Первый и второй замечательные пределы примеры решений. Замечательные пределы

Доказательство:

Докажем вначале теорему для случая последовательности

По формуле бинома Ньютона:

Полагая получим

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность возрастающая, при этом (2)*Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2: Сумму в скобке найдём по формуле суммы членов геометрической прогрессии: Поэтому (3)*

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть Каждое значение x заключено между двумя положительными целыми числами: ,где - это целая часть x. => =>

Если ,то Поэтому, согласно пределу Имеем

По признаку (о пределе промежуточной функции) существования пределов

2. Пусть . Сделаем подстановку − x = t, тогда

Из двух этих случаев вытекает, что для вещественного x.

Следствия:

9 .) Сравнение бесконечно малых. Теорема о замене бесконечно малых на эквивалентные в пределе и теорема о главной части бесконечно малых.

Пусть функции a(x ) и b(x ) – б.м. при x ® x 0 .

ОПРЕДЕЛЕНИЯ.

1) a(x ) называется бесконечно малой более высокого порядка чем b(x ) если

Записывают: a(x ) = o(b(x )) .

2) a(x ) и b(x ) называются бесконечно малыми одного порядка , если

где С Îℝ и C ¹ 0 .

Записывают: a(x ) = O (b(x )) .

3) a(x ) и b(x ) называются эквивалентными , если

Записывают: a(x ) ~ b(x ).

4) a(x ) называется бесконечно малой порядка k относи-
тельно бесконечно малой
b(x ),
если бесконечно малые a(x ) и (b(x )) k имеют один порядок, т.е. если

где С Îℝ и C ¹ 0 .

ТЕОРЕМА 6 (о замене бесконечно малых на эквивалентные).

Пусть a(x ), b(x ), a 1 (x ), b 1 (x ) – б.м. при x ® x 0 . Если a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ),

то

Доказательство: Пусть a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ), тогда

ТЕОРЕМА 7 (о главной части бесконечно малой).

Пусть a(x ) и b(x ) – б.м. при x ® x 0 , причем b(x ) – б.м. более высокого порядка чем a(x ).

= , a так как b(x )– более высокого порядка чем a(x ) ,то , т.е. из ясно, что a(x ) + b(x ) ~ a(x )

10) Непрерывность функции в точке(на языке пределов эпсилон-дельта,геометрическое) Односторонняя непрерывность. Непрерывность на интервале, на отрезке. Свойства непрерывных функций.

1. Основные определения

Пусть f (x ) определена в некоторой окрестности точки x 0 .

ОПРЕДЕЛЕНИЕ 1. Функция f (x ) называется непрерывной в точке x 0 если справедливо равенство

Замечания .

1) В силу теоремы 5 §3 равенство (1) можно записать в виде

Условие (2) – определение непрерывности функции в точке на языке односторонних пределов .

2) Равенство (1) можно также записать в виде:

Говорят: «если функция непрерывна в точке x 0 , то знак предела и функцию можно поменять местами».

ОПРЕДЕЛЕНИЕ 2 (на языке e-d).

Функция f (x ) называется непрерывной в точке x 0 если "e>0 $d>0 такое , что

если x ÎU(x 0 , d) (т.е. | x x 0 | < d),

то f (x )ÎU(f (x 0), e) (т.е. | f (x ) – f (x 0) | < e).

Пусть x , x 0 Î D (f ) (x 0 – фиксированная, x – произвольная)

Обозначим: Dx = x – x 0 – приращение аргумента

Df (x 0) = f (x ) – f (x 0) – приращение функции в точкеx 0

ОПРЕДЕЛЕНИЕ 3 (геометрическое).

Функция f (x ) называетсянепрерывной в точке x 0 если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции , т.е.

Пусть функция f (x ) определена на промежутке [x 0 ; x 0 + d) (на промежутке (x 0 – d; x 0 ]).

