Продукты расщепления жиров всасываются преимущественно в. О процессе переваривания и всасывания пищи

Примерно 90% жиров пищи - это триглицериды, большую часть которых составляют липиды, содержащие жирные кислоты с длинной цепью из 16 (пальмитиновая кислота) или 18 (стеариновая, олеи­новая, линолевая кислоты) атомов углерода.

Триглицериды, содержащие жирные кислоты с корот­кой цепью (2-4 углеродных атома) или средней цепью (6-8 атомов), составляют лишь небольшую часть жиров пищи.

Остальные 10% жиров пищи приходятся на фосфолипиды (главным образом лецитин), эфиры холестерола и жирорастворимые витамины.

Переваривание жиров.

В желудке жиры образуют капельки диаметром около 100 нм. В щелочной среде тонкого кишечника при наличии белков, продуктов расщепления предшествующей порции жиров, лецитина и желчных кислот жиры образуют эмульсию с размером капелек около 5 нм.

В тонком кишечнике жиры стимулируют выделение клетками слизистой холецистокинина, активирующего секре­цию ферментов поджелудочной железы и сокраще­ния желчного пузыря.

Липаза, секретируемая поджелудочной железой, состоит из двух компонентов колипазы , образую­щейся в результате активации проколипазы трипси­ном и локализованной на границе раздела водной и липидной фаз, и панкреатической липазы , образующей комплекс с колипазой.

Липаза катализирует отщепление от триглицеридов жирных кислот в положениях 1 и 3 с. Конечный продукт - жирные кислоты , диацилглицерины и моноацилглицерины .

Количество липа­зы, поступающей с панкреатическим соком, так велико, что к тому моменту, когда жир достигает середины двенадцатиперстной кишки, 80% его оказывается гидролизованным. В связи с этим нарушение переваривания жиров, связанное с не­достаточностью липазы, не выявляется вплоть до полного прекращения деятельности поджелудочной железы или сильного ее разрушения.

Помимо липазы поджелудочная железа секретирует и другие ферменты липидного обмена, также активируемые трипсином. К числу этих ферментов относитсяфосфолипаза Ад, которая в присутствии ионов Са2+ и желчных кислот отщепляет жирную кислоту от фосфолипида лецитина с образованием лизолецитина. Холестерол обычно присутствует в пище в виде эфиров и высвобождается под дей­ствием холестеролэстеразы.

Продукты гидролиза липидов плохо растворимы в воде и могут находиться в кишечнике в растворен­ном виде лишь в составе мицелл . Простые мицеллы, состоящие только из желчных кислот (чистые мицеллы), после внедрения в их гидро­фобную сердцевину жирных кислот, моноглицеридов, фосфолипидов и холестерола превращаются всмешанные мицеллы. Благодаря растворимости этих мицелл в воде концентрация конечных продук­тов гидролитического расщепления липидов в про­свете кишечника повышается в тысячи раз.

Всасывание продуктов гидролитического расщеп­ления жиров

Жиры всасываются так эффективно, что 95% триглицеридов (но лишь 20-50% холе­стерола) поглощается уже из просвета двенадцати­перстной кишки и верхнего отдела тощей кишки. У человека при обычной диете в сутки выделяется с калом до 5-7 г жира. При безжировой диете эта величина уменьшается до 3 г/сут, а источником жира служат слущивающиеся эпителиальные клетки и бактерии.

Прежде чем попасть внутрь энтероцита, ком­поненты смешанных мицелл должны преодолеть три барьера:

1) неперемешивающийся водный слой, прилежа­щий к поверхности клетки, - основное препят­ствие для жирных кислот с длинными цепями и моноглицеридов и для выполнения мицел­лами их функций;

2) слой слизи, покрывающий щеточную каемку; при толщине 2-4 мкм этот слой также пре­пятствует переносу компонентов мицелл;

3) липидную мембрану энтероцита.

Мицеллы в клетку не проникают, но их липидные компо­ненты растворяются в плазматической мем­бране и быстро диффундируют в клетку по концентрационному градиенту. Остаточное вещество мицелл может затем возвратиться в просвет и включить новые липидные компо­ненты.

