Нахождение объема тела с помощью интеграла. III Вычисление объёмов тел вращения

плоской фигуры вокруг оси

Пример 3

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.

2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначала обязательно прочитайте первый!

Решение : Задача состоит из двух частей. Начнем с площади.

1) Выполним чертёж:

Легко заметить, что функция задает верхнюю ветку параболы, а функция – нижнюю ветку параболы. Перед нами тривиальная парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом. Причем, площадь фигуры находится как сумма площадей:

– на отрезке ;

– на отрезке .

Поэтому:

Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси .

Как перейти к обратным функциям? Грубо говоря, нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

С прямой всё проще:

Теперь смотрим на ось : пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не прикол!). Нужная нам фигура лежит на отрезке , который обозначен красным пунктиром. При этом на отрезке прямая расположена выше параболы , а значит, площадь фигуры следует найти по уже знакомой вам формуле: . Что поменялось в формуле? Только буква, и не более того.

! Примечание : Пределы интегрирования по оси следует расставлять строго снизу вверх !

Находим площадь:

На отрезке , поэтому:

Обратите внимание, как я осуществил интегрирование, это самый рациональный способ, и в следующем пункте задания будет понятно – почему.

Для читателей, сомневающихся в корректности интегрирования, найду производные:

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ :

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .

Перерисую чертеж немного в другом оформлении:

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси . В результате получается «зависшая бабочка», которая вертится вокруг своей оси.


Для нахождения объема тела вращения будем интегрировать по оси . Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте.

Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси , в результате получается усеченный конус. Обозначим этот объем через .

Вращаем фигуру, обведенную зеленым цветом, вокруг оси и обозначаем через объем полученного тела вращения.

Объем нашей бабочки равен разности объемов .

Используем формулу для нахождения объема тела вращения:

В чем отличие от формулы предыдущего параграфа? Только в букве.

А вот и преимущество интегрирования, о котором я недавно говорил, гораздо легче найти , чем предварительно возводить подынтегральную функцию в 4-ую степень.

Ответ :

Заметьте, что если эту же плоскую фигуру вращать вокруг оси , то получится совершенно другое тело вращения, другого, естественно, объема.

Пример 7

Вычислить объем тела, образованного вращением вокруг оси фигуры, ограниченной кривыми и .

Решение : Выполним чертеж:


Попутно знакомимся с графиками некоторых других функций. Такой вот интересный график чётной функции ….

Для цели нахождения объема тела вращения достаточно использовать правую половину фигуры, которую я заштриховал синим цветом. Обе функции являются четными, их графики симметричны относительно оси , симметрична и наша фигура. Таким образом, заштрихованная правая часть, вращаясь вокруг оси , непременно совпадёт с левой нештрихованной частью.

Использование интегралов для нахождения объемов тел вращения

Практическая полезность математики обусловлена тем, что без

конкретных математических знаний затруднено понимание принципов устройства и использование современной техники. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной техникой, находить в справочниках применять нужные формулы, составлять несложные алгоритмы для решения задач. В современном обществе все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики. Таким образом, для школьника математика становится профессиональным значимым предметом. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитывает умение действовать по заданному алгоритму и конструировать новые алгоритмы.

Изучая тему о применении интеграла для вычисления объемов тел вращения, я предлагаю учащимся на факультативных занятиях рассмотреть тему: «Объемы тел вращения с применением интегралов». Ниже привожу методические рекомендации по рассмотрению данной темы:

1.Площадь плоской фигуры.

Из курса алгебры мы знаем, что к понятию определенного интеграла привели задачи практического характера..gif" width="88" height="51">.jpg" width="526" height="262 src=">

https://pandia.ru/text/77/502/images/image006_95.gif" width="127" height="25 src=">.

Для нахождения объема тела вращения, образованного вращением криволинейной трапеции вокруг оси Оx, ограниченной прерывной линией y=f(x), осью Оx, прямыми x=a и x=b вычислим по формуле

https://pandia.ru/text/77/502/images/image008_26.jpg" width="352" height="283 src=">Y

3.Объем цилиндра.

https://pandia.ru/text/77/502/images/image011_58.gif" width="85" height="51">..gif" width="13" height="25">..jpg" width="401" height="355">Конус получается путем вращения прямоугольного треугольника АВС(С=90) вокруг оси Оx на котором лежит катет АС.

