Островок мозга. Главные центры головного мозга

Островковая доля (островок)

находится в глубине латеральной борозды, прикрытая покрышкой, образованной участками лобной, теменной и височной долей. Глубокая круговая борозда островка отделяет островок от окружающих его отделов мозга. Нижнепередняя часть островка лишена борозд и имеет небольшое утолщение – порог островка. На поверхности островка выделяют длинную и короткую извилину.

Медиальная поверхность полушария большого мозга.

В образовании медиальной поверхности полушария большого мозга принимают участие все его доли, кроме островковой. Борозда мозолистого тела огибает его сверху, отделяя мозолистое тело от поясничной извилины, направляется книзу и вперёд и продолжается в борозду гиппокампа.

Над поясной извилиной проходит поясная борозда, которая начинается кпереди и книзу от клюва мозолистого тела. Поднимаясь вверх, борозда поворачивает назад и направляется параллельно борозде мозолистого тела. На уровне его валика от поясной борозды вверх отходит её краевая часть, а сама борозда продолжается в подтеменную борозду. Краевая часть поясной борозды сзади ограничивает околоцентральную дольку, а спереди – предклинье, которое относится к теменной доле. Книзу и кзади через перешеек поясная извилина переходит в парагиппокампальную извилину, которая заканчивается спереди крючком и ограничена сверху бороздой гиппокампа. Поясную извилину, перешеек и парагиппокампальную извилину объединяют под названием сводчатой извилины. В глубине борозды гиппокампа расположена зубчатая извилина. На уровне валика мозолистого тела от поясной борозды вверх ответвляется краевая часть поясной борозды.

Нижняя поверхность полушария большого мозга имеет наиболее сложный рельеф. Спереди расположена поверхность лобной доли, позади неё – височный полюс и нижняя поверхность височной и затылочной долей, между которыми нет чёткой границы. Между продольной щелью полушария и обонятельной борозды лобной доли расположена прямая извилина. Латеральнее от обонятельной борозды лежат глазничные извилины. Язычная извилина затылочной доли с латеральной стороны ограничена затылочно-височной (коллатеральной) бороздой. Эта борозда переходит на нижнюю поверхность височной доли, разделяя парагиппокампальную и медиальную затылочно-височную извилины. Кпереди от затылочно-височной борозды находится носовая борозда, ограничивающая передний конец парагиппокампальной извилины – крючок. Затылочно-височная борозда разделяет медиальную и латеральную затылочно-височные извилины.

На медиальной и нижней поверхностях выделяют ряд образований, относящихся к лимбической системе (от лат. Limbus-кайма). Это обонятельная луковица, обонятельный тракт, обонятельный треугольник, переднее продырявленное вещество, сосцевидные тела, расположенные на нижней поверхности лобной доли (периферический отдел обонятельного мозга), а также поясная, парагиппокампальная (вместе с крючком) и зубчатая извилины. Подкорковыми структурами лимбической системы являются миндалина, септальные ядра и переднее таламическое ядро.

Лимбическая система связана с другими областями мозга: с гипоталамусом, а через него со средним мозгом, с корой височной и лобной долей. Последняя, по-видимому, и регулирует функции лимбической системы. Лимбическая система является морфологическим субстратом, контролирующим эмоциональное поведение человека, управляющим его общим приспособлением к условиям внешней среды.

Все сигналы, поступающие от анализаторов, на пути в соответствующие центры коры головного мозга проходят через одну или несколько структур лимбической системы. Нисходящие сигналы, идущие от коры большого мозга, также проходят через лимбические структуры.

Строение коры большого мозга.

Кора большого мозга образована серым веществом, которое лежит по периферии (на поверхности) полушарий большого мозга. В коре головного мозга преобладает неокортекс (около 90%) – новая кора, которая возникла впервые у млекопитающих. Филогенетически более древние участки коры включают старую кору – архекортекс (зубчатая извилина и основание гиппокампа) а также древнюю кору – палеокортекс (препериформная, преамигдалярная и энториальная области). Толщина коры в различных участках полушарий колеблется от 1,3 до 5 мм. Наиболее толстая кора находится в верхних участках предцентральной и постцентральной извилин и у парацентральной дольки. Кора выпуклой поверхности извилин толще, чем на боковых и на дне борозд. Площадь поверхности коры больших полушарий взрослого человека достигает 450000 см кв., одна третья которой покрывает выпуклые части извилин и две третьи – боковые и нижние стенки борозд. В коре содержится 10-14 млрд. нейронов, каждый из которых образует синапсы примерно с 8-10 тыс. других.

Последние нейровизуализационные исследования островковой доли привели к возрождению интереса к роли этой области в условиях нормы и в развитии патологии. В этой статье авторы приводят краткую информацию об анатомических и гистологических особенностях островковой доли человеческого мозга. Далее описываются физиологические функции островка и подчеркивается его участие в патогенезе психиатрических и неврологических расстройств, которое долгое время недооценивалось. В заключение авторы предлагают различные методики, которые позволят лучше изучить роль островковой доли в рамках как фундаментальной, так и клинической нейробиологии.

Глоссарий:

Агранулярная область (коры): зона неокортекса с относительно неразличимыми слоями II и III и отсутствием слоя IV.

Центральная исполнительная сеть: система нейронов головного мозга, включающая дорсолатеральную префронтальную кору и заднюю теменную кору, которые отвечают за когнитивные функции высокого порядка, такие как внимание и рабочая память.

Когнитивные ресурсы: набор психических способностей и ресурсов, относящихся к познавательной деятельности (внимание, память, рабочая память, мышление и т.д.).

Сеть пассивной работы мозга: система нейронов, включающая вентромедиальную префронтальную кору и заднюю поясную кору, отвечающих за такие процессы самовосприятия, как обработка автобиографической памяти и самонаблюдение.

Анализ причинности Грейнджера: подход для изучения причинных взаимодействий между активностью нейронов в последовательных сериях сканирования фМРТ. В основе анализа причинности лежит свойство причин предшествовать следствиям. Тонкий статистическо-прогностический анализ позволяет ответ на вопрос о причинно-следственной связи между активацией разных областей.
Гранулярная область (коры): регион неокортекса с шестью слоями, включающими хорошо выраженный слой IV, который содержит много звездчатых гранулярных нейронов, получающих таламокортикальные афференты.
Валентности (значения стимулов): положительные (привлекающие) или отрицательные (отталкивающие) ценности стимулов, лежащие в основе определенного поведения. Например, ожидание удовольствия от таких конкретных типов поведения, таких как потребление пищи или утоление жажды будет иметь положительное значение стимула.

Интероцепция: ощущение и интеграция автономных, гормональных, висцеральных и иммунологических сигналов, связанных с поддержанием гомеостаза, которые совместно дают информацию о физиологическом состоянии организма. Прогрессия нейрональной обработки от задней дольки островка к передней представляется следующим образом: задняя долька островка отвечает за первичные (объективные) проекции интероцептивных сигналов, в то время как передняя осуществляет их вторичную репрезентацию и интеграцию с эмоциональными, когнитивными и мотивационными сигналами.

Нейрональная проекция состояния организма: процесс топографического отображения состояния организма в ЦНС, особенно в верхней части ствола мозга и коре больших полушарий, включая островковую долю. Например, реакции организма, вызванные тепловыми и висцеральными стимулами, отображаются в областях островка. Изменения в этих областях постоянно отслеживаются и регулируются с целью поддержания физиологических параметров организма в рамках оптимальных значений.

Сеть приоритетных стимулов: система нейронов головного мозга, включающая переднюю дольку островка и переднюю поясную кору, отвечающая за выявление значимых стимулов и координацию когнитивных ресурсов, таких как внимание и рабочая память, между центральной исполнительной сетью и сетью пассивного режима работы мозга.