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной в точке x 0 справа (слева ), если справедливо равенство

Очевидно, что f (x ) непрерывна в точке x 0 Û f (x ) непрерывна в точке x 0 справа и слева.

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной на интервал е (a ; b ) если она непрерывна в каждой точке этого интервала .

Функция f (x ) называется непрерывной на отрезке [a ; b ] если она непрерывна на интервале (a ; b ) и имеет одностороннюю непрерывность в граничных точках (т.е. непрерывна в точке a справа, в точке b – слева).

11) Точки разрыва, их классификация

ОПРЕДЕЛЕНИЕ. Если функция f (x ) определена в некоторой окрестности точки x 0 , но не является непрерывной в этой точке, то f (x ) называют разрывной в точке x 0 , а саму точку x 0 называют точкой разрыва функции f (x ) .

Замечания .

1) f (x ) может быть определена в неполной окрестности точки x 0 .

Тогда рассматривают соответствующую одностороннюю непрерывность функции.

2) Из определения Þ точка x 0 является точкой разрыва функции f (x ) в двух случаях:

а) U(x 0 , d)ÎD (f ) , но для f (x ) не выполняется равенство

б) U * (x 0 , d)ÎD (f ) .

Для элементарных функций возможен только случай б).

Пусть x 0 – точка разрыва функции f (x ) .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва I рода если функция f (x ) имеет в этой точке конечные пределы слева и справа .

Если при этом эти пределы равны, то точка x 0 называется точкой устранимого разрыва , в противном случае – точкой скачка .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва II рода если хотя бы один из односторонних пределов функции f (x ) в этой точке равен ¥ или не существует .

12) Свойства функций, непрерывных на отрезке (теоремы Вейерштрасса(без док-ва) и Коши

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на отрезке , тогда

1)f(x)ограничена на

2)f(x) принимает на промежутке своё наименьшее и наибольшее значение

Определение : Значение функции m=fзовется наименьшим, если m≤f(x) для любого x€ D(f).

Значение функции m=fзовется наибольшим, если m≥f(x) для любого x€ D(f).

Наименьшее\наибольшее значение функция может принимать в нескольких точках отрезка.

f(x 3)=f(x 4)=max

Теорема Коши.

Пусть функция f(x) непрерывна на отрезке и х – число, заключенное между f(a) и f(b),тогда существует хотя бы одна точка х 0 € такая, что f(x 0)= g

Термин "замечательный предел" широко используется в учебниках и методических пособиях для обозначения важных тождеств, которые помогают существенно упростить работу по нахождению пределов.

Но чтобы суметь привести свой предел к замечательному, нужно к нему хорошенько приглядеться, ведь они встречаются не в прямом виде, а часто в виде следствий, снабженные дополнительными слагаемыми и множителями. Впрочем, сначала теория, потом примеры, и все у вас получится!

Первый замечательный предел

Понравилось? Добавьте в закладки

Первый замечательный предел записывается так (неопределенность вида $0/0$):

$$ \lim\limits_{x\to 0}\frac{\sin x}{x}=1. $$

Следствия из первого замечательного предела

$$ \lim\limits_{x\to 0}\frac{x}{\sin x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\sin (ax)}{\sin (bx)}=\frac{a}{b}. $$ $$ \lim\limits_{x\to 0}\frac{\tan x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\arcsin x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\arctan x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{1-\cos x}{x^2/2}=1. $$

Примеры решений: 1 замечательный предел

Пример 1. Вычислить предел $$\lim\limits_{x\to 0}\frac{\sin 3x}{8x}.$$

Решение. Первый шаг всегда одинаковый - подставляем предельное значение $x=0$ в функцию и получаем:

$$\left[ \frac{\sin 0}{0} \right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$, которую следует раскрыть. Если посмотреть внимательно, исходный предел очень похож на первый замечательный, но не совпадает с ним. Наша задача - довести до похожести. Преобразуем так - смотрим на выражение под синусом, делаем такое же в знаменателе (условно говоря, умножили и поделили на $3x$), дальше сокращаем и упрощаем:

$$ \lim\limits_{x\to 0}\frac{\sin 3x}{8x} = \lim\limits_{x\to 0}\frac{\sin 3x}{3x}\frac{3x}{8x}=\lim\limits_{x\to 0}\frac{\sin (3x)}{3x}\frac{3}{8}=\frac{3}{8}. $$

