Построить многоугольник распределения и график функции распределения. Закон распределения

Понятие случайной величины. Закон распределения случайной величины

Случайные величины (сокращенно: с. в.) обозначаются прописны­ми латинскими буквами Х,У, Z,... (или строчными греческими буква­ми ξ (кси), η(эта), θ (тэта), ψ (пси) и т. д.), а принимаемые ими значения соответственно малыми буквами х 1 , х 2 ,…, у 1 , у 2 , у 3

Примерами с. в. могут служить: 1) X - число очков, появляющих­ся при бросании игральной кости; 2) У - число выстрелов до первого попадания в цель; 3) Z - время безотказной работы прибора и т. п. (рост человека, курс доллара, количество бракованных деталей в пар­тии, температура воздуха, выигрыш игрока, координата точки при слу­чайном выборе ее на , прибыль фирмы, ...).

Случайной величиной X Ώ w

X(w), т.е. X = X(w), w Î Ώ (или X = f (w)) (31)

Пример1. Опыт состоит в бросании монеты 2 раза. На ПЭС Ώ={ w 1 , w 2 , w 3 , w 4 }, где w 1 = ГГ, w 2 = ГР, w 3 = РГ, w 4 = РР, можно рассмотреть с. в. X - число появлений герба. С. в. X является функ­цией от элементарного события w i : X(w 1 ) = 2, X(w 2 ) = 1, X(w 3 ) = 1, X(w 4 )= 0; X - д. с. в. со значениями x 1 = 0, x 2 =1 , x 3 = 2.

X(w) S Р(А) = Р(Х < х).

X - д. с. в.,

x 1 , x 2 , x 3 ,…,x n ,…

p i , где i = 1,2,3, ...,n,… .

Закон распределения д. с. в. p i =Р{Х=x i }, i=1,2,3,... ,n,...,

с. в. X x i . :

X x 1 x 2 …. x n
P p 1 p 2 …. p n

Так как события {X = x 1 }, {X = x 2 },…,{X = x n }, т.е. .

(x 1 , p 1 ), (x 2 , p 2),…, (x n , p n) называют многоугольником (или полигоном) рас­пределения (см. рис. 17).

Случайная величина X дискретна, если существует конечное или счетное множество чисел x 1 , x 2 , ..., x n таких, что Р{Х = x i } = p i > 0 (i = 1,2,...) p 1 + p 2 + p 3 +…= 1 (32)

Суммой д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X + Y , принимающая значения z ij = x i + y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых сумм x i + y j соответствующие вероятности складываются.

Разностью д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X - Y, принимающая значения z ij = x i – y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых разностей x i – y j соответствующие вероятности складываются.



Произведением д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X × Y, принимающая значения z ij = x i × y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых произведений x i × y j соответствующие вероятности складываются.

д. с. в. сХ, с x i р i = Р{Х = x i }.

X и Y события {X = x i } = А i и {Y = y j } = В j независимы для любых i= 1,2,... ,n; j = l,2,...,m, т.е.

P{X = x i ;Y = y j } =P{X = x i } ×P {Y = y j } (33)

Пример 2. В урне 8 шаров, из которых 5 белых, остальные - чер­ные. Из нее вынимают наудачу 3 шара. Найти закон распределения числа белых шаров в выборке.

Cтраница 2


Графически закон распределения дискретной величины задается в виде так называемого многоугольника распределения.  

Графическое изображение ряда распределения (см. рис. 5) называется многоугольником распределения.  

Для характеристики закона распределения прерывной случайной величины часто применяют ряд (таблицу) и многоугольник распределения.  

Для его изображения в прямоугольной системе координат строят точки (У Pi) (x - i Pa) и соединяют их отрезками прямых. Многоугольник распределения дает приближенное наглядное представление о характере распределения случайной величины.  

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки (х /, р, а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.  

M (xn; pn) (лс - - возможные значения Xt pi - соответствующие вероятности) и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.  

Рассмотрим распределение вероятностей суммы очков на игральных костях. На рисунках ниже приведены многоугольники распределения для случая одной, двух и трех костей.  

В этом случае вместо многоугольника распределения случайной величны строится функция плотности распределения, которая получила название дифференциальной функции распределения и представляет собой дифференциальный закон распределения. В теории вероятностей под плотностью распределения случайной величины х (х Хг) понимают предел отношения вероятности попадания величины х в интервал (х, х - - Ах) к Ах, когда Ал; стремится к нулю. Кроме дифференциальной функции для характеристики распределения случайной величины применяется интегральная функция распределения, которую часто называют просто функцией распределения или интегральным законом распределения.  