Отрезок АВ лежит на прямой y=kx+c, где https://pandia.ru/text/77/502/images/image019_33.gif" width="59" height="41 src=">.

Пусть а=0, b=H (Н- высота конуса), тогда Vhttps://pandia.ru/text/77/502/images/image021_27.gif" width="13" height="23 src=">.

5.Объем усеченного конуса.

Усеченный конус можно получить путем вращения прямоугольной трапецией АВСD (СDOx) вокруг оси Оx.

Отрезок АВ лежит на прямой y=kx+c, где , c=r.

Так как прямая проходит через точку А (0;r).

Таким образом прямая имеет вид https://pandia.ru/text/77/502/images/image027_17.gif" width="303" height="291 src=">

Пусть а=0, b=H (Н- высота усеченного конуса), тогда https://pandia.ru/text/77/502/images/image030_16.gif" width="36" height="17 src=">= .

6. Объем шара.

Шар можно получить путем вращения круга с центром (0;0) вокруг оси Оx. Полуокружность, расположенная над осью Оx, задается уравнением

https://pandia.ru/text/77/502/images/image034_13.gif" width="13" height="16 src=">x R.

Как вычислить объем тела вращения
с помощью определенного интеграла?

Вообще в интегральном исчислении очень много интересных приложений, с помощью определенного интеграла можно вычислить площадь фигуры, объем тела вращения,длину дуги , площадь поверхности вращения и многое другое. Поэтому будет весело, пожалуйста, настройтесь на оптимистичный лад!

Представьте некоторую плоскую фигуру на координатной плоскости. Представили? ... Интересно, кто что представил… =))) Её площадь мы уже находили. Но, кроме того, данную фигуру можно ещё и вращать, причем вращать двумя способами:

- вокруг оси абсцисс ;
- вокруг оси ординат .

В данной статье будут разобраны оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс. В качестве бонуса я вернусь к задаче нахождения площади фигуры , и расскажу вам, как находить площадь вторым способом - по оси . Даже не столько бонус, сколько материал удачно вписывается в тему.

Начнем с наиболее популярной разновидности вращения.


плоской фигуры вокруг оси

Вычислить объем тела, полученного вращением фигуры, ограниченной линиями , вокруг оси .

Решение : Как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры . То есть, на плоскости необходимо построить фигуру, ограниченную линиями , , при этом не забываем, что уравнение задаёт ось . Как рациональнее и быстрее выполнить чертёж, можно узнать на страницах Графики и свойства Элементарных функций и . Это китайское напоминание, и на данном моменте я больше не останавливаюсь.

Чертёж здесь довольно прост:

Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси В результате вращения получается такая немного яйцевидная летающая тарелка, которая симметрична относительно оси . На самом деле у тела есть математическое название, но по справочнику что-то лень уточнять, поэтому едем дальше.

Как вычислить объем тела вращения?

Объем тела вращения можно вычислить по формуле :

В формуле перед интегралом обязательно присутствует число . Так повелось - всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболы сверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет - подынтегральная функция в формуле возводится в квадрат: , таким образом интеграл всегда неотрицателен , что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ :

В ответе нужно обязательно указать размерность - кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубические единицы ? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями , ,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , , и

Решение : Изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая при этом, что уравнение задает ось :

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел .

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через .

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через .

И, очевидно, разность объемов - в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ :

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (другой) в книге Занимательная геометрия . Посмотрите на плоскую фигуру в прорешанной задаче - она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

После лирического отступления как раз уместно решить творческое задание:

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями , , где .

