Математическое ожидание и дисперсия равномерного распределения. Проверка гипотезы о равномерном распределении

Функция распределения в этом случае согласно (5.7), примет вид:

где: m – математическое ожидание, s– среднеквадратическое отклонение.

Нормальное распределение называют еще гауссовским по имени немецкого математика Гаусса . Тот факт, что случайная величина имеет нормальное распределение с параметрами: m,, обозначают так: N (m,s), где: m =a =M ;

Достаточно часто в формулах математическое ожидание обозначают через а . Если случайная величина распределена по закону N(0,1), то она называется нормированной или стандартизированной нормальной величиной. Функция распределения для нее имеет вид:

.

График плотности нормального распределения, который называют нормальной кривой или кривой Гаусса, изображен на рис.5.4.

Рис. 5.4. Плотность нормального распределения

Определение числовых характеристик случайной величины по её плотности рассматривается на примере.

Пример 6 .

Непрерывная случайная величина задана плотностью распределения:.

Определить вид распределения, найти математическое ожидание M(X) и дисперсию D(X).

Сравнивая заданную плотность распределения с (5.16) можно сделать вывод, что задан нормальный закон распределения с m =4. Следовательно, математическое ожидание M(X)=4, дисперсия D(X)=9.

Среднее квадратическое отклонение s=3.

Функция Лапласа, имеющая вид:

,

связана с функцией нормального распределения (5.17), cоотношением:

F 0 (x) = Ф(х) + 0,5.

Функции Лапласа нечётная.

Ф(-x )=-Ф(x ).

Значения функции Лапласа Ф(х) табулированы и берутся из таблицы по значению х (см. Приложение 1).

Нормальное распределение непрерывной случайной величины играет важную роль в теории вероятностей и при описании реальности, имеет очень широкое распространение в случайных явлениях природы. На практике очень часто встречаются случайные величины, образующиеся именно в результате суммирования многих случайных слагаемых. В частности, анализ ошибок измерения показывает, что они являются суммой разного рода ошибок. Практика показывает, что распределение вероятностей ошибок измерения близко к нормальному закону.

С помощью функции Лапласа можно решать задачи вычисления вероятности попадания в заданный интервал и заданного отклонения нормальной случайной величины.

Этот вопрос уже давно подробно изучен, и наиболее широкое распространение получил метод полярных координат, предложенный Джорджем Боксом, Мервином Мюллером и Джорджем Марсальей в 1958 году. Данный метод позволяет получить пару независимых нормально распределенных случайных величин с математическим ожиданием 0 и дисперсией 1 следующим образом:

Где Z 0 и Z 1 - искомые значения, s = u 2 + v 2 , а u и v - равномерно распределенные на отрезке (-1, 1) случайные величины, подобранные таким образом, чтобы выполнялось условие 0 < s < 1.
Многие используют эти формулы, даже не задумываясь, а многие даже и не подозревают об их существовании, так как пользуются готовыми реализациями. Но есть люди, у которых возникают вопросы: «Откуда взялась эта формула? И почему получается сразу пара величин?». Далее я постараюсь дать наглядный ответ на эти вопросы.


Для начала напомню, что такое плотность вероятности, функция распределения случайной величины и обратная функция. Допустим, есть некая случайная величина, распределение которой задано функцией плотности f(x), имеющей следующий вид:

Это означает, что вероятность того, что значение данной случайной величины окажется в интервале (A, B), равняется площади затененной области. И как следствие, площадь всей закрашенной области должна равняться единице, так как в любом случае значение случайной величины попадет в область определения функции f.
Функция распределения случайной величины является интегралом от функции плотности. И в данном случае ее примерный вид будет такой:

Тут смысл в том, что значение случайной величины будет меньше чем A с вероятностью B. И как следствие, функция никогда не убывает, а ее значения лежат в отрезке .

Обратная функция - это функция, которая возвращает аргумент исходной функции, если в нее передать значение исходной функции. Например, для функции x 2 обратной будет функция извлечения корня, для sin(x) это arcsin(x) и т.д.

Так как большинство генераторов псевдослучайных чисел на выходе дают только равномерное распределение, то часто возникает необходимость его преобразования в какое-либо другое. В данном случае в нормальное Гауссовское:

Основу всех методов преобразования равномерного распределения в любое другое составляет метод обратного преобразования. Работает он следующим образом. Находится функция, обратная функции необходимого распределения, и в качестве аргумента передается в нее равномерно распределенная на отрезке (0, 1) случайная величина. На выходе получаем величину с требуемым распределением. Для наглядности привожу следующую картинку.