Первые два этапа переваривания липидов, эмульгирование и гидролиз , происходят практически одновременно. Вместе с этим, продукты гидролиза не удаляются, а оставаясь в составе липидных капелек, облегчают дальнейшее эмульгирование и работу ферментов.

Переваривание в ротовой полости

У взрослых в ротовой полости переваривание липидов не идет, хотя длительное пережевывание пищи способствует частичному эмульгированию жиров.

Переваривание в желудке

Собственная липаза желудка у взрослого не играет существенной роли в переваривании липидов из-за ее небольшого количества и того, что ее оптимум рН 4,5-5,5. Также влияет отсутствие эмульгированных жиров в обычной пище (кроме молока).

Тем не менее, у взрослых теплая среда и перистальтика желудка вызывает некоторое эмульгирование жиров. При этом даже низко активная липаза расщепляет незначительные количества жира, что важно для дальнейшего переваривания жиров в кишечнике, т.к. наличие хотя бы минимального количества свободных жирных кислот облегчает эмульгирование жиров в двенадцатиперстной кишке и стимулирует секрецию панкреатической липазы.

Переваривание в кишечнике

Под влиянием перистальтики ЖКТ и составных компонентов желчи пищевой жир эмульгируется. Образующиеся лизофосфолипиды также являются хорошим поверхностно-активным веществом, поэтому они способствуют эмульгированию пищевых жиров и образованию мицелл. Размер капель такой жировой эмульсии не превышает 0,5 мкм.

Гидролиз эфиров ХС осуществляет холестерол-эстераза панкреатического сока.

Переваривание ТАГ в кишечнике осуществляется под воздействием панкреатической липазы с оптимумом рН 8,0-9,0. В кишечник она поступает в виде пролипазы , для проявления ее активности требуется колипаза , которая помогает липазе расположиться на поверхности липидной капли.

Колипаза , в свою очередь, активируется трипсином и затем образует с липазой комплекс в соотношении 1:1. Панкреатическая липаза отщепляет жирные кислоты, связанные с С 1 и С 3 атомами углерода глицерола. В результате ее работы остается 2-моноацилглицерол (2-МАГ). 2-МАГ всасываются или превращаются моноглицерол-изомеразой в 1-МАГ. Последний гидролизуется до глицерола и жирной кислоты. Примерно 3/4 ТАГ после гидролиза остаются в форме 2-МАГ и только 1/4 часть ТАГ гидролизуется полностью.

Полный ферментативный гидролиз триацилглицерола

В панкреатическом соке также имеется активируемая трипсином фосфолипаза А 2 , отщепляющая в фосфолипидах жирную кислоту от С 2 , также обнаружена активность фосфолипазы С и лизофосфолипазы .

Действие фосфолипазы А 2 и лизофосфолипазы на примере фосфатидилхолина

В кишечном соке также имеется активность фосфолипазы А 2 и фосфолипазы С.

Для работы всех указанных гидролитических ферментов в кишечнике необходимы ионы Са 2+ , способствующие удалению жирных кислот из зоны катализа.

Точки действия фосфолипаз

Образование мицелл

В результате воздействия на эмульгированные жиры ферментов панкреатического и кишечного соков образуются 2-моноацилглицерол ы, жирные кислоты и свободный холестерол , формирующие структуры мицеллярного типа (размер около 5 нм). Свободный глицерол всасывается прямо в кровь.

Поскольку жиры плохо растворяются в воде, процесс переваривания и всасывания жиров (липидов), потребляемых в составе пищевых продуктов, имеет некоторые отличительные особенности. Более 90% жиров пищи — это нейтральные липиды (триглицериды), а остальные 10% приходятся на холестерол, эфиры холестерола, фосфолипиды и жирорастворимые витамины .

Прежде чем в тонком кишечнике станет возможным всасывание триглицеридов, должно произойти их расщепление на свободные жирные кислоты и моноглицериды под действием фермента липазы . Вместе с липазой, образующейся в небной части языка, липиды поступают в желудок, где расщеплению подвергается 10-30% жиров пищи. Затем переваривание липидов продолжается в двенадцатиперстной кишке, где оно завершается с помощью панкреатической липазы и фосфолипазы .