Я: осознанное восприятие собственного существования. Субъективные ощущения, наложенные на постоянно обновляющуюся информацию об объективном состоянии организма, позволяют осознавать свое физическое “Я”.

Субъективные ощущения: осознанные ощущения состояний тела, вызываемые внутренними сигналами (например, жажда, одышка, недостаток кислорода, прикосновение, зуд, стимуляция полового члена, сексуальное возбуждение, прохлада, тепло, физическая нагрузка, сердцебиение, дегустация вина, растяжение мочевого пузыря, желудка и т.д.)

Тренды

Благодаря последним исследованиям по визуализации мозга островок снова стал рассматриваться как важный участок мозга не только в физиологическом, но и патологическом контексте клинических исследований. Передняя долька островка играет ключевую роль в поддержании состояний субъективных ощущений. Он также может регулировать вовлечение ощущений в когнитивные и мотивационные процессы.

Очень важно смотреть на психические состояния через призму функций островка.
Чтобы преодолеть ограничения, связанные с визуализацией мозга у человека, необходимо провести большую работу по статистической обработке данных визуализации мозга человека.

С учетом последних технологических достижений в доклинических исследований на грызунах, разумно ожидать углубления понимания причинной роли островка в высшей нервной деятельности. Такое понимание состоит из информации различного уровня: от генов, молекул, клеток и нейронных сетей до физиологии и поведения.

Введение: время уделить внимание островковой доле

Впервые островковая доля человеческого мозга была описана как «островок» коры Иоганном Христианом Рейлем в 1796 году (insula с латинского - остров). С тех пор островок был на долгое время позабыт. Интерес к нему вернулся в 1994 году, когда Антонио Дамасио сформулировал “гипотезу соматического маркера”, которая гласит, что рациональное мышление неотделимо от чувств и эмоций, являющихся отражением состояния организма . Недавние исследования по нейровизуализации человеческого мозга указали на значение островковой доли во многих заболеваниях этого органа . Цель данной статьи - пролить свет на роль островковой доли, и особенно связь нарушений работы островка с психиатрическими и неврологическими расстройствами. Для достижения этой цели авторы кратко описывают анатомические и гистологические особенности островковой доли человека. Затем внимание акцентируется на физиологических функциях островка и его роли в патологиях. В конце предлагаются многообещающие стратегии, с помощью которых удастся лучше выяснить роль островка в норме и патологии функционирования мозга.

Анатомия и гистология островковой доли у человека

Островковая кора расположена у человека билатерально - в глубине латеральной (Сильвиевой) борозды, отделяющей височную долю от теменной и лобной долей, на дне латеральной ямки большого мозга (Рис. 1) . Упрощенно островковую кору можно разделить на переднюю и заднюю дольки, при этом каждый отдел имеет свои цитоархитектонические особенности, свою конфигурацию связей и, следовательно, выполняет разные функции . Задние, гранулярные (см. глоссарий) регионы островка, в дополнение к афферентации от ассоциативных зон лобных, затылочных и височных долей, получают восходящие сенсорные сигналы от спинного мозга и ствола мозга через таламус. Таким образом, в этих регионах интегрируются соматосенсорные, вестибулярные и моторные сигналы. Передние (агранулярные) регионы имеют реципрокные связи с такими лимбическими структурами, как кора передней поясной извилины, вентромедиальная префронтальная кора, миндалины и вентральная часть стриатума. Передняя долька островка принимает участие в интеграции информации, поступающей от висцеральных и других автономных систем, в эмоциональные, когнитивные и мотивационные компоненты высшей нервной деятельности.

Источник: Cell

Рисунок 1. Анатомия островковой доли человека.

Островковая кора расположена билатерально в глубине сильвиевой борозды, отделяющей височную долю от лобной и теменной. Островковая доля прикрыта частями лобной, теменной и височной долей, ко­торые вместе образуют покрышку (operculum, оперкулум). По периметру островок ограничен круговой бороздой островка; глубокая центральная борозда островка разделяет островок на переднюю и заднюю части. В передней дольке островка имеется три коротких извилины, а в задней - две длинных. С учетом цитоархитектоники островок можно четко разделить на передний агранулярный и задний гранулярный отделы с наличием переходной дисгранулярной области между ними.

Передняя область островка относится к наиболее дифференцированным регионам неокортекса человека относительно других приматов . Функционально и анатомически эта зона тесно связана с передней частью поясной извилины и, потому переднюю часть островка можно условно считать “чувствительной областью лимбической системы”, связанной с передней поясной извилиной - “двигательной областью лимбической системы” . Интересно, что передняя часть островка значительно походит на переднюю поясную кору особым строением 5 слоя пирамидных нейронов, а именно высокой плотностью веретенообразных нейронов, называемых нейронами фон Экономо . Хотя функция нейронов фон Экономо в этой области пока точно не установлена, имеются веские доказательства того, что эти нейроны с аксонами большого диаметра участвуют в усилении быстрой, долговременной интеграции информации .

Физиологические функции островковой доли человека

Бесчисленное количество сенсорных функций островковой коры объединяются понятием “интероцепция” . Интероцепция - это нейрональное представление (проекция) параметров организма, важных для поддержания гомеостаза. Считается, что интероцепция постепенно усложняется по мере движения сигналов в каудо-ростральном направлении : сначала первичные (объективные) сигналы поступают в заднюю дольку островка, где происходит обработка сенсорных стимулов низкого порядка. Затем эта информация передается в переднюю область островка, где эти, уже вторичные, сигналы интегрируются с эмоциональными, когнитивными и мотивационными сигналами, собранными от других корковых и подкорковых областей, таких как миндалина, передняя часть поясной извилины, дорсолатеральная префронтальная кора и вентральная часть стриатума (Рис. 2).

Передняя часть островка играет ключевую роль в поддержании субъективных ощущений . Хорошо известно, что первичные сигналы от рецепторов различных органов чувств проецируются на специфичные участки первичной сенсорной коры, как, например, в первичной зрительной коре . Точно так же и задняя область островка является первичной сенсорной корой для первичных интероцептивных сигналов, и для каждого из таких сигналов в пределах задней области островка есть свой специфический участок . Важно, что такое каудо-ростральное переключение сигналов позволяет осознанно воспринимать интероцептивные сигналы (Благодаря тому, что объективные сигналы от интероцепторов интегрируются с информацией о субъективных параметрах психики. - прим. ред. ) , поэтому передняя часть островка является нейрональной проекцией субъективных ощущений . Возникающие в островке субъективные ощущения могут также быть восприятием своего “я”: ряд исследователей предполагают, что интероцептивное представительство в передней части островка обеспечивает нашу осведомленность о параметрах тела как чувствующих (разумных) существ, что в итоге может являться основой самоосознания .

Источник: Cell

Рисунок 2. Интероцептивная информация и ее интеграция с эмоциональными, когнитивными и мотивационными сигналами из множества корковых и подкорковых областей.

Интероцептивная информация о постоянно изменяющихся параметрах организма прибывает в задний островок через восходящие афференты от специфических проводящих путей спинного мозга и ствола мозга и переключения в таламусе. Эта информация проецируется в ростральном направлении: на переднюю дольку островка, - где она интегрируется с эмоциональными, мотивационными и когнитивными сигналами, поступающими от корковых и подкорковых отделов мозга. Таким образом, передняя долька дает начало уникальным субъективным ощущениям. Кроме того, ввиду своего расположения на пересечении множества интракортикальных путей, связанных с когнитивными и мотивационными процессами высокого порядка, передняя долька островок регулирует вовлечение субъективных ощущений в когнитивные и мотивационные процессы.