При таком построении относительные частоты попадания в интервалы будут равны площадям соответствующих столбиков гистограммы, подобно тому, как вероятности равны площадям соответствующих криволинейных трапеций Если предполагаемое теоретическое распределение хорошо согласуется с опытом, то при достаточно большом п и удач - ном выборе интервалов (YJ-I, у. Иногда еще для наглядности сравнения строят многоугольник распределения, соединяя последовательно середины верхних оснований столбиков гистограммы.  

Придавая т различные значения от 0 до я, получают вероятности PQ, Р РЧ - Рп, которые наносятся на график. Дано р; я11, построить многоугольник распределения вероятностей.  

Законом распределения дискретной случайной величины называют любое соответствие между возможными ее значениями и их вероятностями. Закон можно задать таблично (ряд распределения), графически (многоугольник распределения и др.) и аналитически.  

Нахождение кривой распределения, другими словами, установление распределения самой случайной величины, дает возможность более глубоко исследовать явление, далеко не полно выражаемое данным конкретным рядом распределения. Представив на чертеже как найденную выравнивающую кривую распределения, так и многоугольник распределения, построенный на основе частичной совокупности, исследователь может ясно видеть характерные особенности, присущие изучаемому явлению. Благодаря этому статистический анализ задерживает внимание исследователя на отклонениях наблюденных данных от некоторого закономерного изменения явления, и перед исследователем возникает задача - выяснить причины этих отклонений.  

Затем из середины интервалов проводятся абсциссы (в масштабе), соответствующие числу месяцев с расходом в данном интервале. Концы этих абсцисс соединяются и, таким образом, получается полигон, или многоугольник распределения.  

Точки, дающие графическое представление закона распределения дискретной случайной величины на координатной плоскости значения величины - вероятность значений, обычно соединяют отрезками прямых и называют получающуюся при этом геометрическую фигуру многоугольником распределения. На рис. 3 в таблице 46 (а также на рисунках 4 и 5) как раз изображены многоугольники распределений.  

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, не известное заранее. Случайные величины бывают прерывного (дискретного) и непрерывного типа. Возможные значения прерывных величин заранее могут быть перечислены. Возможные значения непрерывных величин не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток.

Пример дискретных случайных величин:

1) Число появления герба при трех бросаниях монеты. (возможны значения 0;1;2;3)

2) Частота появления герба в том же опыте. (возможные значения )

3) Число отказавших элементов в приборе, состоящем из пяти элементов. (Возможные значения величин 0;1;2;3;4;5)

Примеры непрерывных случайных величин:

1) Абсцисса (ордината) точки попадания при выстреле.

2) Расстояние от точки попадания до центра мишени.

3) Время безотказной работы прибора (радиолампы).

Случайны величины обозначаются большими буквами, а их возможные значения – соответствующими малыми буквами. Например, X – число попаданий при трех выстрелах; возможные значения: X 1 =0,Х 2 =1, Х 3 =2, Х 4 =3.

Рассмотрим прерывную случайную величину Х с возможными значениями Х 1 , Х 2 , … , Х n . Каждое из этих значений возможно, но не достоверно, и величина Х может принять каждое из них с некоторой вероятностью. В результате опыта величина Х примет одно из этих значений, то есть произойдет одно из полной группы несовместных событий.

Обозначим вероятности этих событий буквами p с соответствующими индексами:

Так как несовместные события образуют полную группу, то

то есть сумма вероятности всех возможных значений случайной величины равна 1. Эта суммарная вероятность каким-то образом распределена между отдельными значениями. Случайная величина будет полностью описана с вероятностной точки зрения, если мы зададим это распределение, то есть в точности укажем какой вероятностью обладает каждое из событий. (Этим мы установим так называемый закон распределения случайных величин.)

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующей им вероятности. (Про случайную величину мы будем говорить, что она подчинена данному закону распределения)

Простейшей формой задания закона распределения случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности.

Таблица 1.

X i X 1 X 2 X n
P i P 1 P 2 P n

Такую таблицу называют рядом распределения случайных величин.

Чтобы придать ряду распределения более наглядный вид прибегают к его графическому изображению: по оси абсцисс откладывают возможные значения случайной величины, а по оси ординат – вероятности этих значений. (Для наглядности полученные точки соединяют отрезками прямых.)


Рисунок 1 – многоугольник распределения

Такая фигура называется многоугольником распределения . Многоугольник распределения, так же как и ряд распределения, полностью характеризует случайную величину; он является одной из форм закона распределения.

Пример:

производится один опыт, в котором может появиться или не появиться событие А. Вероятность события А=0,3. Рассматривается случайная величина Х – число появлений события А в данном опыте. Необходимо построить ряд и многоугольник распределения величины Х.

Таблица 2.

X i
P i 0,7 0,3

Рисунок 2 - Функция распределения

Функция распределения является универсальной характеристикой случайной величины. Она существует для всех случайных величин: как прерывных, так и не прерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, то есть является одной из форм закона распределения.

Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события X=x, а вероятностью события X

Функцию распределения F(x) иногда также называют также интегральной функцией распределения или интегральным законом распределения.

Свойства функции распределения случайной величины

1. Функция распределения F(x) есть неубывающая функция своего аргумента, то есть при ;

2. На минус бесконечности :

3. На плюс бесконечности :

Рисунок 3 – график функции распределения

График функции распределения в общем случае представляет собой график неубывающей функции, значения которой начинаются от 0 и доходят до 1.

Зная ряд распределения случайной величины, можно построить функцию распределения случайной величины.

Пример:

для условий предыдущего примера построить функцию распределения случайной величины.

Построим функцию распределения X:

Рисунок 4 – функция распределения Х

Функция распределения любой прерывной дискретной случайной величины всегда есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений. Сумма всех скачков функции распределения равна 1 .

По мере увеличения числа возможных значений случайной величины и уменьшения интервалов между ними, число скачков становится больше, а сами скачки – меньше:

Рисунок 5

Ступенчатая кривая становится более плавной:

Рисунок 6

Случайная величина постепенно приближается к непрерывной величине, а ее функция распределения к непрерывной функции. Также существуют случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых функция распределения не везде является непрерывной. И в отдельных точках терпит разрыв. Такие случайные величины называются смешенными.

Рисунок 7

Задача 14. В денежной лотерее разыгрывается 1 выигрыш в 1000000 руб., 10 выигрышей по 100000 руб. и 100 выигрышей по 1000 руб. при общем числе билетов 10000. Найти закон распределения случайного выигрыша Х для владельца одного лотерейного билета.

Решение . Возможные значения для Х : х 1 = 0; х 2 = 1000; х 3 = 100000;

х 4 = 1000000. Вероятности их соответственно равны: р 2 = 0,01; р 3 = 0,001; р 4 = 0,0001; р 1 = 1 – 0,01 – 0,001 – 0,0001 = 0,9889.

Следовательно, закон распределения выигрыша Х может быть задан следующей таблицей:

Построить многоугольник распределения.

Решение . Построим прямоугольную систему координат, причем по оси абсцисс будем откладывать возможные значения х i , а по оси ординат – соответствующие вероятности р i . Построим точки М 1 (1;0,2), М 2 (3;0,1), М 3 (6;0,4) и М 4 (8;0,3). Соединив эти точки отрезками прямых, получим искомый многоугольник распределения.

§2. Числовые характеристики случайных величин

Случайная величина полностью характеризуется своим законом распределения. Осредненное описание случайной величины можно получить при использовании ее числовых характеристик

2.1. Математическое ожидание. Дисперсия.

Пусть случайная величина может принимать значения с вероятностями соответственно .

Определение. Математическим ожиданием дискретной случайной величинаы называется сумма произведений всех ее возможных значений на соответствующие вероятности:

.

Свойства математического ожидания.

Рассеяние случайной величины около среднего значения характеризуют дисперсия и среднеквадратическое отклонение.

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Для вычислений используется следующая формула

Свойства дисперсии.

2. , где взаимно независимые случайные величины.

3. Среднеквадратическое отклонение .

Задача 16. Найти математическое ожидание случайной величины Z = X+ 2Y , если известны математические ожидания случайных величин X и Y : М (Х ) = 5, М (Y ) = 3.

Решение . Используем свойства математического ожидания. Тогда получаем:

М (Х+ 2Y ) = М (Х ) + М (2Y ) = М (Х ) + 2М (Y ) = 5 + 2 . 3 = 11.

Задача 17. Дисперсия случайной величины Х равна 3. Найти дисперсию случайных величин: а) –3Х; б) 4Х + 3.

Решение . Применим свойства 3, 4 и 2 дисперсии. Имеем:

а) D (–3Х ) = (–3) 2 D (Х ) = 9 D (Х ) = 9 . 3 = 27;

б) D (4 Х + 3) = D (4Х ) + D (3) = 16D (Х ) + 0 = 16 . 3 = 48.

Задача 18. Дана независимая случайная величина Y – число очков, выпавших при бросании игральной кости. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины Y .

Решение. Таблица распределения случайной величины Y имеет вид:

Y
р 1/6 1/6 1/6 1/6 1/6 1/6

Тогда М (Y ) = 1 · 1/6 + 2 · 1/6 + 3 · 1/6+ 4 · 1/6+ 5 · 1/6+ 6 · 1/6 = 3,5;

D (Y ) = (1 – 3,5) 2 · 1/6 +(2 – 3,5) 2 · /6 + (3 – 3,5) 2 · 1/6 + (4 – 3,5) 2 · /6 +(5 – –3,5) 2 · 1/6 + (6 – 3,5) 2. · 1/6 = 2,917; σ (Y ) 2,917 = 1,708.

Похожие публикации