Непредельные углеводороды. Алкены

Общая формула алкенов: C n H 2n (n 2)

Первые представители гомологического ряда алкенов:

Формулы алкенов можно составить из соответствующих формул алканов (предельных углеводородов). Названия алкенов образуют заменой суффикса -ан соответствующего алкана на -ен или –илен: бутан – бутилен, пентан –пентен и т.д. Номер атома углерода с двойной связью обозначается арабской цифрой после названия.

Атомы углерода, участвующие в образовании двойной связи находятся в состоянии sp-гибридизации. Три -связи, образованные гибридными орбиталям и, расположены в одной плоскости под углом 120° друг к другу. Дополнительная -связь образуется путем бокового перекрывания негибридных р-орбиталей:


Длина двойной связи С=С (0,133нм) меньше длины одинарной связи (0,154 нм). Энергия двойной связи меньше удвоенного значения энергии одинарной связи, поскольку энергия -связи меньше энергии -связи.

Изомеры алкенов

Все алкены кроме этилена имеют изомеры. Для алкенов характерна изомерия углеродного скелета, изомерия положения двойной связи, межклассовая и пространственная изомерии.

Межклассовым изомером пропена (C 3 H 6) является циклопропан. Начиная с бутена (C 4 H 8) появляется изомерия по положению двойной связи (бутен-1 и бутен-2), изомерия углеродного скелета (метилпропен или изобутилен), а также пространственная изомерия (цис-бутен-2 и транс-бутен-2). В цис- изомерах заместители расположены по одну сторону, а в транс- изомерах – по разные стороны от двойной связи.

Химические свойства и химическая активность алкенов определяются наличием в их молекулах двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения: гидрогалогенирование, гидратация, галогенирование, гидрирование, полимеризация.

Качественная реакция на двойную связь – обесцвечивание бромной воды:

Примеры решения задач по теме «формула алкенов»

ПРИМЕР 1

Задание Сколько изомеров, способных обесцвечивать бромную воду имеет вещество состава С 3 Н 5 Сl? Напишите структурные формулы этих изомеров
Решение С 3 Н 5 Сl представляет собой монохлорпроизводное от углеводорода С 3 Н 6 . Этой формуле отвечает либо пропен – углеводород с одной двойной связью, либо циклопропан (циклический углеводород). Данное вещество обесцвечивает бромную воду, значит, в его составе есть двойная связь. Три атома углерода могут образовать только такую структуру:

поскольку изомерия углеродного скелета и положения двойной связи при таком количестве атомов углерода невозможна.

Структурная изомерия в данной молекуле возможна только за счет изменения положения атома хлора относительно двойной связи:

Для 1-хлорпропена возможна цис-транс-изомерия:

Ответ Условию задачи удовлетворяют 4 изомера

ПРИМЕР 2

Задание Смесь изомерных углеводородов (газов с плотностью по водороду равной 21) объемом 11,2 л (н.у.) вступила в реакцию с бромной водой. В результате было получено 40,4 г соответствующего дибромпроизводного. Какое строение имеют эти углеводороды? Определите их объемное содержание в смеси (в %).
Решение Общая формула углеводородов C х H у.

Рассчитаем молярную массу углеводородов:

Следовательно, формула углеводородов – С 3 Н 6 . Такую формулу имеют только два вещества – пропен и циклопропан.

С бромной водой реагирует только пропен:

Рассчитаем количество вещества дибромпроизводного:

По уравнению реакции:

n(пропена) моль

Суммарное количество углеводородов в смеси равно:

4. Химические свойства алкенов

Энергия двойной углерод-углеродной связи в этилене (146 ккал/моль) оказывается значительно более низкой, чем удвоенная энергия одинарной С-С-связи в этане (2 88=176 ккал/моль). -Связь С-С в этилене прочнее -связи, поэтому реакции алкенов, сопровождающиеся разрывом -связи с образованием двух новых простых -связей, представляют собой термодинамически благоприятный процесс. Так, например, в газовой фазе согласно расчетным данным все приведенные ниже реакции являются экзотермическими со значительной отрицательной энтальпией, независимо от их реального механизма.

С точки зрения теории молекулярных орбиталей также можно сделать вывод о большей реакционной способности -связи по сравнению с -связью. Рассмотрим молекулярные орбитали этилена (рис. 2).

Действительно, связывающая -орбиталь этилена имеет более высокую энергию, чем связывающая -орбиталь, и наоборот, разрыхляющая *-орбиталь этилена лежит ниже разрыхляющей *-орбитали связи С=С. В обычных условиях *- и *-орбитали этилена вакантны. Следовательно, граничными орбиталями этилена и других алкенов, определяющими их реакционную способность будут -орбитали.

4.1. Каталитическое гидрирование алкенов

Несмотря на то, что гидрирование этилена и других алкенов до алканов, сопровождается выделением тепла, эта реакция с заметной скоростью идет только в присутствии определенных катализаторов. Катализатор, по определению, не влияет на тепловой эффект реакции, и его роль сводится к понижению энергии активации. Следует различать гетерогенное и гомогенное каталитическое гидрирование алкенов. В гетерогенном гидрировании используются тонкоизмельченные металлические катализаторы - платина, палладий, рутений, родий, осмий и никель либо в чистом виде, либо нанесенные на инертные носители - BaSO 4 , CaCO 3 , активированный уголь, Al 2 O 3 и т. д. Все они нерастворимы в органических средах и действуют как гетерогенные катализаторы. Наибольшую активность среди них проявляют рутений и родий, но наибольшее распространение получил платина и никель. Платину обычно применяют в виде черного диоксида PtO 2 , широко известного под названием "катализатора Адамса". Диоксид платины получают при сплавлении платинохлористоводородной кислоты H 2 PtCl 6 . 6H 2 O или гексахлорплатината аммония (NH 4) 2 PtCl 6 с нитратом натрия. Гидрирование алкенов с катализатором Адамса проводят обычно при нормальном давлении и температуре 20-50 0 С в спирте, уксусной кислоте, этилацетате. При пропускании водорода двуокись платины восстанавливается непосредственно в реакционном сосуде до платиновой черни, которая и катализирует гидрирование. Другие более активные металлы платиновой группы используют на инертных носителях, например, Pd/C или Pd/BaSO 4 , Ru/Al 2 O 3 ; Rh/C и др. Палладий, нанесенный на уголь, катализирует гидрирование алкенов до алканов в спиртовом растворе при 0-20 0 С и нормальном давлении. Никель обычно используется в виде так называемого "никеля Ренея". Для получения этого катализатора сплав никеля с алюминием обрабатывают горячей водной щелочью для удаления почти всего алюминия и далее водой до нейтральной реакции. Катализатор имеет пористую структуру, и поэтому называется также скелетным никелевым катализатором. Типичные условия гидрирования алкенов над никелем Ренея требуют применения давления порядка 5-10 атм и температуры 50-100 0 С, т. е. этот катализатор значительно менее активен, чем металлы платиновой группы, но он белее дешев. Ниже приведены некоторые типичные примеры гетерогенного каталитического гидрирования ациклических и циклических алкенов:

Так как оба атома водорода присоединяются к атомам углерода двойной связи с поверхности металла-катализатора, обычно присоединение происходит с одной стороны двойной связи. Этот тип присоединения называется син -присоединением. В тех случаях когда два фрагмента реагента присоединяются с различных сторон кратной связи (двойной или тройной) имеет место анти -присоединение. Термины син - и анти - по смыслу эквивалентны терминам цис - и транс -. Для того, чтобы избежать путаницы и недоразумений термины син - и анти - относятся к типу присоединения, а термины цис - и транс - к строению субстрата.

Двойная связь в алкенах гидрируется с большей скоростью по сравнению со многими другими функциональными группами (С=О, COOR, CN и др.) и поэтому гидрирование двойной связи С=С часто представляет собой селективный процесс, если гидрирование ведется в мягких условиях (0-20 0 С и при атмосферном давлении). Ниже приведены некоторые типичные примеры:

Бензольное кольцо не восстанавливается в этих условиях.

Большим и принципиально важным достижением в каталитическом гидрировании является открытие растворимых комплексов металлов, которые катализируют гидрирование в гомогенном растворе. Гетерогенное гидрирование на поверхности металлических катализаторов имеет ряд существенных недостатков, таких, как изомеризация алкенов и расщепление одинарных углерод-углеродных связей (гидрогенолиз). Гомогенное гидрирование лишено этих недостатков. За последние годы получена большая группа катализаторов гомогенного гидрирования - комплексов переходных металлов, содержащих различные лиганды. Лучшими катализаторами гомогенного гидрирования являются комплексы хлоридов родия (I) и рутения (III) с трифенилфосфином - трис(трифенилфосфин)родийхлорид (Ph 3 P) 3 RhCl (катализатор Уилкинсона) и гидрохлорид трис(трифенилфосфин)рутения (Ph 3 P) 3 RuHCl. Наиболее доступен родиевый комплекс, который получается при взаимодействии хлорида родия (III) с трифенилфосфином. Родиевый комплекс Уилкинсона используется для гидрирования двойной связи в обычных условиях.

Важное преимущество гомогенных катализаторов заключается в возможности селективного восстановления моно- или дизамещенной двойной связи в присутствии три- и тетразамещенной двойной связи из-за больших различий в скорости их гидрирования.

В случае гомогенных катализаторов присоединение водорода также происходит как син -присоединение. Так восстановление цис -бутена-2 дейтерием в этих условиях приводит к мезо -2,3-дидейтеробутану.

4.2. Восстановление двойной связи с помощью диимида

Восстановление алкенов до соответствующих алканов может быть с успехом осуществлено с помощью диимида NH=NH.

Диимид получают двумя основными методами: окислением гидразина пероксидом водорода в присутствии ионов Cu 2+ или взаимодействием гидразина с Ni-Ренея (дегидрирование гидразина). Если в реакционной смеси присутствует алкен, его двойная связь под действием очень нестабильного диимида подвергается гидрированию. Отличительной особенностью этого метода является строгая син -стереоспецифичность процесса восстановления. Полагают, что эта реакция протекает через циклический активированный комплекс со строгой ориентацией обеих реагирующих молекул в пространстве.

4.3. Реакции электрофильного присоединения по двойной связи алкенов

Граничными орбиталями ВЗМО и НСМО алкенов являются занятая - и пустая *-орбитали. Следовательно, в реакциях с электрофилами (Е +) будет участвовать -орбиталь, а в реакциях с нуклеофилами (Nu -) - *-орбиталь связи С=С (см. рис. 3). В большинстве случаев простые алкены легко вступают в реакции с электрофилами, а с нуклеофилами реагируют с большим трудом. Это объясняется тем, что обычно НСМО большинства электрофилов по энергии близки к энергии -ВЗМО алкенов, тогда как ВЗМО большинства нуклеофилов лежат значительно ниже *-НСМО.

Простые алкены реагируют лишь с очень сильными нуклеофильными агентами (карбанионы) в жестких условиях, однако введение электроноакцепторных групп в алкены, например, NO 2 , COR и др., приводит к понижению *-уровня, благодаря чему алкен приобретает способность реагировать с нуклеофилами средней силы (аммиак, RO - , Nє C - , енолят-анион и т. д.).

В результате взаимодействия электрофильного агента Е + с алкеном образуется карбокатион, обладающий высокой реакционной способностью. Карбокатион далее стабилизируется за счет быстрого присоединения нуклеофильного агента Nu - :

Поскольку медленной стадией является присоединение электрофила, то процесс присоединения любого полярного агента Е + Nu - следует рассматривать именно как электрофильное присоединение к кратной связи алкена. Известно большое число реакций этого типа, где роль электрофильного агента выполняют галогены, галогеноводороды, вода, соли двухвалентной ртути и другие полярные реагенты. Электрофильное присоединение к двойной связи в классификации механизмов органических реакций имеет символ Аd E (Addition Electrophilic ) и в зависимости от числа реагирующих молекул обозначается как Аd E 2 (бимолекулярная реакция) или Аd E 3 (тримолекулярная реакция).