Было показано, что островок играет важную роль в формировании сознания . Имеется ряд свидетельств, указывающих, что ощущения, возникающие при участии островка, влияют на сознание : они определяют относительную значимость (салиентность ) компетентных стимулов, в результате чего для этих стимулов задается приоритет выделения когнитивных ресурсов. Мы обращаем внимание и запоминаем яркие события, связанные с чувствами радости и печали, удовольствия и боли . Ощущения также влияют на процессы формирования умозаключений и закрепления убеждений . В целом, передняя область островка выделяет значимую информацию, опираясь на субъективные ощущения, и потому помогает когнитивным процессам выбрать информацию для дальнейшей обработки .

Островок также играет важную роль в формировании мотивации, особенно в эксплицитной мотивации . Эксплицитная мотивация представляет из себя сознательное, субъективное желание изменения поведения, в то время как имплицитная мотивация подразумевает неосознанное переключение поведения. Исследования сходятся в выводах, что островок определяет валентность стимулов на основе субъективных ощущений, вызываемыми этими стимулами . Поощряющие стимулы вызывают чувство удовольствия, что. в свою очередь, приводит к возникновению стремления к соответствующим действиям, в то время как отталкивающие стимулы вызывают боль, что создает чувство отвращения и задает избегающее поведение. В этом контексте ощущения, возникающие в островке, опосредуют поведение человека .

Необходимость динамического взаимодействия ощущений с поведением и мотивацией объясняет уникальное анатомическое положение переднего островка. Передняя долька островка играет ключевую роль в формировании субъективных ощущений. Кроме того, она связана с дорсолатеральной и вентромедиальной областями префронтальной коры. Недавние исследования показали, что значимая информация от переднего островка собирается в дорсолатеральной префронтальной коре, в результате чего осуществляется контроль внимания и рабочей памяти , в то время как вентромедиальная префронтальная кора на основе субъективных ощущений получает из переднего островка информацию о результатах предыдущего опыта поведения с учетом текущей ситуации, а затем устанавливает цели для принятия решений о дальнейших действиях .

Все эти функции, выполняемые передним островком, весьма похожи на те, что выполняются миндалиной. Миндалина сама по себе играет ключевую роль в процессе обработки эмоций, однако функционал островка и амигдалы все-таки несколько различается: работа миндалины связана с автоматическими (имплицитными) ответными реакциями, в то время как передняя долька островка отвечает за субъективный (эксплицитный) опыт (т.е. субъективные ощущения) . Поэтому миндалина относится к системе импульсивных ответов, а передний островок - к аналитической . Таким образом, кроме выполнения функций центра интероцепции, передняя долька островка также является “коммутатором” в регуляции когнитивных процессов и мотивации.

Патогенетическая роль островка в психиатрических расстройствах и неврологических заболеваниях

Формируя поведение человека, ощущения динамически взаимодействуют с сознанием и мотивацией; дисфункция этих взаимодействий лежит в основе многих психических расстройств. Действительно, недавние обширные мета-анализы исследований по структурной и функциональной визуализации ЦНС подтвердили, что островок является тем самым “общим ядром”, которое поражается при многих нарушениях психики . В ходе геномных исследований ученые узнали о высокой полигенности психических расстройств . Более того, эти исследования продемонстрировали и плейотропность генетических факторов риска, что несколько пошатнуло позиции существующих диагностических классификаций с точки зрения их биологической корректности. Хотя традиционный подход к классификации все еще применим в клинической практике, где высоко ценятся быстрота и надежность, в области нейробиологии обретает все большую важность понимание расстройств психики в контексте функций, связанных с соответствующими нейронными сетями головного мозга . Как было сказано выше, островок играет роль в обработке субъективных ощущений и эмоций. Кроме того, он обеспечивает целостность когнитивных и мотивационных процессов, связывая между собой ответственные за их формирование области префронтальной коры: соответственно, дорсолатеральную и вентромедиальную. Поэтому нарушение работы островка отражается не только в аспекте эмоций, но также оказывает влияние на когнитивные и мотивационные процессы при широком спектре психиатрических расстройств. При некоторых психиатрических расстройствах дисфункция островка приводит к искажению субъективных ощущений.

Структурные исследования (нейровизуализация при помощи воксельной морфометрии) показали значительное снижение объема серого вещества островковой доли у пациентов с большим депрессивным расстройством . В исследованиях с визуализацией при помощи фМРТ (функциональной магнитно-резонансной томографии) было установлено, что активность островка существенно повышается при обработке эмоций , в то время как при большом депрессивном расстройстве активность островка при парадигме состояния покоя (Отсутствии задания. - прим. перев. ) снижается . Структурные и функциональные отклонения островка, включая изменение путей развития и уменьшение объема серого вещества, наблюдаются и у пациентов с биполярным расстройством. . В то же время, каких-либо специфических изменений на фМРТ при биполярном расстройстве не выявлено . Помимо аффективных расстройств, неадекватная обработка островком субъективных ощущений может лежать в основе развития многих других психиатрических расстройств, сопровождающихся нарушениями в эмоциональной сфере. Например, структурный и функциональный дефицит островковой доли связан с тревожными расстройствами , нарушениями эмоциональной обработки при шизофрении , отклонениями обработки таких социальных эмоций, как эмпатия к боли, при психопатиях и с искаженным восприятием собственного тела при нервной анорексии . Патологические изменения островка также вовлечены в неврологические заболевания: при болезни Гентингтона и рассеянном склерозе происходят нарушения обработки мимики , при болезни Альцгеймера утрачивается чувство собственного Я . Дисфункция островка также лежит в основе когнитивных нарушений при широком спектре психических расстройств.

Функциональная визуализация с использованием анализа причинности Грейнджера показала снижение силы причинных влияний сети приоритетных стимулов островка на центральную исполнительную сеть и сеть пассивного режима работы мозга у пациентов с шизофренией . Островок опосредует динамическое переключение между центральной исполнительной сетью и сетью пассивного режима работы, при возникновении приоритетного стимула облегчая доступ к когнитивным ресурсам, таким как внимание и рабочая память . Таким образом, изменение силы связей в этих сетях лежит в основе когнитивного нарушения, возникающего при некоторых формах шизофрении . Гипофункция островковой сети также обнаружена у пациентов с расстройствами аутистического спектра , что может укладываться в концепцию общности генетических и биологических факторов риска расстройств аутистического спектра и некоторых форм шизофрении . Патология островка также вносит вклад в закрепление ложных убеждений при возникновении бредовых идей .

Дисфункция островка лежит в основе дефицита мотивации, например, при наркотической зависимости. Ряд мета-анализов исследований по функциональной визуализации показали, что сигналы, связанные с наркотиком, вызывают всплеск активности в островке у зависимых индивидов . Опираясь на физиологическую роль островка в мотивации, о которой говорилось выше, весьма вероятно, что ощущения удовольствия, связанные с наркотиком, могут влиять на мотивационную значимость стимулов, связанных с наркотиком, что в свою очередь, будет влиять на принятие решений. Дефицит мотивации у пациентов с ангедонией также может быть связан с дисфункцией островковой доли. Новые данные говорят о том, что наблюдающийся у пациентов с ангедонией дефицит решительности, может быть связан со структурными и функциональными изменениями островка . На молекулярном уровне была обнаружена корреляция между силой дофаминергического ответа в островке (билатерально) и готовностью тратить силы на получение вознаграждения .