Выше как раз и получился первый замечательный предел: $$ \lim\limits_{x\to 0}\frac{\sin (3x)}{3x} = \lim\limits_{y\to 0}\frac{\sin (y)}{y}=1, \text{ сделали условную замену } y=3x. $$ Ответ: $3/8$.

Пример 2. Вычислить предел $$\lim\limits_{x\to 0}\frac{1-\cos 3x}{\tan 2x\cdot \sin 4x}.$$

Решение. Подставляем предельное значение $x=0$ в функцию и получаем:

$$\left[ \frac{1-\cos 0}{\tan 0\cdot \sin 0}\right] =\left[ \frac{1-1}{ 0\cdot 0}\right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$. Преобразуем предел, используя в упрощении первый замечательный предел (три раза!):

$$\lim\limits_{x\to 0}\frac{1-\cos 3x}{\tan 2x\cdot \sin 4x} = \lim\limits_{x\to 0}\frac{ 2 \sin^2 (3x/2)}{\sin 2x\cdot \sin 4x}\cdot \cos 2x = $$ $$ = 2\lim\limits_{x\to 0}\frac{ \sin^2 (3x/2)}{(3x/2)^2} \cdot \frac{ 2x}{\sin 2x} \cdot \frac{ 4x}{ \sin 4x}\cdot \frac{ (3x/2)^2}{ 2x \cdot 4x} \cdot \cos 2x = $$ $$ =2\lim\limits_{x\to 0} 1 \cdot 1 \cdot 1 \cdot \frac{ (9/4)x^2}{ 8x^2} \cdot \cos 2x= 2 \cdot \frac{ 9}{ 32} \lim\limits_{x\to 0} \cos 2x=\frac{9}{16}. $$

Ответ: $9/16$.

Пример 3. Найти предел $$\lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{5x-x^5}.$$

Решение. А что если под тригонометрической функцией сложное выражение? Не беда, и тут действуем аналогично. Сначала проверим тип неопределенности, подставляем $x=0$ в функцию и получаем:

$$\left[ \frac{\sin (0+0)}{0-0}\right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$. Умножим и поделим на $2x^3+3x$:

$$ \lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{5x-x^5}=\lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{(2x^3+3x)} \cdot \frac{2x^3+3x}{5x-x^5}=\lim\limits_{x\to 0} 1 \cdot \frac{2x^3+3x}{5x-x^5}= \left[\frac{0}{0}\right] = $$

Снова получили неопределенность, но в этом случае это просто дробь. Сократим на $x$ числитель и знаменатель:

$$ =\lim\limits_{x\to 0} \frac{2x^2+3}{5-x^4}= \left[\frac{0+3}{5-0}\right] =\frac{3}{5}. $$

Ответ: $3/5$.

Второй замечательный предел

Второй замечательный предел записывается так (неопределенность вида $1^\infty$):

$$ \lim\limits_{x\to \infty} \left(1+\frac{1}{x}\right)^{x}=e, \quad \text{или} \quad \lim\limits_{x\to 0} \left(1+x\right)^{1/x}=e. $$

Следствия второго замечательного предела

$$ \lim\limits_{x\to \infty} \left(1+\frac{a}{x}\right)^{bx}=e^{ab}. $$ $$ \lim\limits_{x\to 0}\frac{\ln (1+x)}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{e^x -1}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{a^x-1}{x \ln a}=1, a>0, a \ne 1. $$ $$ \lim\limits_{x\to 0}\frac{(1+x)^{a}-1}{ax}=1. $$

