель матрицы коэффициентов интеркорреляции, тем сильнее мультиколлинеарность и ненадежнее результаты множественной регрессии.

Чем ближе к 1 определитель матрицы коэффициентов интеркорреляции, тем меньше мультиколлинеарность факторов.

(слайд 8) Способы преодоления мультиколлинеарности факторов :

1) исключение из модели одного или нескольких факторов;

2) переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Например, если
, то можно построить следующее совмещенное уравнение:;

3) переход к уравнениям приведенной формы (в уравнение регрессии подставляется рассматриваемый фактор, выраженный из другого уравнения).

(слайд 9) 2.2. Выбор формы уравнения регрессии

Различают следующие виды уравнений множественной регрессии :

    линейные,

    нелинейные, сводящиеся к линейным,

    нелинейные, не сводящиеся к линейным (внутренне нелинейные).

В первых двух случаях для оценки параметров модели применяются методы классического линейного регрессионного анализа. В случае внутренне нелинейных уравнений для оценки параметров применяются методы нелинейной оптимизации.

Основное требование, предъявляемое к уравнениям регрессии, заключается в наличии наглядной экономической интерпретации модели и ее параметров. Исходя из этих соображений, наиболее часто используются линейная и степенная зависимости.

Линейная множественная регрессия имеет вид:

Параметры bi при факторах хi называются коэффициентами «чистой» регрессии . Они показывают, на сколько единиц в среднем изменится результативный признак за счет изменения соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

(слайд 10) Например, зависимость спроса на товар (Qd) от цены (P) и дохода (I) характеризуется следующим уравнением:

Qd = 2,5 - 0,12P + 0,23 I.

Коэффициенты данного уравнения говорят о том, что при увеличении цены на единицу, спрос уменьшится в среднем на 0,12 единиц, а при увеличении дохода на единицу, спрос возрастет в среднем 0,23 единицы.

Параметр а не всегда может быть содержательно проинтерпретирован.

Степенная множественная регрессия имеет вид:

Параметры bj (степени факторов хi ) являются коэффициентами эластичности. Они показывают, на сколько % в среднем изменится результативный признак за счет изменения соответствующего фактора на 1% при неизмененном значении остальных факторов.

Наиболее широкое применение этот вид уравнения регрессии получил в производственных функциях, а также при исследовании спроса и потребления.

Например, зависимость выпуска продукции Y от затрат капитала K и труда L:
говорит о том, что увеличение затрат капитала K на 1% при неизменных затратах труда вызывает увеличение выпуска продукции Y на 0,23%. Увеличение затрат труда L на 1% при неизменных затратах капитала K вызывает увеличение выпуска продукции Y на 0,81 %.

Возможны и другие линеаризуемые функции для построения уравнения множественной регрессии:


Чем сложнее функция, тем менее интерпретируемы ее параметры. Кроме того, необходимо помнить о соотношении между количеством наблюдений и количеством факторов в модели. Так, для анализа трехфакторной модели должно быть проведено не менее 21 наблюдения.

(слайд 11) 3. Оценка параметров модели

Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов , согласно которому следует выбирать такие значения параметров а и bi , при которых сумма квадратов отклонений фактических значений результативного признака yi от теоретических значений ŷ минимальна, т. е.:

Если , тогдаS является функцией неизвестных параметров a , bi :

Чтобы найти минимум функции, нужно найти частные производные по каждому из параметров и приравнять их к 0:

Отсюда получаем систему уравнений:

(слайд 12) Ее решение может быть осуществлено методом определителей:

,

где – определитель системы;

a , ∆ b 1, ∆ bp – частные определители (j ).

–определитель системы,

j – частные определители, которые получаются из основного определителя путем замены j-го столбца на столбец свободных членов .

При использовании данного метода возможно возникновение следующих ситуаций:

1) если основной определитель системы Δ равен нулю и все определители Δj также равны нулю, то данная система имеет бесконечное множество решений;

2) если основной определитель системы Δ равен нулю и хотя бы один из определителей Δj также равен нулю, то система решений не имеет.

(слайд 13) Помимо классического МНК для определения неизвестных параметров линейной модели множественной регрессии используется метод оценки параметров через β -коэффициенты – стандартизованные коэффициенты регрессии.