Таким образом, равномерный отрезок как бы размазывается в соответствии с новым распределением, проецируясь на другую ось через обратную функцию. Но проблема в том, что интеграл от плотности Гауссовского распределения вычисляется непросто, поэтому вышеперечисленным ученым пришлось схитрить.

Существует распределение хи-квадрат (распределение Пирсона), которое представляет собой распределение суммы квадратов k независимых нормальных случайных величин. И в случае, когда k = 2, это распределение является экспоненциальным.

Это означает, что если у точки в прямоугольной системе координат будут случайные координаты X и Y, распределенные нормально, то после перевода этих координат в полярную систему (r, θ) квадрат радиуса (расстояния от начала координат до точки) будет распределен по экспоненциальному закону, так как квадрат радиуса - это сумма квадратов координат (по закону Пифагора). Плотность распределения таких точек на плоскости будет выглядеть следующим образом:


Так как она равноценна во всех направлениях, угол θ будет иметь равномерное распределение в диапазоне от 0 до 2π. Справедливо и обратное: если задать точку в полярной системе координат с помощью двух независимых случайных величин (угла, распределенного равномерно, и радиуса, распределенного экспоненциально), то прямоугольные координаты этой точки будут являться независимыми нормальными случайными величинами. А экспоненциальное распределение из равномерного получить уже гораздо проще, с помощью того же метода обратного преобразования. В этом и заключается суть полярного метода Бокса-Мюллера.
Теперь выведем формулы.

(1)

Для получения r и θ нужно сгенерировать две равномерно распределенные на отрезке (0, 1) случайные величины (назовем их u и v), распределение одной из которых (допустим v) необходимо преобразовать в экспоненциальное для получения радиуса. Функция экспоненциального распределения выглядит следующим образом:

Обратная к ней функция:

Так как равномерное распределение симметрично, то аналогично преобразование будет работать и с функцией

Из формулы распределения хи-квадрат следует, что λ = 0,5. Подставим в эту функцию λ, v и получим квадрат радиуса, а затем и сам радиус:

Угол получим, растянув единичный отрезок до 2π:

Теперь подставим r и θ в формулы (1) и получим:

(2)

Эти формулы уже готовы к использованию. X и Y будут независимы и распределены нормально с дисперсией 1 и математическим ожиданием 0. Чтобы получить распределение с другими характеристиками достаточно умножить результат функции на среднеквадратическое отклонение и прибавить математическое ожидание.
Но есть возможность избавиться от тригонометрических функций, задав угол не прямо, а косвенно через прямоугольные координаты случайной точки в круге. Тогда через эти координаты можно будет вычислить длину радиус-вектора, а потом найти косинус и синус, поделив на нее x и y соответственно. Как и почему это работает?
Выберем случайную точку из равномерно распределенных в круге единичного радиуса и обозначим квадрат длины радиус-вектора этой точки буквой s:

Выбор осуществляется заданием случайных прямоугольных координат x и y, равномерно распределенных в интервале (-1, 1), и отбрасыванием точек, которые не принадлежат кругу, а также центральной точки, в которой угол радиус-вектора не определен. То есть должно выполниться условие 0 < s < 1. Тогда, как и в случае с Гауссовским распределением на плоскости, угол θ будет распределен равномерно. Это очевидно - количество точек в каждом направлении одинаково, значит каждый угол равновероятен. Но есть и менее очевидный факт - s тоже будет иметь равномерное распределение. Полученные s и θ будут независимы друг от друга. Поэтому мы можем воспользоваться значением s для получения экспоненциального распределения, не генерируя третью случайную величину. Подставим теперь s в формулы (2) вместо v, а вместо тригонометрических функций - их расчет делением координаты на длину радиус-вектора, которая в данном случае является корнем из s:

Получаем формулы, как в начале статьи. Недостаток этого метода - отбрасывание точек, не вошедших в круг. То есть использование только 78,5% сгенерированных случайных величин. На старых компьютерах отсутствие тригонометрических функций всё равно давало большое преимущество. Сейчас, когда одна команда процессора за мгновение вычисляет одновременно синус и косинус, думаю, эти методы могут еще посоревноваться.