Примеры решений: 2 замечательный предел

Пример 4. Найти предел $$\lim\limits_{x\to \infty}\left(1-\frac{2}{3x}\right)^{x+3}.$$

Решение. Проверим тип неопределенности, подставляем $x=\infty$ в функцию и получаем:

$$\left[ \left(1-\frac{2}{\infty}\right)^{\infty} \right] = \left.$$

Получили неопределенность вида $\left$. Предел можно свести к второму замечательному. Преобразуем:

$$ \lim\limits_{x\to \infty}\left(1-\frac{2}{3x}\right)^{x+3} = \lim\limits_{x\to \infty}\left(1+\frac{1}{(-3x/2)}\right)^{\frac{-3x/2}{-3x/2}(x+3)}= $$ $$ = \lim\limits_{x\to \infty}\left(\left(1+\frac{1}{(-3x/2)}\right)^{(-3x/2)}\right)^\frac{x+3}{-3x/2}= $$

Выражение в скобках фактически и есть второй замечательный предел $\lim\limits_{t\to \infty} \left(1+\frac{1}{t}\right)^{t}=e$, только $t=-3x/2$, поэтому

$$ = \lim\limits_{x\to \infty}\left(e\right)^\frac{x+3}{-3x/2}= \lim\limits_{x\to \infty}e^\frac{1+3/x}{-3/2}=e^{-2/3}. $$

Ответ: $e^{-2/3}$.

Пример 5. Найти предел $$\lim\limits_{x\to \infty}\left(\frac{x^3+2x^2+1}{x^3+x-7}\right)^{x}.$$

Решение. Подставляем $x=\infty$ в функцию и получаем неопределенность вида $\left[ \frac{\infty}{\infty}\right]$. А нам нужно $\left$. Поэтому начнем с преобразования выражения в скобках:

$$ \lim\limits_{x\to \infty}\left(\frac{x^3+2x^2+1}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\frac{x^3+(x-7)-(x-7)+2x^2+1}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\frac{(x^3+x-7)+(-x+7+2x^2+1)}{x^3+x-7}\right)^{x} = $$ $$ = \lim\limits_{x\to \infty}\left(1+\frac{2x^2-x+8}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\left(1+\frac{2x^2-x+8}{x^3+x-7}\right)^{\frac{x^3+x-7}{2x^2-x+8}}\right)^{x \frac{2x^2-x+8}{x^3+x-7}}= $$

Выражение в скобках фактически и есть второй замечательный предел $\lim\limits_{t\to \infty} \left(1+\frac{1}{t}\right)^{t}=e$, только $t=\frac{x^3+x-7}{2x^2-x+8} \to \infty$, поэтому

$$ = \lim\limits_{x\to \infty}\left(e\right)^{x \frac{2x^2-x+8}{x^3+x-7}}= \lim\limits_{x\to \infty}e^{ \frac{2x^2-x+8}{x^2+1-7/x}}= \lim\limits_{x\to \infty}e^{ \frac{2-1/x+8/x^2}{1+1/x^2-7/x^3}}=e^{2}. $$

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:

$ \bigg[\frac{\infty}{\infty}\bigg]^\infty $ и $ ^\infty $.

Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.

Формула и следствия

Формула второго замечательного предела записывается следующим образом: $$ \lim_{x \to \infty} \bigg (1+\frac{1}{x}\bigg)^x = e, \text{ где } e \approx 2.718 $$

Из формулы вытекают следствия , которые очень удобно применять для решения примеров с пределами: $$ \lim_{x \to \infty} \bigg (1 + \frac{k}{x} \bigg)^x = e^k, \text{ где } k \in \mathbb{R} $$ $$ \lim_{x \to \infty} \bigg (1 + \frac{1}{f(x)} \bigg)^{f(x)} = e $$ $$ \lim_{x \to 0} \bigg (1 + x \bigg)^\frac{1}{x} = e $$

Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.