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, фактически даны готовые пределы интегрирования. Правильно начертите графики тригонометрических функций, напомню материал урока о геометрических преобразованиях графиков : если аргумент делится на два: , то графики растягиваются по оси в два раза. Желательно найти хотя бы 3-4 точки по тригонометрическим таблицам , чтобы точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

Вычисление объема тела, образованного вращением
плоской фигуры вокруг оси

Второй параграф будет еще интереснее, чем первый. Задание на вычисление объема тела вращения вокруг оси ординат - тоже достаточно частый гость в контрольных работах. Попутно будет рассмотрена задача о нахождении площади фигуры вторым способом - интегрированием по оси , это позволит вам не только улучшить свои навыки, но и научит находить наиболее выгодный путь решения. В этом есть и практический жизненный смысл! Как с улыбкой вспоминала мой преподаватель по методике преподавания математики, многие выпускники благодарили её словами: «Нам очень помог Ваш предмет, теперь мы эффективные менеджеры и оптимально руководим персоналом». Пользуясь случаем, я тоже выражаю ей свою большую благодарность, тем более, что использую полученные знания по прямому назначению =).

Рекомендую для прочтения всем, даже полным чайникам. Более того, усвоенный материал второго параграфа окажет неоценимую помощь при вычислении двойных интегралов .

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.
2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначалаобязательно прочитайте первый!

Решение : Задача состоит из двух частей. Начнем с площади.

1) Выполним чертёж:

Легко заметить, что функция задает верхнюю ветку параболы, а функция - нижнюю ветку параболы. Перед нами тривиальная парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом, который рассматривался на уроке Определенный интеграл. Как вычислить площадь фигуры . Причем, площадь фигуры находится как сумма площадей:
- на отрезке ;
- на отрезке .

Поэтому:

Чем в данном случае плох обычный путь решения? Во-первых, получилось два интеграла. Во-вторых, под интегралами корни, а корни в интегралах - не подарок, к тому же можно запутаться в подстановке пределов интегрирования. На самом деле, интегралы, конечно, не убийственные, но на практике всё бывает значительно печальнее, просто я подобрал для задачи функции «получше».

Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси .

Как перейти к обратным функциям? Грубо говоря, нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

С прямой всё проще:

Теперь смотрим на ось : пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не прикол!). Нужная нам фигура лежит на отрезке , который обозначен красным пунктиром. При этом на отрезке прямая расположена выше параболы , а значит, площадь фигуры следует найти по уже знакомой вам формуле: . Что поменялось в формуле? Только буква, и не более того.

! Примечание : Пределы интегрирования по оси следует расставлять строго снизу вверх !

Находим площадь:

На отрезке , поэтому:

Обратите внимание, как я осуществил интегрирование, это самый рациональный способ, и в следующем пункте задания будет понятно - почему.

Для читателей, сомневающихся в корректности интегрирования, найду производные:

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ :

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .

Перерисую чертеж немного в другом оформлении:

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси . В результате получается «зависшая бабочка», которая вертится вокруг своей оси.

Для нахождения объема тела вращения будем интегрировать по оси . Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте.

Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси , в результате получается усеченный конус. Обозначим этот объем через .

Вращаем фигуру, обведенную зеленым цветом, вокруг оси и обозначаем через объем полученного тела вращения.

Объем нашей бабочки равен разности объемов .

Используем формулу для нахождения объема тела вращения:

В чем отличие от формулы предыдущего параграфа? Только в букве.

А вот и преимущество интегрирования, о котором я недавно говорил, гораздо легче найти , чем предварительно возводить подынтегральную функцию в 4-ую степень.

Ответ :

Заметьте, что если эту же плоскую фигуру вращать вокруг оси , то получится совершенно другое тело вращения, другого, естественно, объема.

Дана плоская фигура, ограниченная линиями , и осью .

1) Перейти к обратным функциям и найти площадь плоской фигуры, ограниченной данными линиями, интегрированием по переменной .
2) Вычислить объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Это пример для самостоятельного решения. Желающие также могут найти площадь фигуры «обычным» способом, выполнив тем самым проверку пункта 1). А вот если, повторюсь, будете вращать плоскую фигуру вокруг оси , то получится совершенно другое тело вращения с другим объемом, кстати, правильный ответ (тоже для любителей порешать).

Полное же решение двух предложенных пунктов задания в конце урока.

Да, и не забывайте наклонять голову направо, чтобы разобраться в телах вращения и в пределах интегрирования!