4.3.а. Присоединение галогенов

Алкены реагируют с бромом и хлором с образованием продуктов присоединения по двойной связи одной молекулы галогена с выходом близким к количественному. Фтор слишком активен и вызывает деструкцию алкенов. Присоединение йода к алкенам в большинстве случаев представляет собой обратимую реакцию, равновесие которой смещено в сторону исходных реагентов.

Быстрое обесцвечивание раствора брома в СCl 4 служит одним из простейших тестов на ненасыщенность, поскольку и алкены, и алкины, и диены быстро реагируют с бромом.

Присоединение брома и хлора к алкенам происходит по ионному, а не по радикальному механизму. Этот вывод следует из того, что скорость присоединения галогена не зависит от облучения, присутствия кислорода и других реагентов, инициирующих или ингибирующих радикальные процессы. На основании большого числа экспериментальных данных для этой реакции был предложен механизм, включающий несколько последовательных стадий. На первой стадии происходит поляризация молекулы галогена под действием электронов -связи. Атом галогена, приобретающий некоторый дробный положительный заряд, образует с электронами -связи нестабильный интермедиат, называемый -комплексом или комплексом с переносом заряда. Следует отметить, что в -комплексе галоген не образует направленной связи с каким-нибудь конкретным атомом углерода; в этом комплексе просто реализуется донорно-акцепторное взаимодействие электронной пары -связи как донора и галогена как акцептора.

Далее -комплекс превращается в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая р -орбиталь sp 2 -гибридизованного атома углерода перекрывается с р -орбиталью "неподеленной пары" электронов атома галогена, образуя циклический ион бромония.

На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трехчленного цикла и образованию вицинального дибромида (vic -рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение S N 2 у атома углерода, где уходящей группой является Br+ .

Присоединение галогенов к двойной связи алкенов представляет собой одну из формально простых модельных реакций, на примере которой можно рассмотреть влияние основных факторов, позволяющих сделать аргументированные выводы о детальном механизме процесса. Для обоснованных выводов о механизме любой реакции следует располагать данными по: 1) кинетике реакции; 2) стереохимии (стереохимический результат реакции); 3) наличию или отсутствию сопряженного, конкурирующего процесса; 4) влиянию заместителей в исходном субстрате на скорость реакции; 5) использованию меченых субстратов и (или) реагентов; 6) возможности перегруппировок в ходе реакции; 7) влиянию растворителя на скорость реакции.

Рассмотрим эти факторы на примере галогенирования алкенов. Кинетические данные дают возможность установить порядок реакции по каждому компоненту и на этом основании сделать вывод об общей молекулярности реакции, т. е. о числе реагирующих молекул.

Для бромирования алкенов скорость реакции как правило описывается следующим уравнением:

v = k`[алкен] + k``[алкен] 2 ,

которое в редких случаях упрощается до

v = k`[алкен].

На основании кинетических данных можно сделать вывод о том, что в определяющей скорость стадии принимает участие одна или две молекулы брома. Второй порядок по брому означает, что с бромониевым ионом реагирует не бромид-ион Br - , а трибромид-ион , образующийся при взаимодействии брома и бромид-иона:

Это равновесие сдвинуто вправо. Кинетические данные не позволяют сделать какие-либо другие выводы о структуре переходного состояния и природе электрофильной частицы в реакции присоединения галогена по двойной связи. Наиболее ценную информацию о механизме этой реакции представляют данные по стереохимии присоединения. Присоединение галогена к двойной связи представляет собой стереоспецифический процесс (процесс, в котором образуется только один из возможных стереоизомеров; в стереоселективном процессе наблюдается преимущественное образование одного стереомера) анти -присоединения для алкенов и циклоалкенов, у которых двойная связь не сопряжена с бензольным кольцом. Для цис - и транс -изомеров бутена-2, пентена-2, гексена-3, циклогексена, циклопентена и других алкенов присоединение брома происходит исключительно как анти -присоединение. При этом в случае циклогексена образуется исключительно транс -1,2-дибромциклогексан (смесь энантиомеров).

Транс-расположение атомов брома в 1,2-дибромциклогексане можно упрощенно изобразить относительно средней плоскости циклогексанового кольца (без учета конформаций ):

При присоединении брома к циклогексену первоначально образуется транс -1,2-дибромциклогексан в а,а -конформации, которая затем сразу же переходит в энергетически более выгодную е,е -конформацию. Анти -присоединение галогенов к двойной связи позволяет отвергнуть механизм одностадийного синхронного присоединения одной молекулы галогена к двойной связи, которое может осуществляться только как син -присоединение. Анти -присоединение галогена не согласуется также и с образованием открытого карбкатиона RCH + -CH 2 Hal в качестве интермедиата. В открытом карбокатионе возможно свободное вращение вокруг С-С-связи, что должно приводить после атаки аниона Br - к образованию смеси продуктов как анти -, так и син -присоединения. Стереоспецифическое анти -присоединение галогенов явилось главной причиной создания концепции бромониевого или хлорониевого ионов в качестве дискретных промежуточных частиц. Эта концепция идеально удовлетворяет правилу анти -присоединения, поскольку нуклеофильная атака галогенид-иона возможна с анти -стороны по любому из двух атомов углерода галогенониевого иона по S N 2 механизму.

В случае несимметрично замещенных алкенов это должно приводить к двум энантиомерам трео -формы при присоединении брома к цис -изомеру или к энантиомерам эритро -формы при галоидировании транс -изомера. Это действительно наблюдается при присоединении брома, например, к цис - и транс -изомерам пентена-2.

В случае бромирования симметричных алкенов, например, цис - или транс -гексенов-3 должны образоваться или рацемат (D,L -форма), или мезо -форма конечного дибромида, что и наблюдается в действительности.

Имеется независимое, прямое доказательство существования галогенониевых ионов в ненуклеофильной, индифферентной среде при низкой температуре. С помощью ЯМР-спектроскопии было зарегистрировано образование бромониевых ионов при ионизации 3-бром-2-метил-2-фторбутана при действии очень сильной кислоты Льюиса пятифтористой сурьмы в растворе жидкой двуокиси серы при -80 0 С.