Условия для контакта ферментов с поступающими в кишечник липидами создаются благодаря предварительному эмульгированию липидов (образованию мельчайших капелек жира в водной среде) под влиянием желчных кислот, образующихся в печени и поступающих с желчью в виде солей.

Переваривание углеводов

Основная часть углеводов пищи представлена полисахаридом — растительным крахмалом . Остальные углеводы — это ж ивотный гликоген, дисахариды (например, сахароза) и моносахариды , такие как глюкоза (декстроза) и фруктоза (фруктовый сахар).

Переваривание углеводов начинается в ротовой полости с ферментативного расщепления крахмала на более мелкие фрагменты (олигосахариды, дисахариды) под действием амилазы (птиалина) слюны. Считается, что этому способствует интенсивное пережевывание и перемешивание пищи со слюной.

В тонком кишечнике переваривание углеводов продолжается в присутствии другой амилазы (амилазы панкреатического сока), а также других многочисленных ферментов, расщепляющих сахара. После расщепления углеводов дисахаридазами (например, мальтазой, лактазой, сахаридазой) образовавшиеся конечные продукты, моносахариды (например, глюкоза, галактоза, фруктоза) всасываются путем активного или пассивного транспорта клетками эпителия тонкого кишечника. Оттуда они поступают в кровяное русло и в печень. У многих людей встречается недостаточность определенных ферментов, например лактазы, при которой лактоза не расщепляется и, следовательно, не может всасываться. Это ведет к значительному образованию газов и к диарее, поскольку лактоза осмотически задерживает воду в тонком кишечнике.

Переваривание белков

В отличие от переваривания липидов и углеводов, расщепление белков не начинается до тех пор, пока они не попадут в желудок. Секретируемая в желудке в высокой концентрации соляная кислота денатурирует белки, облегчая расщепляющее воздействие желудочных ферментов, которые образуются в виде предшественников (пепсиногенов) в главных (зимогенных) клетках. Под влиянием соляной кислоты, выделяемой париетальными (обкладочными) клетками, пепсиноген превращается в активный пепсин. Пепсины (эндопептидазы) расщепляют крупные молекулы белков па более мелкие фрагменты (полипептиды, пептиды).

Оказавшись в нейтральной среде двенадцатиперстной кишки, фрагменты белковых молекул подвергаются дальнейшему расщеплению под действием специальных ферментов поджелудочной железы (трипсина, химотрипсипа). Эти ферменты (экзопептидазы) воздействуют на концевые пептидные связи полипептидных молекул, отщепляя дипептиды или трипептиды (мелкие фрагменты белков, состоящие из двух или трех аминокислот).

Однако прежде чем станет возможным поглощение индивидуальных аминокислот, дипептидов или трипептидов стенкой кишки, более крупные участки трипептидов и дипептидов должны быть разделены на составляющие их аминокислоты . В отличие от углеводов, молекулы дипептидов и трипептидов, а также свободные аминокислоты всасываются в интактном виде. Существуют специфические системы транспорта дипептидов, трипептидов и разнообразных аминокислот (нейтральных, кислых и основных). Они активно поглощаются эпителиальными клетками топкого кишечника, а оттуда поступают в кровяное русло. Примерно 10% белков пищи попадают в толстый кишечник непереваренными и там расщепляются бактериями.

В желудочно-кишечном тракте (ЖКТ) отличается от переваривания белков и углеводов тем, что для них требуется предварительный процесс эмульгирования - разбиения на мельчайшие капельки. Некоторая часть жира в виде самых мелких капелек вообще может далее не расщепляться, а всасываться прямо в этом виде, т.е. в виде исходного жира, полученного с пищей.

В результате химического расщепления ферментом липазой эмулльгированных жиров получаются глицерин и жирные кислоты. Они, а также мельчайши капли нерасщеплённого эмульгированного жира, всасываются в верхнем отделе тонкого кишечника в начальных 100 см. В норме всасывается 98% пищевых липидов.