Хотел, было уже, закончить статью, но сегодня принесли интересный пример как раз на нахождение объема тела вращения вокруг оси ординат. Свежачок:

Вычислить объем тела, образованного вращением вокруг оси фигуры, ограниченной кривыми и .

Решение : Выполним чертеж:


Попутно знакомимся с графиками некоторых других функций. Такой вот интересный график чётной функции ….

Тип урока: комбинированный.

Цель урока: научиться вычислять объемы тел вращения с помощью интегралов.

Задачи:

  • закрепить умение выделять криволинейные трапеции из ряда геометрических фигур и отработать навык вычислений площадей криволинейных трапеций;
  • познакомиться с понятием объемной фигуры;
  • научиться вычислять объемы тел вращения;
  • способствовать развитию логического мышления, грамотной математической речи, аккуратности при построении чертежей;
  • воспитывать интерес к предмету, к оперированию математическими понятиями и образами, воспитать волю, самостоятельность, настойчивость при достижении конечного результата.

Ход урока

I. Организационный момент.

Приветствие группы. Сообщение учащимся целей урока.

Рефлексия. Спокойная мелодия.

– Сегодняшний урок мне бы хотелось начать с притчи. “Жил мудрец, который знал все. Один человек захотел доказать, что мудрец знает не все. Зажав в ладонях бабочку, он спросил: “Скажи, мудрец, какая бабочка у меня в руках: мертвая или живая?” А сам думает: “Скажет живая – я ее умертвлю, скажет мертвая – выпущу”. Мудрец, подумав, ответил: “Все в твоих руках”. (Презентация. Слайд )

– Поэтому давайте сегодня плодотворно поработаем, приобретем новый багаж знаний, и полученные умения и навыки будем применять в дальнейшей жизни и в практической деятельности. “Все в Ваших руках”.

II. Повторение ранее изученного материала.

– Давайте вспомним основные моменты ранее изученного материала. Для этого выполним задание “Исключите лишнее слово”. (Слайд.)

(Учащийся выходит к И.Д.с помощью ластика убирает лишнее слово.)

– Правильно “Дифференциал”. Попробуйте оставшиеся слова назвать одним общим словом. (Интегральное исчисление.)

– Давайте вспомним основные этапы и понятия связанные с интегральным исчислением..

“Математическая гроздь”.

Задание. Восстановите пропуски. (Студент выходит и вписывает ручкой необходимые слова.)

– Реферат о применении интегралов мы заслушаем позже.

Работа в тетрадях.

– Формулу Ньютона-Лейбница вывели английский физик Исаака Ньютона (1643–1727) и немецкий философ Готфрида Лейбница (1646–1716). И это не удивительно, ведь математика – язык, на котором говорит сама природа.

– Рассмотрим, как при решении практических заданий используется эта формула.

Пример 1: Вычислить площадь фигуры, ограниченной линиями

Решение: Построим на координатной плоскости графики функций . Выделим площадь фигуры, которую надо найти.

III. Изучение нового материала.

– Обратите внимание на экран. Что изображено на первом рисунке? (Слайд) (На рисунке представлена плоская фигура.)

– Что изображено на втором рисунке? Является ли эта фигура плоской? (Слайд) (На рисунке представлена объемная фигура.)

– В космосе, на земле и в повседневной жизни мы встречаемся не только с плоскими фигурами, но и объемными, а как же вычислить объем таких тел? Например объем планеты, каметы, метеорита, и т.д.

– Об объеме задумываются и строя дома, и переливая воду из одного сосуда в другой. Правила и приёмы вычисления объёмов должны были возникать, другое дело, насколько они были точны и обоснованны.

Сообщение студентки. (Тюрина Вера.)

1612 год был для жителей австрийского города Линц, где жил тогда известный астроном Иоганн Кеплер очень урожайным, особенно на виноград. Люди заготовляли винные бочки и хотели знать, как практически определить их объёмы. (Слайд 2)

– Таким образом, рассмотренные работы Кеплера положили начало целому потоку исследований, увенчавшихся в последней четверти XVII в. оформлением в трудах И. Ньютона и Г.В. Лейбница дифференциального и интегрального исчисления. Математика переменных величии заняла с этого времени ведущее место в системе математических знаний.