Этот катион достаточно стабилен при -80 0 С в ненуклеофильной среде, но мгновенно разрушается при действии любых нуклеофильных агентов или при нагревании.

Циклические ионы бромония иногда могут быть выделены в чистом виде, если пространственные препятствия мешают их раскрытию при действии нуклеофилов:

Понятно, что возможность существования довольно стабильных в специальных условиях бромониевых ионов не может служить прямым доказательством их образования в реакции присоединения брома к двойной связи алкена в спирте, уксусной кислоте и других электронодонорных растворителях. Такие данные следует рассматривать лишь как независимое подтверждение принципиальной возможности образования галогенониевых ионов в процессе электрофильного присоединения по двойной связи.

Концепция галогенониевых иона позволяет дать рациональное объяснение обратимости присоединения йода к двойной связи. В катионе галогенония есть три электрофильных центра, доступных нуклеофильной атаке галогенид-аниона: два атома углерода и атом галогена. В случае хлорониевых ионов, анион Cl - , по-видимому, преимущественно или даже исключительно атакует углеродные центры катиона. Для бромониевого катиона равно вероятны оба направления раскрытия галогенониевого иона как за счет атаки бромид-иона по обоим атомам углерода, так и по атому брома. Нуклеофильная атака по атому брома бромониевого иона приводит к исходным реагентам брому и алкену:

Иодониевый ион раскрывается преимущественно в результате атаки иодид-иона по атому йода, и поэтому равновесие между исходными реагентами и иодониевым ионом смещено влево.

Кроме того, конечный продукт присоединения - вицинальный дииодид может подвергаться нуклеофильной атаке по атому йода присутствующим в растворе трииодид-анионом , что также приводит к образованию исходных реагентов алкена и иода. Другими словами, в условиях реакции присоединения происходит деиодирование образующегося вицинального дииодида под действием трииодид-аниона. Вицинальные дихлориды и дибромиды не дегалогенируются в условиях реакции присоединения соответственно хлора или брома к алкенам.

Анти-присоединение хлора или брома характерно для алкенов, у которых двойная связь не сопряжена с -электронами бензольного кольца. Для стирола, стильбена и их производных наряду с анти -присоединением имеет место и син -присоединение галогена, которое в полярной среде может стать даже доминирующим.

В тех случаях, когда присоединение галогена к двойной связи проводится в среде нуклеофильных растворителей, растворитель эффективно конкурирует с галогенид-ионом при раскрытии трехчленного цикла галогенониевого иона:

Образование продуктов присоединения с участием растворителя или какого-либо иного "внешнего" нуклеофильного агента носит название реакции сопряженного присоединения. При взаимодействии брома и стирола в метаноле образуется два продукта: вицинальный дибромид и бромэфир, соотношение которых зависит от концентрации брома в метаноле

В сильно разбавленном растворе доминирует продукт сопряженного присоединения, а в концентрированном растворе, напротив, преобладающий вицинальный дибромид. В водном растворе всегда преобладает галогенгидрин (спирт, содержащий галоген при -углеродном атоме) - продукт сопряженного присоединения.

ее-Конформер транс -2-хлорциклогексанола дополнительно стабилизирован водородной связью О-Н . . . Cl. В случае несимметричных алкенов в реакциях сопряженного присоединения галоген всегда присоединяется к атому углерода, содержащему наибольшее количество атомов водорода, а нуклеофильный агент к углероду с меньшим количеством атомов водорода. Изомерный продукт с иным расположением присоединяющихся групп не образуется. Это означает, что образующийся в качестве интермедиата циклический галогенониевый ион должен иметь несимметричную структуру с двумя различающимися по энергии и прочности связями С 1 -Hal и С 2 -Hal и большим положительным зарядом на внутреннем атоме углерода С 2 , что можно графически выразить двумя способами:

Поэтому нуклеофильной атаке растворителем подвергается атом углерода С 2 галогенониевого иона несмотря на то, что он более замещен и стерически менее доступен.

Один из лучших препаративных методов синтеза бромгидринов заключается в гидроксибромировании алкенов с помощью N-бромсукцинимида ( NBS ) в бинарной смеси диметилсульфоксида (ДМСО ) и воды.

Данную реакцию можно проводить в воде и без ДМСО , однако выходы бромгидринов в этом случае несколько ниже.

Образование продуктов сопряженного присоединения в реакции галогенирования алкенов также позволяет отвергнуть синхронный механизм присоединения одной молекулы галогена. Сопряженное присоединение к двойной связи находится в хорошем соответствии с двухстадийным механизмом с участием катиона галогенония в качестве интермедиата.

Для реакции электрофильного присоединения к двойной связи следует ожидать увеличения скорости реакции при наличии электронодонорных алкильных заместителей и ее уменьшения при наличии электроноакцепторных заместителей при двойной связи. Действительно, скорость присоединения хлора и брома к двойной связи резко возрастает при переходе от этилена к его метилзамещенным производным. Например, скорость присоединения брома к тетраметилэтилену в 10 5 раз выше, чем скорость его присоединения к бутену-1. Такое громадное ускорение определенно указывает на высокую полярность переходного состояния и высокую степень разделения зарядов в переходном состоянии и согласуется с элетрофильным механизмом присоединения.

В некоторых случаях присоединение хлора к алкенам, содержащим электронодонорные заместители, сопровождается отщеплением протона из промежуточного соединения вместо присоединения хлорид-иона. Отщепление протона приводит к образованию хлорзамещенного алкена, которое формально можно рассматривать как прямое замещение с миграцией двойной связи. Однако опыты с изотопной меткой указывают на более сложный характер происходящих здесь превращений. При хлорировании изобутилена при 0 0 С образуется 2-метил-3-хлорпропен (металлилхлорид) вместо ожидаемого дихлорида - продукта присоединения по двойной связи.