На пути к лучшему пониманию физиологической и патологической роли островка

Исследования по визуализации головного мозга у людей дали представление о физиологических функциях островковой доли и ее роли в развитии патологии. Однако гораздо труднее сделать вывод о причинно-следственных связях между различными явлениями с помощью одной только нейровизуализации. Данные, получаемые при визуализации мозга человека, ограничены как в пространственном, так и во временном разрешениях. Кроме того, физиологические основы функциональной нейровизуализации (например, BOLD-сигнал - изменение уровня МР-сигнала при локальном изменении степени оксигенации крови), изучены лишь частично. Чтобы преодолеть эти ограничения, требуется приложить значительные усилия по статистической обработке нейровизуализационных данных. Например, анализ причинности по Грейнджеру может оказаться полезным для изучения причинно-следственных связей, которые существуют в нервных сетях . Кроме того, последние достижения в технологиях неинвазивной стимуляции мозга, такие, как транскраниальная магнитная стимуляция, могут помочь ученым изучить новые свойства и связи островка, не нарушая этические нормы проведения исследований .

Исследования на животных предоставляют прекрасную возможность изучить причинные роли островка путем экстраполяции наблюдений, полученных при исследованиях людей. Кроме того, эксперименты на животных полезны для преодоления пространственных и временных ограничений относительно исследований по визуализации мозга, проводимых на людях. Знание сравнительной функциональной анатомии важно для правильной адаптации наблюдений животных на людей. Учитывая сходную цитоархитектонику и совокупность связей, можно говорить о некоторой степени гомологичности островков человека и грызунов . Эксперименты на животных позволяют нам выявлять причинные связи благодаря возможности проводить прямые инвазивные вмешательства на мозге, не нарушая основные этические нормы, характерные для исследований человека.

Последние технологические достижения доклинических исследований на мышах позволили нейробиологам формировать сложную картину архитектуры нейронных сетей и их активности в различных поведенческих ситуациях. Прежде всего, благодаря технологиям генетической модификации, таким как специфичное мечение клеток нейронных сетей при помощи Cre-рекомбинации , стала возможной высокоточная анатомическая и генетическая идентификация звеньев и связей нейронных сетей. Затем анатомические и генетические “координаты” элементов и связей нейронных сетей могут быть сопоставлены с данными их активности и/или изменением их активности в определенных ситуациях. Это позволит составить полную картину функций нейронных сетей относительно поведения. На сегодняшний день доступны такие инструменты по определению представительства функций в головном мозге, как визуализация активности нейронов in vivo у мышей в условиях свободного поведения при помощи миниатюрных микроскопов для регистрации активности , и опто-/хемогенетические подходы для управления активностью нейронов (Рис. 3, главный рисунок). Клинически определяемые молекулярные маркеры биологических сетей, поражаемых заболеваниями, могут быть обнаружены с использованием современных методик, таких как секвенирование нового поколения и анализ одиночных клеток . Затем патофизиологические роли этих маркеров в возникновении психических расстройств могут быть изучены на нескольких уровнях: клеточном, на уровне нейронных сетей, физиологическом и поведенческом, - при помощи релевантных животных моделей, таких как трансгенные и нокаут/нокин мутантные мыши. Суммируя вышесказанное, авторы возлагают большие надежды на применение трансляционных и обратно-трансляционных подходов для правильной интерпретации данных клинических и доклинических исследований и достижения полного понимания структуры и функций островковой доли (см. Нерешенные Вопросы).

Эту долю можно увидеть, если раздвинуть или удалить прикрывающие островок участки: лобной, теменной и височной долей, которые получили наименование покрышки. Глубокая круговая борозда островка отделяет островок от окружающих его отделов мозга. Поверхность островка представлена длинной и короткими извилинами. Между длинной извилиной, находящейся в задней части островка и ориентированной сверху вниз и вперед, и короткими извилинами, занимающими верхнюю часть островка, находится центральная борозда островка. Нижнепередняя часть островка лишена борозд, имеет небольшое утолщение, получившее название «порог островка».

Медиальная поверхность полушария. Все доли полушария, за исключением островковой, принимают участие в образовании его медиальной поверхности (Рис. 5).

Над мозолистым телом, отделяя его от остальных отделов полушария, находится борозда мозолистого тела. Огибая сзади валик мозолистого тела, она направляется книзу и вперед и продолжается в борозду гиппокампа или гиппокампальную борозду. Выше борозды мозолистого тела находится поясная борозда. Эта борозда начинается кпереди и книзу от клюва мозолистого тела, поднимается вверх, затем поворачивает назад и следует параллельно борозде мозолистого тела, заканчиваясь выше и кзади от валика мозолистого тела под названием подтеменной борозды. На уровне валика мозолистого тела от поясной борозды вверх ответвляется краевая часть, уходящая вверх и кзади к верхнему краю полушария большого мозга. Между бороздой мозолистого тела и поясной бороздой находится поясная извилина, охватывающая мозолистое тело спереди, сверху и сзади. Сзади и книзу от валика мозолистого тела поясная извилина сужается, образуя перешеек поясной извилины. Далее книзу и кпереди перешеек переходит в более широкую парагиппокампальную извилину, ограниченную сверху бороздой гиппокампа. Поясная извилина, перешеек и парагиппокампальная извилина известны как сводчатая извилина. В глубине борозды гиппокампа находится довольно тонкая полоска серого цвета, разделенная мелкими поперечными бороздками, – зубчатая извилина. Участок медиальной поверхности полушария, находящийся между поясной бороздой и верхним краем полушария, относится к лобной и теменной долям.

Кпереди от верхнего края центральной борозды находится медиальная поверхность верхней лобной извилины, а непосредственно к указанному участку центральной борозды прилегает парацентральная долька, ограниченная сзади краевой частью поясной борозды. Между краевой частью спереди и теменно-затылочной бороздой сзади находится предклинье – принадлежащий теменной доле участок полушария большого мозга.

На медиальной поверхности затылочной доли расположены сливающиеся друг с другом под острым углом, открытым кзади, две глубокие борозды. Это теменно-затылочная борозда , отделяющая теменную долю от затылочной, и шпорная борозда, начинающаяся на медиальной поверхности затылочного полюса и направляющаяся вперед до перешейка поясной извилины. Участок затылочной доли, лежащий между теменно-затылочной и шпорной бороздами и имеющий форму треугольника, обращенного вершиной к месту слияния этих борозд, называется «клином». Хорошо заметная на медиальной поверхности полушария шпорная борозда ограничивает сверху язычную извилину, простирающуюся от затылочного полюса сзади до нижней части перешейка поясной извилины. Снизу от язычной извилины располагается коллатеральная борозда, принадлежащая уже нижней поверхности полушария.

Нижняя поверхность полушария. Рельеф нижней поверхности полушария очень сложен (Рис. 6). Передние отделы нижней поверхности образованы лобной долей полушария, позади которой выступает височный полюс, а также находятся нижние поверхности височной и затылочной долей, переходящие одна в другую без заметных границ.


На нижней поверхности лобной доли, несколько латеральнее и параллельно продольной щели большого мозга, находится обонятельная борозда. Снизу к ней прилегают обонятельная луковица и обонятельный тракт, переходящий сзади в обонятельный треугольник, в области которого видны медиальная и латеральная обонятельные полоски. Участок лобной доли между продольной щелью большого мозга и обонятельной бороздой получил название прямой извилины. Поверхность лобной доли, лежащая латеральнее от обонятельной борозды, разделена неглубокими глазничными бороздами на несколько вариабельных по форме, расположению и размерам глазничных извилин.

В заднем отделе нижней поверхности полушария хорошо видна коллатеральная борозда, лежащая книзу и латерально от язычной извилины на нижней поверхности затылочной и височной долей, латерально от парагиппокампальной извилины. Несколько кпереди от переднего конца коллатеральной борозды находится носовая борозда, ограничивающая с латеральной стороны изогнутый конец парагиппокампальной извилины – крючок. Латеральнее коллатеральной борозды лежит медиальная затылочно-височная извилина.