– Вот сегодня мы с вами и займемся такой практической деятельностью, следовательно,

Тема нашего урока: “Вычисление объемов тел вращения с помощью определенного интеграла”. (Слайд)

– Определение тела вращения вы узнаете, выполнив следующее задание.

“Лабиринт”.

Лабиринт (греческое слово) означает ход в подземелье. Лабиринт– запутанная сеть дорожек, ходов, сообщающихся друг с другом помещений.

Но определение “разбилось”, остались подсказки в виде стрелок.

Задание. Найдите выход из запутанного положения и запишите определение.

Слайд. “Карта инструктаж” Вычисление объемов.

При помощи определенного интеграла можно вычислить объем того или иного тела, в частности, тела вращения.

Телом вращения называется тело, полученное вращением криволинейной трапеции вокруг ее основания (рис. 1, 2)

Объем тела вращения вычисляется по одной из формул:

1. вокруг оси ОХ.

2. , если вращение криволинейной трапеции вокруг оси ОУ.

Карту инструктаж получает каждый студент. Преподаватель подчеркивает основные моменты.

– Преподаватель объясняет решение примеров на доске.

Рассмотрим отрывок из известной сказки А. С. Пушкина “Сказка о царе Салтане, о сыне его славном и могучем богатыре князе Гвидоне Салтановиче и о прекрасной царевне Лебеде” (Слайд 4):

…..
И привез гонец хмельной
В тот же день приказ такой:
“Царь велит своим боярам,
Времени не тратя даром,
И царицу и приплод
Тайно бросить в бездну вод”.
Делать нечего: бояре,
Потужив о государе
И царице молодой,
В спальню к ней пришли толпой.
Объявили царску волю –
Ей и сыну злую долю,
Прочитали вслух указ,
И царицу в тот же час
В бочку с сыном посадили,
Засмолили, покатили
И пустили в окиян –
Так велел-де царь Салтан.

Какими же должен быть объем бочки, чтобы в ней поместились царица и её сын?

– Рассмотрим следующие задания

1. Найти объем тела, получаемого вращением вокруг оси ординат криволинейной трапеции, ограниченной линиями: x 2 + y 2 = 64, y = -5, y = 5, x = 0.

Ответ: 1163 cm 3 .

Найти объем тела, получаемого вращением параболической трапеции, вокруг оси абсцисс y = , x = 4, y = 0.

IV. Закрепление нового материала

Пример 2. Вычислить объем тела, образованного вращением лепестка, вокруг оси абсцисс y = x 2 , y 2 = x.

Построим графики функции. y = x 2 , y 2 = x . График y 2 = x преобразуем к виду y = .

Имеем V = V 1 – V 2 Вычислим объем каждой функции

– Теперь, давайте, рассмотрим башню для радиостанции в Москве на Шаболовке, построенной по проекту замечательного русского инженера, почётного академика В. Г. Шухова. Она состоит из частей – гиперболоидов вращения. Причём, каждый из них изготовлен из прямолинейных металлических стержней, соединяющих соседние окружности (рис.8, 9).

– Рассмотрим задачу.

Найти объем тела, получаемого вращением дуг гиперболы вокруг ее мнимой оси, как показано на рис. 8, где

куб. ед.

Задания по группам. Учащиеся вытягивают жребий с задачами, рисунки выполняют на ватмане, один из представителей группы защищает работу.

1-я группа.

Удар! Удар! Ещё удар!
Летит в ворота мячик – ШАР!
А это– шар арбузный
Зелёный, круглый, вкусный.
Вглядитесь лучше – шар каков!
Он сделан из одних кругов.
Разрежьте на круги арбуз
И их попробуйте на вкус.

Найти объем тела, получаемого вращением вокруг оси ОХ функции, ограниченную

Ошибка! Закладка не определена.

– Скажите, пожалуйста, где мы встречаемся с данной фигурой?

Дом. задание для 1 группы. ЦИЛИНДР (слайд) .