Построение модели множественной регрессии в стандартизированном, или нормированном, масштабе означает, что все переменные, включенные в модель регрессии, стандартизируются с помощью специальных формул.

У равнение регрессии в стандартизованном масштабе:

где
,
- стандартизованные переменные;

- стандартизованные коэффициенты регрессии.

Т.е. посредством процесса стандартизации точкой отсчета для каждой нормированной переменной устанавливается ее среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается ее среднеквадратическое отклонение σ .

β -коэффициенты показывают , на сколько сигм (средних квадратических отклонений) изменится в среднем результат за счет изменения соответствующего фактора xi на одну сигму при неизменном среднем уровне других факторов.

Стандартизованные коэффициенты регрессии βi сравнимы между собой, что позволяет ранжировать факторы по силе их воздействия на результат. Большее относительное влияние на изменение результативной переменной y оказывает тот фактор, которому соответствует большее по модулю значение коэффициента βi . В этом основное достоинство стандартизованных коэффициентов регрессии , в отличие от коэффициентов «чистой» регрессии, которые не сравнимы между собой.

(слайд 14) Связь коэффициентов «чистой» регрессии bi с коэффициентами βi описывается соотношением:

, или

Параметр a определяется как .

Коэффициенты β определяются при помощи МНК из следующей системы уравнений методом определителей:

Для оценки параметров нелинейных уравнений множественной регрессии предварительно осуществляется преобразование последних в линейную форму (с помощью замены переменных) и МНК применяется для нахождения параметров линейного уравнения множественной регрессии в преобразованных переменных. В случае внутренне нелинейных зависимостей для оценки параметров приходится применять методы нелинейной оптимизации.

(слайд 1) 4. Проверка качества уравнения регрессии

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, т.е. оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции рассчитывается по формуле:

Коэффициент множественной корреляции принимает значения в диапазоне 0 ≤ R ≤ 1. Чем ближе он к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

При линейной зависимости признаков формулу индекса множественной корреляции можно записать в виде:

,

где - стандартизованные коэффициенты регрессии,

- парные коэффициенты корреляции результата с каждым фактором.

Данная формула получила название линейного коэффициента множественной корреляции , или совокупного коэффициента корреляции .

Индекс детерминации для нелинейных по оцениваемым параметрам функций принято называть «квази-
».
Для его определения по функциям, использующим логарифмические преобразования (степенная, экспонента), необходимо сначала найти теоретические значения ln y, затем трансформировать их через антилогарифмы (антилогарифм ln y = y) и далее определить индекс детерминации как «квази-
» по формуле:

.

Величина «квази-
» не будет совпадать с совокупным коэффициентом корреляции, который может быть рассчитан для линейного в логарифмах уравнения множественной регрессии, потому что в последнем раскладывается на факторную и остаточную суммы квадратов не
, а
.

(слайд 2) Использование коэффициента множественной детерминации
для оценки качества модели обладает тем недостатком, что включение в модель нового фактора (даже несущественного) автоматически увеличивает величину
.
Поэтому при большом количестве факторов предпочтительней использовать так называемый скорректированный (улучшенный) коэффициент множественной детерминации
, определяемый соотношением:

где n – число наблюдений,

m – число параметров при переменных х (чем больше величина m, тем сильнее различия между к-том множ. детерминации
и скорректированным к-том
).

При заданном объеме наблюдений и при прочих равных условиях с увеличением числа независимых переменных (параметров) скорректированный к-т множ. детерминации убывает. Его величина может стать и отрицательной при слабых связях результата с факторами. При небольшом числе наблюдений нескорректированная величина к-та имеет тенденцию переоценивать долю вариации результативного признака, связанную с влиянием факторов, включенных в регрессионную модель. Чем больше объем совокупности, по которой исчислена регрессия, тем меньше различаются
и
.

Отметим, что низкое значение коэффициента множественной корреляции и коэффициента множественной детерминации может быть обусловлено следующими причинами :

– в регрессионную модель не включены существенные факторы;

– неверно выбрана форма аналитической зависимости, не отражающая реальные соотношения между переменными, включенными в модель.