Между этой извилиной и расположенной кнаружи от нее латеральной затылочно-височной извилиной находится затылочно-височная борозда. Границей между латеральной затылочно-височной и нижней височной извилинами служит не борозда, а нижнелатеральный край полушария большого мозга.

Верхнелатеральная поверхность полушария – находящаяся в переднем отделе каждого полушария большого мозга лобная доля, оканчивающаяся спереди лобным полюсом и ограничивающая снизу латеральной (сильвиевой) бороздой, а сзади – глубокой центральной бороздой.

Ряд отделов головного мозга, расположенных преимущественно на медиальной поверхности полушария и являющихся субстратом для формирования таких общих состояний, как бодрствование, сон, эмоции и др., выделяют под названием «лимбическая система». Поскольку эти реакции сформировались в связи с первичными функциями обоняния (в филогенезе), их морфологической основой являются отделы мозга, которые развиваются из нижних отделов мозгового пузыря и относятся к так называемому обонятельному мозгу. Лимбическую систему составляют обонятельная луковица, обонятельный тракт, обонятельный треугольник, переднее продырявленное вещество, которые расположены на нижней поверхности лобной доли (периферический отдел обонятельного мозга), а также поясная и парагиппокампальная (вместе с крючком) извилины, зубчатая извилина, гиппокамп (центральный отдел обонятельного мозга) и некоторые другие структуры. Включение этих отделов мозга в лимбическую систему оказалось возможным в связи с общими чертами их строения (и происхождения), наличием взаимных связей и сходством функциональных реакций.

Полушария состоят из серого и белого вещества. Слой серого вещества называется корой головного мозга. Кора покрывает в виде плаща остальные образования большого мозга и поэтому и называется плащом. Под корой белое вещество, а в нем островки серого вещества – базальные ядра, в основном расположенные в лобной доле. К ним относят полосатое тело (хвостатое ядро и чечевицеобразное ядро), ограду и миндалевидное тело.

Полосатое тело (стриопаллидарная система) состоит из 2-х ядер – хвостатого и чечевицеобразного, разделенных прослойкой белого вещества – внутренней капсулой. В эмбриональном периоде полосатое тело составляет одну серую массу, затем оно разделяется. Хвостатое ядро расположено около таламуса. Оно имеет подковообразную форму, состоит из головки, тела и хвоста. Чечевицеобразное ядро имеет форму чечевичного зерна, находится латеральнее таламуса и хвостатого ядра. Чечевицеобразное ядро делится на 3 части, благодаря белому веществу. Наиболее латерально лежит скорлупа, имеющая темную окраску, а две более светлые части называются латеральным и медиальным бледными шарами.

Для скорлупы характерно участие в организации пищевого поведения: пищепоиска, пищенаправленности, пищезахвата и пищевладения; ряд трофических нарушений кожи, внутренних органов возникает при нарушениях функции скорлупы. Раздражения скорлупы приводят к изменениям дыхания, слюноотделения.

Бледный шар имеет преимущественно крупные нейроны Гольджи 1-го типа. Связи бледного шара с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, соматосенсорной системой и др. свидетельствуют о его участии в организации простых и сложных форм поведения.

Рефлекторные функции. Многочисленные рефлексы продолговатого мозга делят на жизненно важные и нежизненно важные, хотя такое представление достаточно условно. Дыхательные и сосудодвигательные центры продолговатого мозга можно отнести к жизненно важным, так как в них замыкается ряд сердечных и дыхательных рефлексов.

Мост (Варолиев мост) располагается выше продолговатого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные, рефлекторные функции. Имеет вид поперечного волокна, который вверху (спереди) граничит со средним мозгом, а внизу (сзади) – с продолговатым мозгом. Длина моста 20-30 мм, ширина 20-30 мм. Сужаясь, он переходит в средние ножки мозжечка. Передней (вентральной) частью, которая прилежит к скату черепа, и задней (дорсальной) частью покрышки он обращен к мозжечку. В вентральной поверхности моста заложена базилярная (основная) борозда, где лежит одноименная артерия.

Серое вещество располагается внутри моста и белое вещество – снаружи. Передняя его часть в основном состоит из белого вещества, это продольные и поперечные волокна. В дорсальных отделах моста проходят восходящие чувствительные проводящие пути, а в вентральной – нисходящие пирамидные и экстрапирамидные пути. Здесь же имеются системы волокон, обеспечивающие двустороннюю связь мозжечка с корой большого мозга. Непосредственно над трапециевидным телом залегают волокна медиальной и спинномозговой петли. Над трапециевидным телом ближе к срединной плоскости находится ретикулярная формация, а еще выше – задний продольный пучок. Сбоку и выше медиальной петли залегают волокна латеральной петли. В задней части моста (покрышка) располагаются ядра: тройничного нерва (V пара), отводящего (VI пара), лицевого (VII пара), преддверно-улиткового (VIII пара), а также волокна медиальной петли, идущих от продолговатого мозга, на которых расположена ретикулярная формация моста.

В передней части проходят проводящие пути: 1) пирамидный путь (корково-спинальный); 2) пути от коры к мозжечку; 3) общий чувствительный путь, который идет от спинного мозга к зрительному бугру; 4) пути от ядер слухового нерва.

Мозжечок помещается под затылочными долями полушарий большого мозга и лежит в затылочной ямке. Максимальная ширина его 11,5 см, длина – 3-4 см. На долю мозжечка приходится около 11% от веса головного мозга. В мозжечке различают «полушария, а между ними – червь мозжечка. Поверхность мозжечка покрыта серым веществом или корой, которая образует извилины, отделенные друг от друга бороздами. В толще мозжечка располагается белое вещество, состоящие из волокон, обеспечивающих внутримозговые связи.

Кора мозжечка трехслойная, состоит из внешнего молекулярного слоя, ганглионарного (или слоя клеток Пуркинье) и зернистого слоя. В коре содержится пять типов нейронов: зернистые, звездчатые, корзинчатые, клетки Гольджи и Пуркинье, которые имеют достаточно сложную систему связей. Между мозжечком и мостом с продолговатым мозгом расположен IV желудочек, заполненный спинальной жидкостью.

В молекулярном слое – 3 типа вставочных нейронов: корзинчатые, коротко- и длинноотросчатые звездчатые клетки.

В ганглионарном слое – клетки Пуркинье.

В зернистом слое – клетки зернистые, клетки Гольджи. Число зернистых клеток в 1 мм³ равно 2,8  10  6. Аксоны зернистых клеток восходят к поверхности, Т- образно ветвятся, образуя параллельные волокна. Параллельные волокна формируют также возбуждающие синапсы на дендриты корзинчатых, звездчатых клеток и клеток Гольдки.

Недавние открытия, касающиеся функции головного мозга, показывают нам, однако, что основные принципы его работы доступны не только пониманию, но и активному использованию.

В нашем распоряжении есть упрощенные рисунки мозга, сложные карты нейронных связей и изображения, полученные методами нейровизуализации. Для целей нашего исследования внимательного мозга нам нужно понимание основ нейроанатомии и знание расположения главных центров мозга. Мы начнем со схематичных изображений мозга на рис. 2.1 и 2.2.

Рис. 2.1. Изображение человеческого мозга (вид правого полушария со стороны срединного разреза). Показаны некоторые важнейшие области мозга, включая ствол мозга, лимбическую область (с миндалевидным телом, гиппокампом и передней поясной извилиной) и кору большого мозга (с префронтальной областью, включающей орбитофронтальную кору, которая вместе с передней поясной извилиной и другими медиальными и вентральными структурами является частью «срединной префронтальной коры»).