"Цилиндр – что такое?" – спросил я у папы.
Отец рассмеялся: Цилиндр – это шляпа.
Чтобы иметь представление верное,
Цилиндр, скажем так, это банка консервная.
Труба парохода – цилиндр,
Труба на нашей крыше – тоже,

Все трубы на цилиндр похожи.
А я привёл пример такой –
Калейдоскоп любимый мой,
Глаз от него не оторвёшь,
И тоже на цилиндр похож.

– Задание. Домашняя работа составить график функции и вычислить объем.

2-я группа. КОНУС (слайд) .

Сказала мама: А сейчас
Про конус будет мой рассказ.
В высокой шапке звездочёт
Считает звёзды круглый год.
КОНУС – шляпа звездочёта.
Вот какой он. Понял? То-то.
Мама у стола стояла,
В бутылки масло разливала.
– Где воронка? Нет воронки.
Поищи. Не стой в сторонке.
– Мама, с места я не тронусь,
Расскажи ещё про конус.
– Воронка и есть в виде конуса лейка.
Ну-ка, найди мне её поскорей-ка.
Воронку я найти не смог,
Но мама сделала кулёк,
Картон вкруг пальца обкрутила
И ловко скрепкой закрепила.
Масло льётся, мама рада,
Конус вышел то, что надо.

Задание. Вычислить объем тела полученный вращением вокруг оси абсцисс

Дом. задание для 2-й группы. ПИРАМИДА (слайд).

Я видел картину. На этой картине
Стоит ПИРАМИДА в песчаной пустыне.
Всё в пирамиде необычайно,
Какая-то есть в ней загадка и тайна.
А Спасская башня на площади Красной
И детям, и взрослым знакома прекрасно.
Посмотришь на башню – обычная с виду,
А что на вершине у ней? Пирамида!

Задание. Домашняя работа составить график функции и вычислить объем пирамиды

– Объёмы различных тел мы вычисляли опираясь на основную формулу объёмов тел с помощью интеграла.

Это является ещё одним подтверждением того, что определённый интеграл есть некоторый фундамент для изучения математики.

– Ну а теперь давайте немного отдохнем.

Найди пару.

Математическое домино мелодия играет.

“Дорога та, что сам искал, вовек не позабудется…”

Исследовательская работа. Применение интеграла в экономике и технике.

Тесты для сильных учащихся и математический футбол.

Математический тренажер.

2. Совокупность всех первообразных от данной функции называется

А) неопределенным интегралом,

Б) функцией,

В) дифференциацией.

7. Найти объем тела, получаемого вращением вокруг оси абсцисс криволинейной трапеции, ограниченной линиями:

Д/З. Вычислить объемы тел вращения.

Рефлексия.

Приём рефлексии в форме синквейна (пятистишия).

1-я строка – название темы (одно существительное).

2-я строка – описание темы в двух словах, два прилагательных.

3-я строка – описание действия в рамках этой темы тремя словами.

4-я строка – фраза их четырёх слов, показывает отношение к теме (целое предложение).

5-я строка – синоним, который повторяет суть темы.

  1. Объем.
  2. Определенный интеграл, интегрируемая функция.
  3. Строим, вращаем, вычисляем.
  4. Тело, полученное вращением криволинейной трапеции (вокруг ее основания).
  5. Тело вращения (объемное геометрическое тело).

Вывод (слайд) .

  • Определенный интеграл – это некоторый фундамент для изучения математики, которая вносит незаменимый вклад в решение задач практического содержания.
  • Тема “Интеграл” ярко демонстрирует связь математики с физикой, биологией, экономикой и техникой.
  • Развитие современной науки немыслимо без использования интеграла. В связи с этим, начинать его изучение необходимо в рамках средне специального образования!

Выставление оценок. (С комментированием.)

Великий Омар Хайям – математик, поэт, философ. Он призывает быть хозяевами своей судьбы. Слушаем отрывок из его произведения:

Ты скажешь, эта жизнь – одно мгновенье.
Её цени, в ней черпай вдохновенье.
Как проведёшь её, так и пройдёт.
Не забывай: она – твоё творенье.

Похожие публикации