Лично у меня остается еще два вопроса:

  • Почему значение s распределено равномерно?
  • Почему сумма квадратов двух нормальных случайных величин распределена экспоненциально?
Так как s - это квадрат радиуса (для простоты радиусом я называю длину радиус-вектора, задающего положение случайной точки), то сначала выясним, как распределены радиусы. Так как круг заполнен равномерно, очевидно, что количество точек с радиусом r пропорционально длине окружности радиуса r. А длина окружности пропорциональна радиусу. Значит плотность распределения радиусов возрастает равномерно от центра окружности к её краям. А функция плотности имеет вид f(x) = 2x на интервале (0, 1). Коэффициент 2 для того, чтобы площадь фигуры под графиком равнялась единице. При возведении такой плотности в квадрат, она превращается в равномерную. Так как теоретически в данном случае для этого необходимо функцию плотности разделить на производную от функции преобразования (то есть от x 2). А наглядно это происходит так:

Если аналогичное преобразование сделать для нормальной случайной величины, то функция плотности ее квадрата окажется похожей на гиперболу. А сложение двух квадратов нормальных случайных величин уже гораздо более сложный процесс, связанный с двойным интегрированием. И то, что в результате получится экспоненциальное распределение, лично мне тут остаётся проверить практическим методом или принять как аксиому. А кому интересно, предлагаю ознакомиться с темой поближе, почерпнув знаний из этих книжек:

  • Вентцель Е.С. Теория вероятностей
  • Кнут Д.Э. Искусство Программирования, том 2

В заключение приведу пример реализации генератора нормально распределенных случайных чисел на языке JavaScript:

Function Gauss() { var ready = false; var second = 0.0; this.next = function(mean, dev) { mean = mean == undefined ? 0.0: mean; dev = dev == undefined ? 1.0: dev; if (this.ready) { this.ready = false; return this.second * dev + mean; } else { var u, v, s; do { u = 2.0 * Math.random() - 1.0; v = 2.0 * Math.random() - 1.0; s = u * u + v * v; } while (s > 1.0 || s == 0.0); var r = Math.sqrt(-2.0 * Math.log(s) / s); this.second = r * u; this.ready = true; return r * v * dev + mean; } }; } g = new Gauss(); // создаём объект a = g.next(); // генерируем пару значений и получаем первое из них b = g.next(); // получаем второе c = g.next(); // снова генерируем пару значений и получаем первое из них
Параметры mean (математическое ожидание) и dev (среднеквадратическое отклонение) не обязательны. Обращаю ваше внимание на то, что логарифм натуральный.

С помощью которого моделируются многие реальные процессы. И самый такой распространённый пример – это график движения общественного транспорта. Предположим, что некий автобус (троллейбус / трамвай) ходит с интервалом в 10 минут, и вы в случайный момент времени подошли к остановке. Какова вероятность того, что автобус подойдёт в течение 1 минуты? Очевидно, 1/10-я. А вероятность того, что придётся ждать 4-5 минут? Тоже . А вероятность того, что автобус придётся ждать более 9 минут? Одна десятая!

Рассмотрим некоторый конечный промежуток, пусть для определённости это будет отрезок . Если случайная величина обладает постоянной плотностью распределения вероятностей на данном отрезке и нулевой плотностью вне него, то говорят, что она распределена равномерно . При этом функция плотности будет строго определённой:

И в самом деле, если длина отрезка (см. чертёж) составляет , то значение неизбежно равно – дабы получилась единичная площадь прямоугольника, и было соблюдено известное свойство :


Проверим его формально:
, ч.т.п. С вероятностной точки зрения это означает, что случайная величина достоверно примет одно из значений отрезка …, эх, становлюсь потихоньку занудным старикашкой =)

Суть равномерности состоит в том, что какой бы внутренний промежуток фиксированной длины мы ни рассмотрели (вспоминаем «автобусные» минуты) – вероятность того, что случайная величина примет значение из этого промежутка будет одной и той же. На чертеже я заштриховал троечку таких вероятностей – ещё раз заостряю внимание, что они определяются площадями , а не значениями функции !

Рассмотрим типовое задание:

Пример 1

Непрерывная случайная величина задана своей плотностью распределения:

Найти константу , вычислить и составить функцию распределения. Построить графики . Найти

Иными словами, всё, о чём только можно было мечтать:)

Решение : так как на интервале (конечном промежутке) , то случайная величина имеет равномерное распределение, и значение «цэ» можно отыскать по прямой формуле . Но лучше общим способом – с помощью свойства:

…почему лучше? Чтобы не было лишних вопросов;)

Таким образом, функция плотности:

Выполним чертёж. Значения невозможны , и поэтому жирные точки ставятся внизу:


В качестве экспресс-проверки вычислим площадь прямоугольника:
, ч.т.п.