Рис. 2.2. Два полушария головного мозга. На рисунке также показано расположение областей срединной префронтальной коры, которая включает медиальную и вентральную области префронтальной коры, орбитофронтальную кору и кору передней поясной извилины в обоих полушариях. Мозолистое тело соединяет друг с другом оба полушария головного мозга

Есть еще один инструмент изучения мозга - кисть вашей руки. Если вы согнете большой палец и упретесь его кончиком в середину ладони и согнете над ним остальные пальцы, то получите довольно точную модель головного мозга человека. Запястье - спинной мозг, лицо представлено ногтями четырех пальцев, а верхушка кулака - это темя.

На нашей импровизированной модели ладонь - ствол мозга, лимбические области - большой палец (и справа и слева), а кора - согнутые пальцы. Давайте теперь вкратце рассмотрим эти области.

В стволе мозга находятся центры, отвечающие за некоторые жизненно важные функции. Они регулируют частоту сердечных сокращений и дыхания , чередование процессов сна и бодрствования , а также включение и выключение реакции борьбы или бегства . Ствол мозга хорошо развит уже при рождении - это самая древняя (в эволюционном плане) часть мозга, и ее часто называют «мозгом рептилий».

Лимбическая система

Лимбическая область у рептилий отсутствует. Она появляется только у млекопитающих. Лимбические зоны отвечают за привязанность (нашу связь с родителями или опекунами), память (особенно фактологическую и автобиографическую), оценку смыслов и создание аффекта , а также ощущение эмоций .

В лимбической системе расположен также главный регулятор гормональных функций - гипоталамус , оказывающий непосредственное влияние на физические параметры организма.

Эндокринная система вместе с влиянием головного мозга на иммунную систему и состояние физического здоровья организма посредством автономной (вегетативной) нервной системы с двумя ее отделами - тормозным (парасимпатическим) и возбуждающим (симпатическим) - представляет собой прямой механизм, с помощью которого тесно взаимодействуют мозг и тело.

Лимбическая система и ствол мозга - подкорковые образования - совместно влияют на наши мотивации и влечения и активируются в ответ на потребность в выживании, привязанности и смысле.

Кора головного мозга

Кора - наружная часть мозга, которая становится обширной у млекопитающих. Кора осуществляет более сложные процессы, такие как ощущение, восприятие, планирование и внимание .

Поскольку кора разделена на несколько долей с разными функциями, постольку существует несколько способов описания сложных процессов, связанных с этой областью, которая недостаточно развита при рождении и поэтому в своем формировании сильно подвержена влиянию переживаемого опыта (рис. 2.3).

Рис. 2.3. Традиционное деление коры головного мозга на доли.

Кора головного мозга представляет собой шестислойное складчатое образование, состоящее из серого и белого веществ.

Слои состоят из вертикально ориентированных колонок, причем разные скопления колонок отвечают за определенные модальности активности, например реагируют на зрительные или слуховые стимулы. Эти вертикальные колонки связаны между собой горизонтальными вставочными нейронами, обеспечивающими взаимодействие колонок за счет интеграции импульсов от разных сенсорных каналов (например, слуховых и зрительных). Именно эти связи различных областей создают невероятную сложность способностей нашей венчающей мозг коры.

Вообще говоря, задняя часть коры , представленная в нашей «ручной» модели костяшками четвертых и пятых пальцев, отвечает за восприятие стимулов внешнего мира, за исключением обоняния и восприятия положения конечностей в пространстве. Эти задние области позволяют человеку формировать восприятие внешнего мира.

Передняя часть коры головного мозга отвечает за движения, внимание и мышление . Лобные доли эволюционно развились с возникновением приматов. Проведенные исследования показывают, что у млекопитающих строение лобной коры усложняется параллельно усложнению социальной жизни.

Зоны головного мозга

На нашей модели лобная область , представленная вторыми и концевыми фалангами, - это область, где первая зона отвечает за двигательную активность, следующая кпереди зона осуществляет планирование движений - это премоторная область (рис. 2.4).

Рис. 2.4. Традиционное деление коры мозга на специфические зоны.

Премоторная область стала первой, где были открыты зеркальные нейроны, которые позволяют нам распознавать намерения и эмоции других людей и воспроизводить их у себя в рамках более широкого «резонансного контура» (приложение, раздел «Резонансные контуры и зеркальные нейроны»). В дальнейшем мы исследуем возможность того, что этот резонансный контур социального мозга играет важную роль в развитии внимательного осознавания.

Кпереди от моторной и премоторной областей находится префронтальная кора . Эта префронтальная область наиболее развита у людей и опосредует множество функций, которые мы считаем уникальными для нашего биологического вида.

Области префронтальной коры

Префронтальные области можно разделить на участки, исполняющие разные функции (рис. 2.5).

Рис. 2.5. Области префронтальной коры.

Пока для наших целей мы просто разделим эти области на две части: латеральную и срединную. Области префронтальной коры в принципе работают совместно, и поэтому будет полезно рассмотреть их функции как единую систему.

Латеральная часть префронтальной области, дорсолатеральная префронтальная кора очень важна для кратковременной рабочей памяти , этой грифельной доски сознания, на которой мы можем в каждый данный момент поместить какую-либо картину. Эта латеральная область выполняет важные организующие (или управляющие) функции, позволяющие управлять поведением и направлять внимание на интересующий нас в данный момент объект .

Срединная область, соответствующая области от двух средних ногтевых пластин до средних фаланг, включает в себя несколько взаимосвязанных участков, которые отвечают за девять функций срединной префронтальной области .

Это орбитофронтальная кора, кора передней поясной извилины и вентролатеральная и медиальная префронтальная кора.

Медиальная орбитопрефронтальная кора

На рис. 2.5 орбитопрефронтальная кора и медиальная префронтальная кора объединены и обозначены как медиальная орбитопрефронтальная кора . На рис. 2.6 подчеркнута их близость к передним отделам поясной коры.

Рис. 2.6. Структуры социального мозга. Представленные на рисунке структуры скрыты под поверхностью мозга (Cozolino, 2006; воспроизведено с разрешения)

Эти расположенные вблизи средней линии вентральные и медиальные структуры получают входы непосредственно от всего мозга и проприоцептивных путей, в частности от островковой коры.

Островок - это проводящий путь, по которому информация поступает во внешний слой коры и исходит из нее, соединяя внутренние лимбические области (миндалевидное тело, гиппокамп, гипоталамус) и представительства участков тела (через ствол и спинной мозг).

Срединная префронтальная область использует полученные из островка данные об эмоциях и состоянии соматических органов, а затем создает представления о душевном состоянии других людей. Срединная префронтальная область играет важнейшую роль в социальной активности и в самонаблюдении. Эта область является узловым центром системы головного мозга, связанной с социальным взаимодействием (см. Функции срединной префронтальной коры ).

Обратите внимание, как срединная префронтальная область связывает тело, ствол мозга, лимбическую систему, корковые и социальные процессы в одно функциональное целое. Если вы поднимете пальцы и снова их опустите, то заметите, что на самом деле средняя префронтальная область (представленная кончиками двух средних пальцев) анатомически соприкасается со всеми структурами мозга, и в этом заключается природа нейрональной интеграции: разбросанные по всему телу синапсы помогают нам не только интегрировать деятельность организма, но и объединяться друг с другом.

Межличностная нейробиология, рассматривающая то, каким образом наша общественная жизнь помогает повышать ощущение благополучия, утверждает, что нейронная интеграция представляет собой следствие сонастроенных отношений.

Нейронная интеграция , координация и согласованность, заставляющие различные области мозга работать как единое функциональное целое, возникают, по всей видимости, в результате сонастройки на безопасные формы привязанности. Тем самым мы утверждаем, что, по-видимому, собранные данные указывают на то, что внимательное осознавание тоже способствует подобной нейронной интеграции, но в рамках внутриличностной сонастройки.