(слайд 3) Значимость уравнения множественной регрессии в целом оценивается с помощью F - критерия Фишера :

Выдвигаемая «нулевая» гипотеза H0 о статистической незначимости уравнения регрессии отвергается при выполнении условия F > F крит, где F крит определяется по таблицам F -критерия Фишера по двум степеням свободы k 1 = m , k 2= n- m - 1 и заданному уровню значимости α.

Значимость одного и того же фактора может быть различной в зависимости от последовательности введения его в модель.

(слайд 4) Мерой для оценки включения фактора в модель служит частный F -критерий (оценивает статистическую значимость присутствия каждого из факторов в уравнении):

,

где
- коэффициент множ. детерминации для модели с полным

набором факторов;

- тот же показатель, но без включения в модель фактора х1 ;

n – число наблюдений;

m – число параметров при переменных х.

Если фактическое значение F превышает табличное, то дополнительное включение в модель фактора xi статистически оправдано и коэффициент чистой регрессии bi при факторе xi статистически значим.

Если же фактическое значение F меньше табличного, то нецелесообразно включать в модель дополнительный фактор, поскольку он не увеличивает существенно долю объясненной вариации результата, а коэффициент регрессии при данном факторе статистически не значим.

(слайд 5) Частный F-критерий оценивает значимость коэффициентов чистой регрессии. Зная величину , можно определить и t -критерий Стьюдента :

или

где m bi – средняя квадратическая ошибка коэффициента регрессии b i , она может быть определена по формуле:

.

Величина стандартной ошибки совместно с t-распределением Стьюдента при n-m-1 степенях свободы применяется для проверки значимости коэффициента регрессии и для расчета его доверительного интервала.

После установления РВД и выбора вида распределения и уровня ДВ расчет границ интервального прогноза становится чисто технической задачей. Ее решение заключается в отсечении "лишних" концов РВД соответственно принятой доверительной вероятности. Иначе говоря, находят величины

А = а + х; B = b - x ,

где x - величина, зависящая от вида распределения и вероятности неудачи (неосуществления прогноза); очевидно, что упомянутая вероятность равна 1 - ДВ. Площади под кривой распределения, отсекаемые от "хвостов", равны половине этой вероятности (см. рис. 8.2) для треугольного распределения:

Значения этой вероятности для некоторых уровней ДВ приведены в табл. 8.1.

Рис. 8.2

Таблица 8.1

ДВ, %

Из сказанного следует, что задача определения интервального прогноза сводится к расчету размера x . Методики разработаны для следующих ситуаций:

А. Объект прогнозирования - отдельная количественная характеристика. Эксперт указывает РВД, вид распределения, а для распределения Тр и интервал наиболее вероятных значений прогнозируемого показателя.

Б. Прогноз суммы показателей, . Например, сумма объемов выпуска нескольких видов продукции. Для каждого слагаемого указывается РВД и вид распределения. ДВ назначается только для итоговой суммы.

В. Прогноз произведения двух показателей, Y = vw . Например, произведение "нормативного" и объемного показателей. Эксперт указывает РВД, вид распределения и ДВ для каждого сомножителя.

На первый взгляд представляется, что обсуждаемую методику легко распространить на прогноз суммы произведений. Формально это несложно выполнить. Однако, как показали расчеты, степень "сжатия" прогнозного интервала в этих условиях весьма мала, так что применение данной методики не имеет смысла.

Покажем технику применения перечисленных методик для каждого из указанных распределений вероятностей.

Методика а. Расчет интервального прогноза отдельной характеристики

Распределение N.

Известно, что площадь под кривой нормального распределения в пределах примерно равна 99%. Отсюда

где М - средняя,

Стандартное (среднее квадратическое) отклонение.

Пусть z - нормированное отклонение от средней 43 , зависящее от выбранной доверительной вероятности. Тогда нормированное значение искомой величины x составит:

u = 3 - z . (8.3)

Вероятности невыполнения прогноза в каждом "хвосте" нормального распределения составят:

. (8.4)

Заметим, что для нормального распределения ДВ = F (z ).

В табл. 8.2 44 приводятся значения z , и, в зависимости от уровня ДВ.

Таблица 8.2

Необходимое для расчета по формуле (8.2) значение находим следующим образом:

Распределение Т.