Формально как будто идет замещение, а не присоединение. Изучение этой реакции с использованием изобутилена меченного в положение 1 изотопом 14 С, показало, что прямое замещение водорода хлором не происходит, так как в образующемся металлилхлориде метка находится в группе 14 СН 2 Cl. Этот результат можно объяснить следующей последовательностью превращений:

В отдельных случаях может происходить также 1,2-миграция алкильной группы

В ССl 4 (неполярный растворитель) эта реакция дает практически 100% дихлорида Б - продукта обычного присоединения по двойной связи (без перегруппировки).

Скелетные перегруппировки подобного типа наиболее характерны для процессов с участием открытых карбокатионов в качестве промежуточных частиц. Не исключено, что присоединение хлора в этих случаях идет не через хлорониевый ион, а через катионную частицу, близкую к открытому карбокатиону. Вместе с тем следует отметить, что скелетные перегруппировки явление достаточно редкое в процессах присоединения галогенов и смешанных галогенов по двойной связи: они чаще наблюдаются при присоединении хлора и гораздо реже при присоединении брома. Вероятность таких перегруппировок увеличивается при переходе от неполярных растворителей (ССl 4) к полярным (нитрометан, ацетонитрил).

Суммируя приведенные данные по стереохимии, сопряженному присоединению, влияние заместителей в алкене, а также перегруппировкам в реакциях присоединения галогенов по двойной связи, следует отметить, что они находятся в хорошем соответствии с механизмом электрофильного присоединения с участием циклического галогенониевого иона. Таким же образом могут быть интерпретированы данные по присоединению к алкенам смешанных галогенов, для которых стадийность присоединения определяется полярностью связи двух атомов галогена.

Содержащие пи-связь - это непредельные углеводороды. Они являются производными алканов, в молекулах которых произошло отщепление двух атомов водорода. Образовавшиеся свободные валентности формируют новый тип связи, которая располагается перпендикулярно плоскости молекулы. Так возникает новая группа соединений - алкены. Физические свойства, получение и применение веществ этого класса в быту и промышленности мы рассмотрим в этой статье.

Гомологический ряд этилена

Общая формула всех соединений, называемых алкенами, отражающая их качественный и количественный состав, - это C n H 2 n . Названия углеводородов по систематической номенклатуре имеют следующий вид: в термине соответствующего алкана изменяется суффикс с -ан на -ен, например: этан - этен, пропан - пропен и т. д. В некоторых источниках можно встретить еще одно название соединений этого класса - олефины. Далее мы изучим процесс образования двойной связи и физические свойства алкенов, а также определим их зависимость от строения молекулы.

Как образуется двойная связь

Электронную природу пи-связи на примере этилена можно представить следующим образом: атомы карбона в его молекуле находятся в форме sp 2 -гибридизации. В этом случае формируется сигма-связь. Еще две гибридные орбитали - по одной от атомов углерода, формируют простые сигма-связи с водородными атомами. Два оставшихся свободных гибридных облака атомов карбона перекрываются над и под плоскостью молекулы - образуется пи-связь. Именно она определяет физические и химические свойства алкенов, речь о которых пойдет далее.

Пространственная изомерия

Соединения, имеющие один и тот же количественный и качественный состав молекул, но различное пространственное строение, называются изомерами. Изомерия встречается в группе веществ, называемых органическими. На характеристику олефинов большое влияние оказывает явление оптической изомерии. Она выражается в том, что гомологи этилена, содержащие у каждого из двух углеродных атомов при двойной связи различные радикалы или заместители, могут встречаться в форме двух оптических изомеров. Они отличаются друг от друга положением заместителей в пространстве относительно плоскости двойной связи. Физические свойства алкенов в этом случае также будут разными. Например, это касается температур кипения и плавления веществ. Так, олефины неразветвленного строения углеродного скелета имеют более высокие температуры кипения, чем соединения-изомеры. Также температуры кипения цис-изомеров алкенов выше, чем транс-изомеров. В отношении температур плавления картина противоположная.

Сравнительная характеристика физических свойств этилена и его гомологов

Первые три представителя олефинов являются газообразными соединениями, затем, начиная с пентена C 5 H 10 и до алкена с формулой C 17 H 34 , - жидкости, а далее идут твердые вещества. У гомологов этена прослеживается следующая тенденция: температуры кипения соединений снижаются. Например, у этилена этот показатель равен -169,1°C, а у пропилена -187,6°C. Зато температуры кипения с увеличением молекулярной массы повышаются. Так, у этилена она равна -103,7°C, а у пропена -47,7°C. Подводя итог сказанному, можно сделать вывод, звучащий кратко: физические свойства алкенов зависят от их молекулярной массы. С ее увеличением изменяется агрегатное состояние соединений в направлении: газ - жидкость - твердое вещество, а также снижается температура плавления, а температуры кипения возрастают.

Характеристика этена

Первый представитель гомологического ряда алкенов - это этилен. Он является газом, малорастворимым в воде, но хорошо растворяющимся в органических растворителях, не имеющим цвета. Молекулярная масса - 28, этен немного легче воздуха, имеет едва уловимый сладковатый запах. Он легко вступает в реакции с галогенами, водородом и галогеноводородами. Физические свойства алкенов и парафинов тем не менее достаточно близки. Например, агрегатное состояние, способность метана и этилена к жесткому окислению и т. д. Как же можно различить алкены? Как выявить непредельный характер олефина? Для этого существуют качественные реакции, на которых мы и остановимся подробнее. Напомним, какую особенность в строении молекулы имеют алкены. Физические и химические свойства этих веществ определяются наличием в их составе двойной связи. Чтобы доказать ее присутствие, пропускают газообразный углеводород через фиолетовый раствор перманганата калия или бромную воду. Если они обесцветились, значит, соединение содержит в составе молекул пи-связи. Этилен вступает в реакцию окисления и обесцвечивает растворы KMnO 4 и Br 2 .

Механизм реакций присоединения

Разрыв двойной связи заканчивается присоединением к свободным валентностям карбона атомов других химических элементов. Например, при взаимодействии этилена с водородом, называемом гидрогенизацией, получается этан. Необходим катализатор, например порошковидный никель, палладий или платина. Реакция с HCl заканчивается образованием хлорэтана. Алкены, содержащие более двух атомов углерода в составе своих молекул, проходят реакцию присоединения галогеноводородов с учетом правила В. Марковникова.