Осознавание переживаемого из мгновения в мгновение создает возможность для непосредственного восприятия и принятия своего ментального опыта. Подобное осознавание позволяет активировать и развивать различные участки мозга, включая важные лобные отделы коры и подкорковые лимбические структуры, а также ствол мозга, формируя интегрированное и согласованное состояние.

Нейронная интеграция , осуществляемая отчасти этими лобными областями, играет, вероятно, важную роль в процессах саморегуляции психической и телесной жизни.

Нам надо всегда помнить об этих передних отделах мозга, исследуя интегративные пути, имеющие первостепенное значение в достижении душевного и соматического благополучия.

Дэниел Сигел. Внимательный мозг .

Островковую долю нельзя рассматривать как рудиментарную часть мозга, наблюдается постепенное увеличение сложности организации доли от приматов к человеку. Так, исследования показали, что у макак (в зависимости от вида) островковая доля либо не имеет извилин и борозд, либо имеется одна орбитоинсулярная борозда . В островковой доле человека 5-7 борозд и извилин, и она занимает значительно больший объем в сравнении с аналогичной долей у обезьян. В то же время наиболее сильно (по непонятным причинам) развит островок у китообразных - до 20 борозд.

Островок - единственная доля мозга, не имеющая выхода на его поверхность. Она скрыта сверху и снизу частями лобной, теменной и височной долей, которые образуют соответственно три покрышки (оperculum), соприкасающиеся поверхности которых в свою очередь формируют глубокую часть сильвиевой щели.

Если удалить покрышки мозга, то островок предстанет в форме перевернутой пирамиды с основанием, обращенным к лобной доле. Центральная борозда островка делит его поверхность на две части: большую (переднюю) и меньшую (заднюю). Передняя состоит из трех отдельных коротких извилин (передняя, средняя, задняя), а также из не всегда встречающихся добавочной и поперечной извилин. Задняя часть доли состоит из двух длинных извилин: передней и задней. Все извилины сходятся к верхушке островка, которая представляет наиболее выступающую часть островковой доли. Также выделяют порог островка (limen) - слегка поднимающийся, дугообразный край, расположенный в месте соединения сфеноидального и оперкулярного сегментов сильвиевой щели . Под серым веществом, покрывающим порог островка, расположен крючковидный пучок. Переднее продырявленное вещество расположено сразу ниже и медиальнее порога островка. Среднее расстояние между местом вхождения самой латеральной лентикулостриарной артерии в переднее продырявленное вещество и медиальным краем порога островка, по данным разных авторов , составляет от 15 до 20 мм.

Под центральной частью островковой доли в латерально-медиальном направлении расположены: крайняя капсула, ограда, наружная капсула, скорлупа, бледный шар и внутренняя капсула (см. рисунок).

Правая островковая доля. а - вид сбоку и немного снизу, б - горизонтальный срез на уровне спайки свода .

Периметр островковой доли ограничен периинсулярными бороздами: верхней, передней и нижней, которые отделяют островок от окружающих его покрышек мозга. На латеральной поверхности доли лежит сегмент М2 средней мозговой артерии, от которой отходят перфорирующие сосуды, кровоснабжающие островок. Согласно исследованию U. Türe и соавт. , приблизительно 85-90% инсулярных артерий короткие и кровоснабжают только кору островковой доли и крайнюю капсулу, 10% артерий средней длины и доходят до ограды и наружной капсулы и только 3-5% длинные, кровоснабжающие лучистый венец. Таким образом, повреждение последних во время резекции опухолей островковой доли может приводить к гемипарезу.

Под передненижней частью островковой доли расположен сегмент М1 средней мозговой артерии, от которого отходят латеральные лентикулостриарные артерии, кровоснабжающие базальные ганглии и внутреннюю капсулу.

Функция островковой доли мозга

Островковая доля относится к паралимбической системе - части центральной нервной системы, служащей связующим звеном между лимбической системой (аллокортексом) и большими полушариями (неокортексом), и представлена мезокортексом, т. е. имеет от 3 до 5 слоев нейронов.

Функция островка долгое время была предметом острых споров среди исследователей. И даже сегодня нет единого мнения по этому вопросу. Например, клинические случаи ишемических инфарктов, локализованных только в островковой доле, проявляются разнообразными симптомами в зависимости от места и распространения патологического процесса. C. Cereda и соавт. выделяют 5 основных симптомокомплексов поражения коры островковой доли мозга: соматосенсорный дефицит (инфаркт в задней доле правого/левого островка), расстройство чувства вкуса (задняя доля левого островка), вестибулярный синдром (задняя доля правого/левого островка), сердечно-сосудистые нарушения (инфаркт в задней доле правого островка), нейропсихологические проявления (ишемическое поражение задних отделов правого/левого островка).

Интересные результаты получены A. Afif и соавт. при исследовании 25 пациентов с фармакорезистентной эпилепсией, которым были стереотаксически имплантированы электроды в островковую долю. Показаниями к их внедрению в островок были как клинические проявления приступов (вкусовые галлюцинации, неприятные ощущения в гортани, парестезии и тонико-клонические сокращения мышц лица, гиперсаливация), так и данные видеоэлектроэнцефалограммы.

В результате прямой стимуляции авторы получили следующее число ответов: нарушение речи (неспособность говорить или снижение интенсивности голоса) - 8, болевые ощущения (боль в краниофациальной области, или колющая боль в контралатеральной половине тела) - 8, соматосенсорные проявления (парестезии и ощущение жара) - 11, моторные ответы - 11, ротоглоточные проявления (чувство сжатия в гортани и удушения) - 8, слуховые феномены (звон, гул) - 3, нейровегетативные ответы (панические атаки, покраснение лица, головокружение, тошнота, неприятные ощущения в эпигастральной области, чувство жара) - 20.

Таким образом, островок участвует в процессе обработки сенсорных импульсов (обонятельных и вкусовых), контроле вегетативных функций (симпатический контроль сердечно-сосудистой системы), эмоций и поведенческих реакций, а также в произвольном глотании и процессе модуляции речи. Островковая доля, возможно, является частью нейрональной системы, связывающей супрамаргинальную извилину и зону Брока, и может участвовать (наряду с премоторной корой) в фонетическом планировании речи .

Классификация опухолей островковой доли мозга

В 1992 г. M. Yaşargil и соавт. опубликовали предварительные результаты лечения пациентов с опухолями лимбической и паралимбической системы. В этой, ставшей впоследствии классической, работе авторы выделили три основных типа опухолей, затрагивающих островковую долю: тип 3А - опухоль не выходит за пределы островковой доли, тип 3В - объемное образование, которое распространяется на прилежащие покрышки мозга, тип 5 - опухоль распространяется за пределы лобной и височной покрышек в орбитофронтальную или темпорополярную области. (Другие типы опухолей в этой же классификации: 1 - объемные образования медиобазальных отделов височной доли; 2 - опухоли поясной извилины, 4 - поражения форникса и мамиллярных тел.)

Долгое время данная классификация оставалась единственной. Новая классификация была предложена лишь в 2010 г. N. Sanai и соавт. . Авторы разделили островковую долю двумя перпендикулярными плоскостями, проходящими через отверстие Монро и сильвиеву щель. В результате островковая доля разбивается на IV зоны: I - передневерхнюю, II - задневерхнюю, III - задненижнюю, IV - передненижнюю. Если опухоль выходит за пределы одной зоны, она обозначается как сумма зон, в которых расположена. В случаях, когда объемное образование захватывает все зоны и выходит за их пределы, оно обозначается как giant.