Искомая величина находится как функция от L и :

Распределение Тр.

Здесь возможны два варианта. Если , то

, (8.7)

где l = М 2 - М 1 .

Если же , то

, (8.8)

Распределение Р.

ПРИМЕР 1

Ожидается, что РВД (допустим, речь идет о годовом размере добычи минерального сырья) оценивается экспертом в объеме 1,2 - 1,8 млн. т. Определим интервальный прогноз для всех перечисленных выше видов распределений при условии, что ДВ = 80%. Для принятого уровня доверительной вероятности = 0,1.

Точечный прогноз на основе временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t =n +1, n +2,..., n +k .

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, имеет малую вероятность.

Возникновение соответствующих отклонений объясняется следующими причинами.

1. Выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты.

2. Прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой. Поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту.

3. Тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов.

Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид:

, (1.27)

Стандартная ошибка (среднеквадратическое отклонение от модели),

m – количество факторов в модели, для линейной модели m = 1.

Коэффициент является табличным значениемt-статистики Стьюдента при заданном уровне значимости и числе наблюдений.

Если исследователь задает уровень вероятности попадания прогнозируемой величины внутрь доверительного интервала, равной 70%, то при n =9 = 1,12.

При вероятности, равной 95%, = 2,36.

Для других моделей величина U(k) рассчитывается аналогичным образом, но имеет более громоздкий вид.

Как видно из формулы (1.10), величина U зависит прямо пропорционально от точности модели, коэффициента доверительной вероятности степени углубления в будущее на k шагов вперед, т.е. на момент t = n+k, и обратно пропорциональна объему наблюдений.

Доверительный интервал прогноза будет иметь следующие границы:

– верхняя граница прогноза = Y прогноз (n+k ) + U (k );

– нижняя граница прогноза = Y прогноз (n+k ) – U (k ).

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границей.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

Пример 1.5

Финансовый директор АО «Веста» рассматривает целесообразность ежемесячного финансирования инвестиционного проекта со следующими объемами нетто-платежей, тыс. руб.:

45 40 43 48 42 47 51 55 50 57 60 62.

Требуется определить:

1) Линейную модель зависимости объемов платежей от сроков (времени).

2) Оценить адекватность и точность построенной модели на основе исследования:

  • случайности остаточной компоненты по критерию пиков;
  • независимости уровней ряда остатков по d- критерию (в качестве критических значений следует использовать уровни d 1 = 1,08 и d 2 = 1,36) и по первому коэффициенту автокорреляции, критический уровень которого r (1) = 0,36;
  • нормальности распределения остаточной компоненты по RS- критерию с критическими уровнями 2,7 – 3,7;
  • для оценки точности модели используйте среднеквадратическое отклонение и среднюю по модулю относительную ошибку;

3) Определить размеры платежей на 3 последующих месяца (построить точечный и интервальный прогнозы на два шага вперед (для вероятности
Р=
90% используйте коэффициент = 1,812) отобразить на графике фактические данные, результаты расчетов и прогнозирования). Оценить целесообразность финансирования этого проекта, если в следующем квартале на эти цели фирма может выделить только 120 тыс.руб.

1) оценка параметров модели.

Оценка параметров модели с помощью надстройки EXCEL Анализ данных .

Построим линейную модель регрессии Y от t . Для проведения регрессионного анализа выполните следующие действия:

· Выберите команду Сервис Þ Анализ данных.

· В диалоговом окне Анализ данных выберите инструмент Регрессия, а затем щелкните на кнопке ОК.

· В диалоговом окне Регрессияв поле Входной интервал Y введите адрес одного диапазона ячеек, который представляет зависимую переменную. В поле Входной интервал Х введите адрес диапазона, который содержат значения независимой переменной t Если выделены и заголовки столбцов, то установить флажок Метки в первой строке.

· Выберите параметры вывода. В данном примере Новая рабочая книга.

· В поле График подбора поставьте флажок.

· В поле Остатки поставьте необходимые флажки и нажмите кнопку ОК.