Как гомологи этена взаимодействуют с галогеноводородами

Если перед нами стоит задание "Охарактеризуйте физические свойства алкенов и их получение", нам нужно рассмотреть правило В. Марковникова более подробно. Практическим путем установлено, что гомологи этилена реагируют с хлороводородом и другими соединениями по месту разрыва двойной связи, подчиняясь некоторой закономерности. Она заключается в том, что атом водорода присоединяется к наиболее гидрогенизированному углеродному атому, а ион хлора, брома или йода - к карбоновому атому, содержащему наименьшее количество атомов водорода. Эта особенность протекания реакций присоединения получила название правила В. Марковникова.

Гидратация и полимеризация

Продолжим далее рассматривать физические свойства и применение алкенов на примере первого представителя гомологического ряда - этена. Его реакция взаимодействия с водой используется в промышленности органического синтеза и имеет важное практическое значение. Впервые процесс был проведен еще в XIX веке А.М. Бутлеровым. Реакция требует выполнения ряда условий. Это, прежде всего, использование концентрированной серной кислоты или олеума в качестве катализатора и растворителя этена, давление порядка 10 атм и температура в пределах 70°. Процесс гидратации происходит в две фазы. Вначале по месту разрыва пи-связи к этену присоединяются молекулы сульфатной кислоты, при этом образуется этилсерная кислота. Затем полученное вещество реагирует с водой, получается этиловый спирт. Этанол - важный продукт, применяемый в пищевой промышленности для получения пластмасс, синтетических каучуков, лаков и других продуктов органической химии.

Полимеры на основе олефинов

Продолжая изучать вопрос применения веществ, относящихся к классу алкенов, изучим процесс их полимеризации, в котором могут участвовать соединения, содержащие непредельные химические связи в составе своих молекул. Известно несколько типов реакции полимеризации, по которым происходит образование высокомолекулярных продуктов - полимеров, например таких как полиэтилен, полипропилен, полистирол и т. д. Свободнорадикальный механизм приводит к получению полиэтилена высокого давления. Это одно из наиболее широко применяемых соединений в промышленности. Катионно-ионный тип обеспечивает получение полимера стереорегулярного строения, например полистирола. Он считается одним из наиболее безопасных и удобных в использовании полимеров. Изделия из полистирола устойчивы к агрессивным веществам: кислотам и щелочам, негорючие, легко окрашиваются. Еще один вид механизма полимеризации - димеризация, он приводит к получению изобутена, применяемого в качестве антидетонационной добавки к бензину.

Способы получения

Алкены, физические свойства которых мы изучаем, получают в лабораторных условиях и промышленности различными методами. В опытах в школьном курсе органической химии используют процесс дегидратации этилового спирта с помощью водоотнимающих средств, например таких, как пятиокись фосфора или сульфатная кислота. Реакция проводится при нагревании и является обратной процессу получения этанола. Еще один распространенный способ получения алкенов нашел свое применение в промышленности, а именно: нагревание галогенопроизводных предельных углеводородов, например хлорпропана с концентрированными спиртовыми растворами щелочей - гидроксида натрия или калия. В реакции происходит отщепление молекулы хлороводорода, по месту появления свободных валентностей атомов карбона образуется двойная связь. Конечным продуктом химического процесса будет олефин - пропен. Продолжая рассматривать физические свойства алкенов, остановимся на главном процессе получения олефинов - пиролизе.

Промышленное производство непредельных углеводородов ряда этилена

Дешевое сырье - газы, образующиеся в процессе крекинга нефти, служат источником получения олефинов в химической промышленности. Для этого применяют технологическую схему пиролиза - расщепление газовой смеси, идущее с разрывом углеродных связей и образованием этилена, пропена и других алкенов. Пиролиз проводят в специальных печах, состоящих из отдельных пирозмеевиков. В них создается температура порядка 750-1150°C и присутствует водяной пар в качестве разбавителя. Реакции происходят по цепному механизму, идущему с образованием промежуточных радикалов. Конечный продукт - это этилен или пропен, их получают в больших объемах.

Мы подробно изучили физические свойства, а также применение и способы получения алкенов.

Алкеновые углеводороды (олефины) являются одним из классов органических веществ, которым присущи свои . Виды изомерии алкенов у представителей данного класса не повторяются с изомерией других органических веществ.

Вконтакте

Характерные признаки класса

Этиленовыми олефинами именуют один из классов непредельных углеводородов, содержащих одну двойную связь.

По физическим свойствам представители данной категории непредельных соединений являются:

  • газами,
  • жидкостями,
  • твердыми соединениями.

В составе молекул присутствует не только «сигма»-связь, но и «пи»-связь. Причиной этому является наличие в структурной формуле гибридизации «sp2 », которой свойственно расположение атомов соединения в одной плоскости.

При этом между ними формируется угол не менее ста двадцати градусов. Негибридизованным орбиталям «р » свойственно расположение как поверх молекулярной плоскости, так и под ней.

Такая особенность строения приводит к формированию дополнительных связей – «пи» или «π ».

Описанная связь менее прочна по сравнению с «сигма»-связями, так как перекрывание боком имеет слабое сцепление. Для суммарного распределения электронных плотностей образующихся связей характерна неоднородность. При вращении возле углерод-углеродной связи происходит нарушение перекрывания «р»-орбиталей. Для каждого алкена (олефина) такая закономерность является отличительным признаком.

Практически всем этиленовым соединениям присущи высокие температуры кипения и плавления, характерные не для всех органических веществ. Представители указанного класса непредельных углеводов быстро растворяются в и других растворителях органического состава.

Внимание! Ациклические непредельные соединения этиленовые углеводороды имеют общую формулу — C n H 2n.

Гомология

Исходя из того, что общая формула алкенов C n H 2n , им присуща определенная гомология. Гомологический ряд алкенов начинает первый представитель этилен или этен. Данное вещество в обычных условиях является газом и содержит два атома углерода и четыре атома водорода – C 2 H 4 . За этеном гомологический ряд алкенов продолжает пропен и бутен. Их формулы следующие: «C 3 H 6 » и «C 4 H 8 ». При обычных условиях они также являются газами, которые тяжелее , а значит, собирать их необходимо пробиркой, перевернутой вниз дном.