1. Короткие жирные кислоты (не более 10 атомов углерода) всасываются и переходят в кровь без каких-либо особенных механизмов. Этот процесс важен для грудных детей, т.к. молоко содержит в основном коротко- и среднецепочечные жирные кислоты. Глицерол тоже всасывается напрямую.

2. Другие продукты переваривания (жирные кислоты, холестерол, моноацилглицеролы) образуют с желчными кислотами мицеллы с гидрофильной поверхностью и гидрофобным ядром. Их размеры в 100 раз меньше самых мелких эмульгированных жировых капелек. Через водную фазу мицеллы мигрируют к щеточной каемке слизистой оболочки. Здесь мицеллы распадаются и липидные компоненты проникают внутрь клетки, после чего транспортируются в эндоплазматический ретикулум.

Желчные кислоты частично также могут попадать в клетки и далее в кровь воротной вены, однако большая их часть остается в химусе и достигает подвздошной кишки, где всасывается при помощи активного транспорта.

Ресинтез липидов в энтероцитах

Ресинтез липидов – это повторный синтез липидов в стенке кишечника из поступающих сюда экзогенных жирных кислот и глицерина, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволит переносить по крови в ткани.

Поступившая в энтероцит жирная кислота обязательно активируется через присоединение коэнзима А. Образовавшийся ацил-SКоА участвует в реакциях синтеза эфиров холестерола, триацилглицеролов и фосфолипидов.

Триацилглицеролы (ТАГ) представляют собой сложные эфиры трехатомного спирта глицерола (глицерина) и высших жирных кислот. Триацилглицеролы, содержащие остатки одинаковых жирных кислот, называются простыми нейтральными жирами, разные остатки – смешанными жирами. Твердые триацилглицеролы называют жирами, жидкие – маслами. В составе твердых жиров преобладают остатки насыщенных высших жирных кислот, в составе жидких жиров – остатки ненасыщенных кислот. В организме животных и человека (жировой ткани, мембранах) присутствуют смешанные жиры с преобладанием ацильных остатков ненасыщенных жирных кислот.

Активация жирной кислоты

Реакция активации жирной кислоты

Ресинтез эфиров холестерола

Холестерол этерифицируется с использованием ацил-S-КоА и фермента ацил-КоА:холестерол-ацилтрансферазы (АХАТ). Реэтерификация холестерола напрямую влияет на его всасывание в кровь. В настоящее время ищутся возможности подавления этой реакции для снижения концентрации ХС в крови.

Ресинтез ХС

Реакция ресинтеза холестерола

Ресинтез триацилглицеролов

Для ресинтеза ТАГ есть два пути:

Первый путь, основной – 2-моноацилглицеридный – происходит при участии экзогенных 2-МАГ и ЖК в гладком эндоплазматическом ретикулуме энтероцитов: мультиферментный комплекс триацилглицерол-синтазы формирует ТАГ.

Ресинтез ТАГ

Моноацилглицеридный путь образования ТАГ

Поскольку 1/4 часть ТАГ в кишечнике полностью гидролизуется и глицерол в энтероцитах не задерживается, то возникает относительный избыток жирных кислот для которых не хватает глицерола. Поэтому существует второй, глицеролфосфатный, путь в шероховатом эндоплазматическом ретикулуме. Источником глицерол-3-фосфата служит окисление глюкозы, так как пищевой глицерол быстро покидает энтероциты и уходит в кровь. Здесь можно выделить следующие реакции:

Образование глицерол-3-фосфата из глюкозы.

Превращение глицерол-3-фосфата в фосфатидную кислоту.

Превращение фосфатидной кислоты в 1,2-ДАГ.

Синтез ТАГ.

Ресинтез ТАГ

Глицеролфосфатный путь образования ТАГ

Ресинтез фосфолипидов

Фосфолипиды синтезируются также как и в остальных клетках организма. Для этого есть два способа. Первый – с использованием 1,2-ДАГ и активных форм холина и этаноламина для синтеза фосфатидилхолина или фосфатидилэтаноламина. Второй путь – через синтезируемую in situ фосфатидную кислоту (см "Cинтез фосфолипидов").