Примеры решений

Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.

Пример 1
Найти предел $ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} $
Решение

Подставим бесконечность в предел и посмотрим на неопределенность: $$ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} = \bigg(\frac{\infty}{\infty}\bigg)^\infty $$

Найдем предел основания: $$ \lim_{x\to\infty} \frac{x+4}{x+3}= \lim_{x\to\infty} \frac{x(1+\frac{4}{x})}{x(1+\frac{3}{x})} = 1 $$

Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:

$$ \lim_{x\to\infty} \bigg(1 + \frac{x+4}{x+3} - 1 \bigg)^{x+3} = \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = $$

Смотрим на второе следствие и записываем ответ:

$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$
Пример 4
Решить предел $ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} $
Решение

Находим предел основания и видим, что $ \lim_{x\to\infty} \frac{3x^2+4}{3x^2-2} = 1 $, значит можно применить второй замечательный предел. Стандартно по плану прибавляем и вычитаем единицу из основания степени:

$$ \lim_{x\to \infty} \bigg (1+\frac{3x^2+4}{3x^2-2}-1 \bigg) ^{3x} = \lim_{x\to \infty} \bigg (1+\frac{6}{3x^2-2} \bigg) ^{3x} = $$

Подгоняем дробь под формулу 2-го замеч. предела:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{3x} = $$

Теперь подгоняем степень. В степени должна быть дробь равная знаменателю основания $ \frac{3x^2-2}{6} $. Для этого умножим и разделим степень на неё, и продолжим решать:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{\frac{3x^2-2}{6} \cdot \frac{6}{3x^2-2}\cdot 3x} = \lim_{x\to \infty} e^{\frac{18x}{3x^2-2}} = $$

Предел, расположенный в степени при $ e $ равен: $ \lim_{x\to \infty} \frac{18x}{3x^2-2} = 0 $. Поэтому продолжая решение имеем:

Ответ
$$ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} = 1 $$

Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.

В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.

В данной теме мы разберём те формулы, которые можно получить, используя второй замечательный предел (тема, посвящённая непосредственно второму замечательному пределу, находится ). Напомню две формулировки второго замечательного предела, которые понадобятся в этом разделе: $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$ и $\lim_{x\to\ 0}\left(1+x\right)^\frac{1}{x}=e$.

Обычно формулы я привожу без доказательств, но для данной страницы, полагаю, сделаю исключение. Дело в том, что доказательство следствий из второго замечательного предела содержит некоторые приёмы, которые бывают полезны при непосредственном решении задач. Ну, и, вообще говоря, желательно знать, как доказывается та или иная формула. Это позволяет лучше понимать её внутреннюю структуру, а также границы применимости. Но так как доказательства могут быть интересны не всем читателям, то скрою их под примечания, расположенные после каждого следствия.

Следствие №1

\begin{equation} \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=1\end{equation}

Доказательство следствия №1: показать\скрыть

Так как при $x\to 0$ имеем $\ln(1+x)\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости представим выражение $\frac{\ln(1+x)}{x}$ в таком виде: $\frac{1}{x}\cdot\ln(1+x)$. Теперь внесём множитель $\frac{1}{x}$ в степень выражения $(1+x)$ и применим второй замечательный предел:

$$ \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=\left| \frac{0}{0} \right|= \lim_{x\to\ 0} \left(\frac{1}{x}\cdot\ln(1+x)\right)=\lim_{x\to\ 0}\ln(1+x)^{\frac{1}{x}}=\ln e=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $\log_a t=\frac{\ln t}{\ln a}$, то $\log_a (1+x)=\frac{\ln(1+x)}{\ln a}$.

$$ \lim_{x\to\ 0} \frac{\log_a (1+x)}{x}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0}\frac{\ln(1+x)}{ x \ln a}=\frac{1}{\ln a}\lim_{x\to\ 0}\frac{\ln(1+x)}{ x}=\frac{1}{\ln a}\cdot 1=\frac{1}{\ln a}. $$