Общая формула алкенов позволяет рассчитать следующего представителя данного класса, имеющего не менее пяти атомов углерода в структурной цепи. Это пентен с формулой «C 5 H 10 ».

По физическим характеристикам указанное вещество относится к жидкостям, так же как двенадцать следующих соединений гомологической линии.

Среди алкенов с указанными характеристиками есть и твердые вещества, которые начинаются с формулы C 18 H 36 . Жидким и твердым этиленовым углеводородам не свойственно растворение в воде, но при попадании в органические растворители они вступают с ними в реакцию.

Описанная общая формула алкенов подразумевает замену ранее стоявшего суффикса «ан» на «ен». Это закреплено правилами ИЮПАК. Какого бы представителя данной категории соединений мы не взяли, у них всех есть описанный суффикс.

В названии этиленовых соединений всегда присутствует определенная цифра, которая указывает на местоположение двойной связи в формуле. Примерами этого служит: «бутен-1» или «пентен-2». Атомную нумерацию начинают с того края, к которому ближе находится двойная конфигурация. Это правило является «железным» во всех случаях.

Изомерия

В зависимости от имеющегося вида гибридизации алкенов им присущи некоторые типы изомерии, каждый из которых имеет свои особенности и строение. Рассмотрим основные виды изомерии алкенов.

Структурного типа

Структурная изомерия подразделяется на изомеры по:

  • углеродному скелету;
  • расположению двойной связи.

Структурные изомеры углеродного скелета возникают в случае появления радикалов (ответвлений от главной цепи).

Изомерами алкенов указанной изомерии будут:

CH 2 =CHCH 2 CH 3.

2-метилпропен-1:

CH 2 =CCH 3

У представленных соединений общее количество углеродных и водородных атомов (C 4 H 8), но разное строение углеводородного скелета. Это структурные изомеры, хотя свойства их не одинаковы. Бутену-1 (бутилену) присущ характерный запах и наркотические свойства, раздражающие дыхательные пути. Данными особенностями не обладает 2-метилпропен-1.

В данном случае нет изомеров у этилена (C 2 H 4), так как он состоит только из двух углеродных атомов, куда нельзя подставить радикалы.

Совет! Радикал разрешается ставить к средним и предпоследним углеродным атомам, но не разрешается располагать их около крайних заместителей. Данное правило работает для всех непредельных углеводородов.

Относительно расположения двойной связи различают изомеры:

CH 2 =CHCH 2 CH 2 -CH 3.

CH 3 -СH= CHCH 2 -CH 3.

Общая формула алкенов у представленных примеров: C 5 H 10, , но местоположение одной двойной связи различное. Свойства указанных соединений будут различаться. Это структурная изомерия.

Изомерия

Пространственного типа

Пространственная изомерия алкенов связана с характером расположения углеводородных заместителей.

На основании этого различают изомеры:

  • «Цис»;
  • «Транс».

Общая формула алкенов позволяет создавать «транс-изомеры» и «цис-изомеры» у одного и того же соединения. Возьмем, к примеру, бутилен (бутен). Для него можно создать изомеры пространственного строения, по-разному расположив относительно двойной связи заместителей. С примерами изомерия алкенов будет выглядеть так:

«цис-изомер» «транс-изомер»

Бутен-2 Бутен-2

Из указанного примера видно, что у «цис-изомеров» по одну сторону плоскости расположения двойной связи находятся два одинаковых радикала. Для «транс-изомеров» это правило не работает, так как у них относительно углеродной цепи «С=С» располагаются два не похожих заместителя. Учитывая данную закономерность, можно самим строить «цис» и «транс» изомеры для различных ациклических этиленовых углеводородов.

Представленные «цис-изомер» и «транс-изомер» для бутена-2 невозможно превратить один в другой, так как для этого необходимо вращение вокруг имеющейся углеродной двойной цепочки (С=С). Чтобы осуществить данное вращение необходимо определенное количество энергии, чтобы разорвать существующую «p-связь».

На основании всего вышеизложенного можно сделать вывод, что изомеры «транс» и «цис» вида являются индивидуальными соединениями с определенным набором химических и физических свойств.

Нет изомеров у какого алкена. Пространственных изомеров не имеет этилен из-за одинакового расположения водородных заместителей относительно двойной цепи.

Межклассовые

Межклассовая изомерия у алкеновых углеводородов распространена значительно. Причиной этому служит сходность общей формулы представителей данного класса с формулой циклопарафинов (циклоалканов). У данных категорий веществ в одинаковое количество углеродных и водородных атомов, кратное составу (C n H 2n).

Межклассовые изомеры будут выглядеть так:

CH 2 =CHCH 3.

Циклопропан:

Выходит, что формуле C 3 H 6 отвечают два соединения: пропен-1 и циклопропан. Из структурного строения видно разное расположение углерода относительно друг друга. По свойствам указанные соединения также разные. Пропен-1 (пропилен) – это газообразное соединение с низкой температурой кипения. Для циклопропана характерно газообразное состояние с резким запахом и едким вкусом. Химические свойства данных веществ также различаются, но состав у них идентичен. В органический данный вид изомеров именуют межклассовым.

Алкены. Изомерия алкенов. ЕГЭ. Органическая химия.

Алкены: Строение, номенклатура, изомерия

Вывод

Алкеновая изомерия – это их важная характеристика, благодаря которой в природе появляются новые соединения с другими свойствами, которые находят применение в промышленности и быту.

В органической химии можно встретить углеводородные вещества с разным количеством углерода в цепи и C=C-связью. Они являются гомологами и называются алкенами. Из-за своего строения они химически более активны, чем алканы. Но какие именно реакции для них характерны? Рассмотрим их распространение в природе, разные способы получения и применение.

Что из себя представляют?