S09-05-resintez-shema

Общая схема ресинтеза фосфолипидов

После ресинтеза фосфолипиды, триацилглицеролы, холестерол и его эфиры упаковываются в особые транспортные формы липидов – липопротеины и только в такой форме они способны покинуть энтероцит. В кишечнике формируются два вида липопротеинов – хиломикроны и липопротеины высокой плотности.

Любое нарушение внешнего обмена липидов (проблемы переваривания или всасывания) проявляется увеличением содержания жира в кале – развивается стеаторея.

Причины нарушений переваривания липидов

1. Снижение желчеобразования в результате недостаточного синтеза желчных кислот и фосфолипидов при болезнях печени, гиповитаминозах.

2. Снижение желчевыделения (обтурационная желтуха, билиарный цирроз, желчнокаменная болезнь). У детей часто причиной может быть перегиб желчного пузыря, который сохраняется и во взрослом состоянии.

3. Снижение переваривания при недостатке панкреатической липазы, который возникает при заболеваниях поджелудочной железы (острый и хронический панкреатит, острый некроз, склероз). Может возникать относительная недостаточность фермента при сниженном выделении желчи.

4. Избыток в пище катионов кальция и магния, которые связывают жирные кислоты, переводят их в нерастворимое состояние и препятствуют их всасыванию. Эти ионы также связывают желчные кислоты, нарушая их работу.

5. Снижение всасывания при повреждении стенки кишечника токсинами, антибиотиками (неомицин, хлортетрациклин).

6. Недостаточность синтеза пищеварительных ферментов и ферментов ресинтеза липидов в энтероцитах при белковой и витаминной недостаточности.

Нарушение желчевыделения

Нарушение желчеобразования и желчевыделения чаще всего связаны с хроническим избытком ХС в организме вообще и в желчи в частности, так как желчь является единственным способом его выведения.

Избыток ХС в печени возникает при увеличении количества исходного материала для его синтеза (ацетил-S#КоА) и при недостаточном синтезе желчных кислот из-за снижения активности 7α-гидроксилазы (гиповитаминозы С и РР).

Нарушение желчеобразования

Причины нарушения формирования желчи и возникновения холелитиаза

Избыток ХС в желчи может быть абсолютным в результате избыточного синтеза и потребления или относительным. Так как соотношение желчных кислот, фосфолипидов и холестерола должно составлять 65:12:5, то относительный избыток возникает при недостаточном синтезе желчных кислот (гиповитаминозы С, В3, В5) и/или фосфатидилхолина (недостаток полиненасыщенных жирных кислот, витаминов В6, В9, В12). В результате нарушения соотношения образуется желчь, из которой холестерол, как плохо растворимое соединение, кристаллизуется. Далее к кристаллам присоединяются ионы кальция и билирубин, что сопровождается образованием желчных камней.

Застой в желчном пузыре, возникающий при неправильном питании, приводит к сгущению желчи из-за реабсорбции воды. Недостаток потребления воды или длительный прием мочегонных средств (лекарства, кофеин-содержащие напитки, этанол) существенно усугубляет эту проблему.

У детей свои причуды

Особенности переваривания жира у детей

У младенцев клетками слизистой корня языка и глотки (железы Эбнера) при сосании секретируется лингвальная липаза, продолжающая свое действие и в желудке.

У грудных младенцев и детей младшего возраста липаза желудка более активна, чем у взрослых, так как кислотность в желудке детей около 5,0. Помогает и то, что жиры молока эмульгированы. Жиры у младенцев дополнительно перевариваются за счет липазы, содержащейся в женском молоке, в коровьем молоке липаза отсутствует. Благодаря таким преимуществам у детей грудного возраста в желудке происходит 25-50% всего липолиза.

В двенадцатиперстной кишке гидролиз жира дополнительно осуществляется панкреатической липазой. До 7 лет активность панкреатической липазы невысока, что ограничивает способности ребенка к перевариванию пищевого жира, ее активность достигает максимума только к 8-9 годам. Но, тем не менее, это не мешает ребенку уже в первые месяцы жизни гидролизовать почти 100% пищевого жира и иметь 95% всасывания.