Особенности глиальных опухолей островковой доли мозга

По последним эпидемиологическим данным, глиальные опухоли островковой доли от числа всех глиальных опухолей головного мозга высокой и низкой степени злокачественности составляют около 10 и 25% соответственно и имеют свойства, отличающие их от опухолей, расположенных в других частях мозга.

В соответствии с эпидемиологическими исследованиями , прослеживается явная тенденция к росту именно низкозлокачественных опухолей в островке (табл. 1).


Таблица 1. Соотношение высоко- (Grade III-IV) и низкозлокачественных (Grade I-II) глиом островковой доли мозга, по результатам гистологического исследования предшествующих серий

У пациентов с низкозлокачественным образованием в островке отмечено менее агрессивное течение опухолевого процесса, чем у пациентов с такой же патологией, но другой локализации. Ряд исследователей указывают на особенности цитоархитектоники данной области (мезокортекс), функциональные особенности доли, однако точная причина этого феномена до настоящего времени не совсем понятна.

Хирургическое лечение опухолей островковой области мозга

В связи с расположением островка вблизи важнейших сосудистых и нервных структур существует высокий риск нарастания неврологического дефицита после удаления опухолей этой локализации. В послеоперационном периоде могут возникнуть грубый гемипарез, а также выраженные нарушения речи, если опухоль локализуется в доминантном по речи полушарии, поэтому ряд авторов считают их неоперабельными. Методом выбора в этом случае считается проведение стереотаксической биопсии с верификацией гистологического диагноза и назначение радиотерапии и/или химиотерапии . Хотя существует много споров относительно необходимости радикального удаления глиом головного мозга, ряд исследователей все-таки считают ее важной для улучшения прогноза жизни у больных.

Одними из первых M. Yaşargil и соавт. обосновали возможность удаления этих опухолей с хорошими неврологическими результатами после хирургического вмешательства на большом количестве пациентов. В их исследование входили 57 больных с островковыми и островково-оперкулярными опухолями и 23 - с лобно-островково-височными образованиями. Несмотря на то что 67% опухолей были в диаметре больше 5 см, а 53% располагались в левом полушарии, основного объема резекции, по-видимому, удалось достигнуть в большинстве случаев. Степень резекции, однако, для каждого случая не сообщалась. У большей части больных опухоли были доброкачественными и не вызывали значимого неврологического дефицита. После операции у 8 (14%) пациентов из 1-й группы и 1 (4%) из 2-й появились «умеренные» неврологические нарушения в виде гемипареза, что требовало реабилитационных мероприятий. О речевых нарушениях при этом ничего не сообщается. После публикации M. Yaşargil вышло несколько работ, в которых анализировалось меньшее количество больных. Так, V. Vanaclocha и соавт. описали свой опыт хирургического лечения 23 больных с опухолями островка, расположенных в 70% случаев в левом полушарии. Полной резекции, по данным МРТ, удалось достигнуть в 20 из 23 случаев. Послеоперационный дефицит в виде гемипареза и дисфазии возник у 6 пациентов. J. Zentner и соавт. сообщили о подробном анализе 30 случаев опухолей островка. В целом с учетом до- и послеоперационного МРТ в 17% случаев произведена тотальная, в 70% - субтотальная и в 13% - частичная резекция. При этом гемипарез возник у 4 пациентов, а афазия - у 3. В итоге авторы отмечают, что у 63% больных послеоперационный период протекал достаточно тяжело и что риск оперативных вмешательств на островковой области достаточно велик (табл. 2).


Таблица 2. Функциональные исходы после операций по поводу внутримозговых опухолей островковой доли мозга

Существует несколько основных оперативных доступов к опухолям островка: 1) транссильвиевый, 2) транскортикальный (трансфронтальный или транстемпоральный) и 3) комбинированный (транскортикальный + транссильвиевый). В своей новаторской работе M. Yaşargil и соавт. использовали лишь транссильвиевый подход. Однако на сегодняшний день в мировой литературе нет однозначного мнения о том, какой из доступов можно считать наиболее оптимальным с точки зрения безопасности и возможности максимального обзора границ опухоли для ее максимальной резекции. Ряд авторов применяли транссильвиев доступ только при изолированных опухолях островка, а если она распространялась на лобную или височную области, то удаление начинали с транскортикального доступа и только потом использовали транссильвиевый. Другие авторы предпочитали только транссильвиевый доступ даже при опухолях лобно-островково-височной локализации. Сложности этого подхода связаны с возможностью повреждения как вен, так и артерий сильвиевой щели, что приводит к ишемии и, как следствие, к ухудшению неврологических функций после операции. Тракция оперкулярной области во время этого подхода также может стать причиной послеоперационного ухудшения . При транскортикальном доступе могут быть повреждены двигательные и речевые зоны, если опухоль расположена в доминантном полушарии (области Брока и Вернике).

Для предупреждения осложнений при транскортикальном доступе H. Duffau и соавт. у всех больных (51 человек) во время операции использовали электрофизиологическую стимуляцию коры и проводящих путей. Из них в 16 случаях проводилась краниотомия без отключенного сознания. Несмотря на ухудшение в 30 (59%) случаях непосредственно после операции, в последующем только у 2 человек сохранился неврологический дефицит. Послеоперационное МРТ показало, что 16% резекций были тотальными, 61% - субтотальными и 23% - парциальными.

F. Lang и соавт. при операции пациентов с опухолями островковой доли (22 человека) применяли только транссильвиевый доступ и для оптимизации хирургического доступа использовали безрамную навигацию. Во всех случаях проводилась электрофизиологическая стимуляция. Ультразвуковая навигация позволяла в определенной степени контролировать объем резекции опухоли. В результате у 10 больных удаление было тотальным, у остальных 12 - поровну: субтотальным (6) и частичным (6). В отдаленном послеоперационном периоде неврологический дефицит сохранился только у 2 больных. Основной причиной этого события авторы считают повреждение во время операции лентикулостриарных артерий. Для снижения вероятности пересечения этих артерий во время удаления опухоли F. Lang и соавт. тщательно анализировали соотношение этих артерий и опухоли по данным предоперационной МРТ (в стандартных режимах) и соответствующим образом планировали объем хирургического вмешательства. В предыдущих исследованиях H. Duffau для этой цели выполнял до операции КТ-ангиографию. В последней публикации была предложена МРТ в режиме 3D TOF, которая, по мнению авторов, наиболее четко отражала топографоанатомические соотношения между лентикулостриарными артериями и опухолью.

Только в 2 последних крупных исследованиях (M. Simon и соавт. , N. Sanai и соавт.) проведен детальный анализ выживаемости больных с опухолями островковой области в зависимости от их гистологии и объема резекции. В работу M. Simon и соавт. вошли 94 пациента, из которых 36% было с доброкачественными глиомами и 64% - со злокачественными. В результате 5-летняя общая и безрецидивная выживаемость для глиом Grade II составила соответственно 68 и 58%, для анапластических олигодендроглиом - 83 и 80%, для анапластических астроцитом - 61 и 51% соответственно. В недавнем исследовании N. Sanai и соавт. анализируются исходы лечения 104 пациентов, из них у 60% - доброкачественные глиомы и у 40% - злокачественные. В итоге 5-летняя общая выживаемость прооперированных для глиом Grade II составила 100% при степени резекции более 90% и приблизилась к 84% при степени резекции менее 90%. В том же самом контексте для злокачественных глиом 2-летняя общая выживаемость прооперированных составила 91% при степени резекции более 90% и приблизилась к 75% при степени резекции менее 90%. В итоге авторы пришли к заключению, что объем резекции достоверно влияет на общую и безрецидивную выживаемость.

Заключение

Несмотря на сложность анатомии островковой области мозга, в современных работах показано, что агрессивная резекция глиальных опухолей островка осуществима с приемлемой частотой послеоперационного неврологического дефицита.

Похожие публикации