Алкены, которые также называются олефинами (маслянистые) получили свое название от этен-хлорида, производного первого представителя этой группы. У всех алкенов есть хотя бы одна двойная C=C-связь. C n H 2n - формула всех олефинов, а название образовывается от алкана с таким же количеством углеродов в молекуле, только суффикс -ан меняется на -ен. Арабской цифрой в конце названия через дефис обозначают номер углерода, от которого начинается двойная связь. Рассмотрим основные алкены, таблица поможет вам запомнить их:

Если молекулы имеют простое неразветвленное строение, то добавляют суффикс -илен, это также отражено в таблице.

Где их можно встретить?

Так как реакционная способность алкенов весьма высока, их представители в природе встречаются крайне редко. Принцип жизни молекулы олефинов — "давай дружить". Нет вокруг других веществ — не беда, будем дружить между собой, образуя полимеры.

Но они есть, и небольшое количество представителей входит в состав сопутствующего нефтяного газа, а высших — в нефти, добываемой на территории Канады.

Самый первый представитель алкенов этен — это гормон, стимулирующий созревание плодов, поэтому его в небольших количествах синтезируют представители флоры. Есть алкен цис-9-трикозен, который у самок мухи домашней играет роль полового аттрактанта. Еще его называют мускалур. (Аттрактант — вещества природного или синтетического происхождения, которое вызывает влечение к источнику запаха у другого организма). С точки зрения химии, алкен этот выглядит так:

Так как весьма ценным сырьем являются все алкены, способы получения их искусственным путем весьма разнообразны. Рассмотрим наиболее распространенные.

А если нужно много?

В промышленности класс алкенов, в основном, получается при крекинге, т.е. расщеплении молекулы под воздействием высоких температур, высших алканов. Для реакции необходим нагрев в диапазоне от 400 до 700 °C. Расщепляется алкан так, как ему захочется, образуя алкены, способы получения которых мы рассматриваем, с большим количеством вариантов строения молекул:

C 7 H 16 -> CH 3 -CH=CH 2 + C 4 H 10.

Еще один распространенный способ называется дегидрирование, при котором от представителя ряда алкана в присутствии катализатора отделяют молекулу водорода.

В лабораторных условиях алкены и способы получения отличаются, они основаны на реакциях элиминирования (отщепления группы атомов без их замещения). Чаще всего элиминируются атомы воды из спиртов, галогены, водород или галогенводород. Наиболее распространенный способ получения алкенов — из спиртов в присутствии кислоты, как катализатора. Возможно использование и других катализаторов

Все реакции элиминирования подчинены правилу Зайцева, гласящему:

Атом водорода отщепляется от того углерода, соседствующего с углеродом, несущим группу -OH, у которого меньше водородов.

Применив правило, ответьте, какой продукт реакции будет преобладать? Позже вы узнаете, правильно ли ответили.

Химические свойства

Алкены активно реагируют с веществами, разрывая свою пи-связь (еще одно название связи C=C). Ведь она не такая прочная, как одинарная (сигма-связь). Углеводород из ненасыщенного превращается в насыщенный, не образуя других веществ после реакции (присоединение).

  • присоединение водорода (гидрирование). Присутствие катализатора и нагревания нужна для ее прохождения;
  • присоединение молекул галогенов (галогенирование). Является одной из качественных реакций на пи-связь. Ведь при реакции алкенов с бромной водой, она из бурой становится прозрачной;
  • реакция с галогенводородами (гидрогалогенирование);
  • присоединение воды (гидратация). Условиями прохождения реакции является нагревание и присутствие катализатора (кислоты);

Реакции несимметричных олефинов с галогенводородами и водой подчиняются правилу Марковникова. А значит, водород присоединится к тому углероду из двойной углерод-углеродной связи, у которого уже больше атомов водорода.

  • горение;
  • неполное окисление каталитическое. Продуктом являются циклические оксиды;
  • реакция Вагнера (окисление перманганатом в нейтральной среде). Эта реакция алкенов — еще одна качественная C=C-связь. При протекании розовый раствор марганцовки обесцвечивается. Если ту же реакцию провести в соединенной кислой среде, продукты будут уже другими (карбоновые кислоты, кетоны, углекислый газ);
  • изомеризация. Характерны все виды: цис- и транс-, перемещение двойной связи, циклизация, скелетная изомеризация;
  • полимеризация — главное свойство олефинов для промышленности.

Применение в медицине

Большое практическое значение имеют продукты реакции алкенов. Многие из них используются в медицине. Из пропена получают глицерин. Этот многоатомный спирт является прекрасным растворителем, причем, если его использовать вместо воды, растворы будут более концентрированными. В медицинских целях в нем растворяют алкалоиды, тимол, йод, бром и др. Также глицерин применяют при приготовлении мазей, паст и кремов. Он предотвращает их высыхание. Сам по себе глицерин является антисептиком.

При реакции с хлороводородом получаются производные, которые применяются как местная анестезия при нанесении на кожу, а также для кратковременного наркоза при незначительных хирургических вмешательствах, при помощи ингаляций.

Алкадиены — это алкены с двумя двойными связями в одной молекуле. Основное их применение — производство синтетического каучука, из которого потом изготавливают различные грелки и спринцовки, зонды и катетеры, перчатки, соски и многое другое, что просто незаменимо при уходе за больными.

Применение в промышленности

Вид промышленности Что применяют Каким образом могут использовать
Сельское хозяйство этен ускоряет созревание овощей и фруктов, дефолиация растений, пленки для теплиц
Лако-красочная этен, бутен, пропен и др. для получения растворителей, эфиров, сольвента
Машиностроение 2-метилпропен, этен производство синтетического каучука, смазочные масла, антифриз
Пищевая промышленность этен

производство тефлона, этилового спирт, уксусная кислота

Химическая промышленность этен, полипропилен получают спирты, полимеры (поливинилхлорид, полиэтилен, поливинилацетат, полиизобтилен, уксусный альдегид
Горная промышленность этен и др. взрывчатые вещества

Более широкое применение нашли алкены и их производные в промышленности. (Где и как используются алкены, таблица выше).

Это лишь малая часть использования алкенов и их производных. С каждым годом потребность в олефинах только возрастает, а значит, возрастает потребность и в их производстве.

Похожие публикации