Результат регрессионного анализа содержится в нижеприведенных таблицах (табл. 1.13 и 1.14)

Таблица 1.13

Переменная Коэффициенты Стандартная ошибка t-статистика
Y -пересечение a 0 38,227 1,955 19,554
t a 1 1,811 0,266 6,818

Таблица 1.14. ВЫВОД ОСТАТКА

Наблюдение Предсказанное Y Остатки
40,038 4,962
41,850 -1,850
43,661 -0,661
45,472 2,528
47,283 -5,283
49,094 -2,094
50,906 0,094
52,717 2,283
54,528 -4,528
56,339 0,661
58,150 1,850
59,962 2,038

Во втором столбце табл. 1.13 содержатся коэффициенты уравнения регрессии a 0 , a 1 , в третьем столбце – стандартные ошибки коэффициентов уравнения регрессии, а в четвертом – t-статистика, используемая для проверки значимости коэффициентов уравнения регрессии.

Уравнение регрессии зависимости объемов платежей от сроков (времени) имеет вид:

.

Оценка параметров модели по формуле (3.5) «вручную».

Промежуточные расчеты параметров линейной модели по формулам (1.5) приведены в табл. 1.15.

-5,5 30,25 -5 27,5 40,04 4,96
-4,5 20,25 -10 41,85 -1,85
-3,5 12,25 -7 24,5 43,66 -0,66
-2,5 6,25 -2 45,47 2,53
-1,5 2,25 -8 47,28 -5,28
-0,5 0,25 -3 1,5 49,09 -2,09
0,5 0,25 0,5 50,91 0,09
1,5 2,25 7,5 52,72 2,28
2,5 6,25 54,53 -4,53
3,5 12,25 24,5 56,34 0,66
4,5 20,25 58,15 1,85
5,5 30,25 59,96 2,04
6,5

При вычислении «вручную» по формуле (1.4) получаем те же результаты:

,

A B C D E F G H
ВЫЧИСЛЕНИЯ В EXCEL С ИСПОЛЬЗОВАНИЕМ ФОРМУЛ
=B2-$J$15 =D2*D2 =C2-$K$15 =D2*F2 =$M$21+$M$18*B2 =C2-H2
=B3-$J$15 =D3*D3 =C3-$K$15 =D3*F3 =$M$21+$M$18*B3 =C3-H3
=B4-$J$15 =D4*D4 =C4-$K$15 =D4*F4 =$M$21+$M$18*B4 =C4-H4
=B5-$J$15 =D5*D5 =C5-$K$15 =D5*F5 =$M$21+$M$18*B5 =C5-H5
=B6-$J$15 =D6*D6 =C6-$K$15 =D6*F6 =$M$21+$M$18*B6 =C6-H6
=B7-$J$15 =D7*D7 =C7-$K$15 =D7*F7 =$M$21+$M$18*B7 =C7-H7
=B8-$J$15 =D8*D8 =C8-$K$15 =D8*F8 =$M$21+$M$18*B8 =C8-H8
=B9-$J$15 =D9*D9 =C9-$K$15 =D9*F9 =$M$21+$M$18*B9 =C9-H9
=B10-$J$15 =D10*D10 =C10-$K$15 =D10*F10 =$M$21+$M$18*B10 =C10-H10
=B11-$J$15 =D11*D11 =C11-$K$15 =D11*F11 =$M$21+$M$18*B11 =C11-H11
=B12-$J$15 =D12*D12 =C12-$K$15 =D12*F12 =$M$21+$M$18*B12 =C12-H12
=B13-$J$15 =D13*D13 =C13-$K$15 =D13*F13 =$M$21+$M$18*B13 =C13-H13
=СРЗНАЧ (A2:A13) =СРЗНАЧ (B2:B13) =СУММ (D2:D13) =СУММ (F2:F13) =СУММ (H2:H13)
a1= =G14/E14
a0= =C14-E17*B14

2) оценка качества построенной модели.

2.1) Оценка адекватности

Для оценки адекватности построенных моделей исследуются свойства остаточной компоненты, т.е. расхождения уровней, рассчитанных по модели, и фактических наблюдений (табл. 1.17).