В грудном возрасте содержание желчных кислот в желчи увеличивается примерно в три раза, позднее этот процесс замедляется.

Переваривание жиров - ферментативный гидролиз, который происходит вдвенадцатиперстной кишке и тонком кишечнике под влиянием ферментов, содержащихся в соке поджелудочной железы и соке кишечных желез. Желчь необходима для переваривания жиров, так как она содержит детергенты (желчные кислоты), которые эмульгируют жиры, облегчая доступ к ним ферментов. Продукты пищеварительного гидролиза - глицерин и жирные кислоты (в комплексе с желчными кислотами), из полости кишечника поступают в клетки его слизистой. В клетках слизистой кишечника из продуктов гидролиза вновь ресинтезируется жир и образуются особые частицы - хиломикроны, которые поступают в лимфу. Откуда они, пройдя сквозь лимфатические сосуды, через грудной лимфатический проток попадают в кровь. Только небольшая часть образовавшихся при гидролизе жирных кислот с относительно короткой углеродной цепочкой (в основном, это продукты гидролиза жиров молока) могут всасываться и поступать в кровь воротной вены, а оттуда - в печень.
Роль печени в обмене жиров

Печень играет очень важную роль в прессах мобилизации, переработке и биосинтеза жиров. Из пищеварительного тракта только жирные кислоты с короткой цепью (в комплексе с желчными кислотами) поступают в печень с кровью по воротной вене. Эти жирные кислоты окисляются при участии ферментных систем печени и не участвуют в процессах биосинтеза жиров. У взрослых людей они, по-видимому, не играют особой роли в обмене веществ. Исключение составляют дети, в пищевом рационе которых преобладают жиры молока. Остальные липиды поступают в печень с кровью, притекающей по печеночной артерии в составе комплексов - хиломикронов или липопротеидов. В печени, как и в других тканях, идут процессы окисления жирных кислот. Несмотря на свои важные функции, жиры - это заменяемые вещества, так как в организме жирные кислоты, кроме нескольких незаменимых ненасыщенных, синтезируются заново. Суммарный процесс синтеза жирных кислот называется липогенез, и печень занимает одно из первых мест среди других органов по интенсивности этого процесса.

В печени происходят ферментативные процессы превращения холестерина и фосфолипидов. Биосинтез фосфолипидов в печени обеспечивает обновление структурных компонентов ее клеточных мембран. Другие фосфолипиды, синтезированные в печени, поступают в кровь и становятся достоянием тканей.

в тканях:

В тканях жиры расщепляются под действием различных липаз, а образовавшиеся жирные кислоты входят в состав других соединений (фосфопипиды, эфиры холестерина и т. д.) или окисляются до конечных продуктов. Окисление жирных кислот совершается несколькими путями. Часть жирных кислот при окислении в печени дает ацетон. При тяжелом сахарном диабете, литюидном нефрозе и других заболеваниях количество ацетоновых тел в крови резко увеличивается.


Ресинтез липидов – это синтез липидов в стенке кишечника из поступающих сюда экзогенных жиров, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволит переносить по крови в ткани.

Ресинтез липидов внутри эпителиальных клеток кишечника. Из моно- ацилглицеролов и жирных кислот в эпителиальных клетках вновь синтезиру­ются триацилглицеролы. Наиболее простой путь синтеза липидов, так назы­ваемый p-моноглицеридный путь, включает две последовательные реакции

этерификации Р(2)-моноацилглицерола активированными жирными кислота* ми в форме ацил-КоА по схеме:

Эти реакции катализируются специфическими ферментами ацилтранф* разами: моноглицеридацилтрансферазой и диглщкридацилтрансферазой соот­ветственно.

Другой путь синтеза липидов - а-глицерофосфатный, аналогичен про­цессу синтеза триацилглицеролов в других тканях. Он будет рассмотрен в раз­деле, посвященном внутриклеточному метаболизму липидов

Похожие публикации