Следствие №2

\begin{equation} \lim_{x\to\ 0} \frac{e^x-1}{x}=1\end{equation}

Доказательство следствия №2: показать\скрыть

Так как при $x\to 0$ имеем $e^x-1\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости осуществим замену переменной, обозначив $t=e^x-1$. Так как $x\to 0$, то $t\to 0$. Далее, из формулы $t=e^x-1$ получим: $e^x=1+t$, $x=\ln(1+t)$.

$$ \lim_{x\to\ 0} \frac{e^x-1}{x}=\left| \frac{0}{0} \right|=\left | \begin{aligned} & t=e^x-1;\; t\to 0.\\ & x=\ln(1+t).\end {aligned} \right|= \lim_{t\to 0}\frac{t}{\ln(1+t)}=\lim_{t\to 0}\frac{1}{\frac{\ln(1+t)}{t}}=\frac{1}{1}=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $a^x=e^{x\ln a}$, то:

$$ \lim_{x\to\ 0} \frac{a^{x}-1}{x}=\left| \frac{0}{0} \right|=\lim_{x\to 0}\frac{e^{x\ln a}-1}{x}=\ln a\cdot \lim_{x\to 0}\frac{e^{x\ln a}-1}{x \ln a}=\ln a \cdot 1=\ln a. $$

Следствие №3

\begin{equation} \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}=\alpha \end{equation}

Доказательство следствия №3: показать\скрыть

Вновь мы имеем дело с неопределённостью вида $\frac{0}{0}$. Так как $(1+x)^\alpha=e^{\alpha\ln(1+x)}$, то получим:

$$ \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}= \left| \frac{0}{0} \right|= \lim_{x\to\ 0}\frac{e^{\alpha\ln(1+x)}-1}{x}= \lim_{x\to\ 0}\left(\frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \frac{\alpha\ln(1+x)}{x} \right)=\\ =\alpha\lim_{x\to\ 0} \frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \lim_{x\to\ 0}\frac{\ln(1+x)}{x}=\alpha\cdot 1\cdot 1=\alpha. $$

Пример №1

Вычислить предел $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}$.

Имеем неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости будем использовать формулу . Чтобы подогнать наш предел под данную формулу следует иметь в виду, что выражения в степени числа $e$ и в знаменателе должны совпадать. Иными словами, синусу в знаменателе не место. В знаменателе должно быть $9x$. Кроме того, при решении этого примера будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\left|\frac{0}{0} \right|=\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{9x}{\sin 5x} \right) =\frac{9}{5}\cdot\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{1}{\frac{\sin 5x}{5x}} \right)=\frac{9}{5}\cdot 1 \cdot 1=\frac{9}{5}. $$

Ответ : $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\frac{9}{5}$.

Пример №2

Вычислить предел $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}$.

Имеем неопределённость вида $\frac{0}{0}$ (напомню, что $\ln\cos 0=\ln 1=0$). Для раскрытия этой неопределённости будем использовать формулу . Для начала учтём, что $\cos x=1-2\sin^2 \frac{x}{2}$ (см. распечатку по тригонометрическим функциям). Теперь $\ln\cos x=\ln\left(1-2\sin^2 \frac{x}{2}\right)$, поэтому в знаменателе следует получить выражение $-2\sin^2 \frac{x}{2}$ (чтобы подогнать наш пример под формулу ). В дальнейшем решении будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0} \frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{x^2}= \lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\frac{-2\sin^2 \frac{x}{2}}{x^2} \right)=\\ =-\frac{1}{2}\lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 \right)=-\frac{1}{2}\cdot 1\cdot 1^2=-\frac{1}{2}. $$

Ответ : $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=-\frac{1}{2}$.

Похожие публикации