Точки поворота
4,962 24,617
-1,850 * 3,421 46,392
-0,661 0,437 1,413
2,528 * 6,391 10,169
-5,283 * 27,912 61,015
-2,094 4,387 10,169
0,094 0,009 4,791
2,283 * 5,213 4,791
-4,528 * 20,503 46,392
0,661 0,437 26,924
1,850 3,421 1,413
2,038 4,155 0,036
100,902 213,504

· При проверке независимости (отсутствие автокорреляции) определяется отсутствие в ряду остатков систематической составляющей, например, с помощью d-критерия Дарбина–Уотсона по формуле (1.7):

Так как попало в интервал от d 2 , до 2 то по данному критерию можно сделать вывод о выполнении свойства независимости.

Это означает, что в ряду динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

· Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек (формула (1.6)). Количество поворотных точек (p ) равно 5 (рис. 1.14).

Неравенство выполняется (5>4). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

Рис. 1.14 . График остатков

· Соответствие ряда остатков нормальному закону распределения определим при помощи RS-критерия:

RS= [ max – min ] / ;

где max максимальный уровень ряда остатков, max = 4,9 62;

min минимальный уровень ряда остатков, min = 4, 528;

среднеквадратическое отклонение,

= = = 3,029;

RS = / 3, 029= 3, 383

Расчетное значение попадает в интервал (2,7 – 3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

· Проверка равенства нулю математического ожидания уровней ряда остатков.

В нашем случае = 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

В табл. 1.18собраны данные анализа ряда остатков.

Таблица 1.18. Анализ ряда остатков

2.2) Оценка точности

Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации

Таблица 1.19.

Номер наблюдения
4,96 0,110
-1,85 0,046
-0,66 0,015
2,53 0,053
-5,28 0,126
-2,09 0,045
0,09 0,002
2,28 0,042
-4,53 0,091
0,66 0,012
1,85 0,031
2,04 0,033

2) Размеры платежей составят 61,77 , 63,58 , 65,40 тыс. руб.

3) Денежных средств в объеме 120 тыс. руб. на финансирование этого инвестиционного проекта на 3 последующие месяца будет недостаточно, поэтому нужно либо изыскать дополнительные средства, либо отказаться от этого проекта.

Контрольные вопросы:

1.Основные понятия и определения временного ряда.

2.Основная цель статистического анализа временных рядов.

3.Какие требования предъявляются к исходной информации?

4.Какие этапы построения прогноза по временным рядам?

5.Перечислите процедуры анализа данных и их содержание.

6.Перечислите способы обнаружения тренда и их содержание.

7.Из - за каких причин проводится сглаживание временных рядов?

8.Раскройте содержание метода простой скользящей средней сглаживания временного ряда.

9. Раскройте содержание метода взвешенной скользящей средней.

10.Когда применяется метод экспоненциального сглаживания наблюдений временного ряда и его содержание?

11.Перечислите показатели развития динамики экономических процессов.

12.Что означает автокорреляция временного ряда?

13.Как вычислить коэффициент автокорреляции?

14.Для чего строятся модели временных рядов?

15.Что означает «кривая роста» показателей временного ряда?

16.Как производится оценка качества построенной модели?

17.Как оценивается точность модели?

18.Какой порядок расчета точечных интервальных прогнозов?

Литература

1. Эконометрика : Учебник / Под ред. И.И.Елисеевой. - 2-е изд.; перераб. и доп. - М.: Финансы и статистика, 2005. - 576с.

2. Практикум по эконометрике : Учебное пособие / Под ред. Елисеевой И.И. - М.: Финансы и статистика, 2001,2002,2003,2004. - 192с

3. Айвазян С.А., Мхитарян В.С . Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998.

4. Орлов А.И. Эконометрика: Учеб. пособие для вузов – М.: «Экзамен», 2002.


Экстраполяция - это распространение выявленных при анализе рядов динамики закономерностей развития изучаемого объекта на будущее (при предположении, что выявленная закономерность, выступающая в качестве базы прогнозирования, сохраняется и в дальнейшем).

Табличное значение t кр можно получить с помощью функции EXCEL СТЬЮДРАСПОБР.

В фактически действующих ценах соответствующих лет.
Источник - "Краткосрочные экономические показатели РФ". Госкомстат, Москва.

Значение можно получить с помощью функции Excel СТЬЮДРАСПОБР.

Похожие публикации