Найдём математическое ожидание , и, наверное, вы уже догадываетесь, чему оно равно. Вспоминаем «10-минутный» автобус: если случайным образом подходить к остановке много-много дней упаси, то в среднем его придётся ждать 5 минут.

Да, именно так – матожидание должно находиться ровно посерединке «событийного» промежутка:
, как и предполагалось.

Дисперсию вычислим по формуле . И вот тут нужен глаз да глаз при вычислении интеграла:

Таким образом, дисперсия :

Составим функцию распределения . Здесь ничего нового:

1) если , то и ;

2) если , то и:

3) и, наконец, при , поэтому:

В результате:

Выполним чертёж:


На «живом» промежутке функция распределения растёт линейно , и это ещё один признак, что перед нами равномерно распределённая случайная величина. Ну, ещё бы, ведь производная линейной функции – есть константа.

Требуемую вероятность можно вычислить двумя способами, с помощью найденной функции распределения:

либо с помощью определённого интеграла от плотности:

Кому как нравится.

И здесь ещё можно записать ответ : ,
, графики построены по ходу решения.

…«можно», потому что за его отсутствие обычно не карают. Обычно;)

Для вычисления и равномерной случайной величины существуют специальные формулы, которые я предлагаю вам вывести самостоятельно:

Пример 2

Непрерывная случайная величина задана плотностью .

Вычислить математическое ожидание и дисперсию. Результаты максимально упростить (формулы сокращённого умножения в помощь) .

Полученные формулы удобно использовать для проверки, в частности, проверьте только что прорешанную задачу, подставив в них конкретные значения «а» и «б». Краткое решение внизу страницы.

И в заключение урока мы разберём парочку «текстовых» задач:

Пример 3

Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляются до ближайшего целого деления. Считая, что погрешности округлений распределены равномерно, найти вероятность того, что при очередном измерении она не превзойдёт 0,04.

Для лучшего понимания решения представим, что это какой-нибудь механический прибор со стрелкой, например, весы с ценой деления 0,2 кг, и нам предстоит взвесить кота в мешке. Но не в целях выяснить его упитанность – сейчас будет важно, ГДЕ между двумя соседними делениями остановится стрелка.

Рассмотрим случайную величину – расстояние стрелки от ближайшего левого деления. Или от ближайшего правого, это не принципиально.

Составим функцию плотности распределения вероятностей:

1) Так как расстояние не может быть отрицательным, то на интервале . Логично.

2) Из условия следует, что стрелка весов с равной вероятностью может остановиться в любом месте между делениями* , включая сами деления, и поэтому на промежутке :

* Это существенное условие. Так, например, при взвешивании кусков ваты или килограммовых пачек соли равномерность будет соблюдаться на куда более узких промежутках.

3) И поскольку расстояние от БЛИЖАЙШЕГО левого деления не может быть больше, чем 0,2, то при тоже равна нулю.

Таким образом:

Следует отметить, что о функции плотности нас никто не спрашивал, и её полное построения я привёл исключительно в познавательных цепях. При чистовом оформлении задачи достаточно записать только 2-й пункт.

Теперь ответим на вопрос задачи. Когда погрешность округления до ближайшего деления не превзойдёт 0,04? Это произойдёт тогда, когда стрелка остановится не далее чем на 0,04 от левого деления справа или не далее чем на 0,04 от правого деления слева . На чертеже я заштриховал соответствующие площади:

Осталось найти эти площади с помощью интегралов . В принципе, их можно вычислить и «по-школьному» (как площади прямоугольников), но простота не всегда находит понимание;)

По теореме сложения вероятностей несовместных событий :

– вероятность того, что ошибка округления не превзойдёт 0,04 (40 грамм для нашего примера)

Легко видеть, что максимально возможная погрешность округления составляет 0,1 (100 грамм) и поэтому вероятность того, что ошибка округления не превзойдёт 0,1 равна единице.

Ответ : 0,4

В других источниках информации встречаются альтернативные объяснения / оформление этой задачи, и я выбрал вариант, который показался мне наиболее понятным. Особое внимание нужно обратить на то, что в условии речь может идти о погрешностях НЕ округлений, а о случайных погрешностях измерений, которые, как правило (но не всегда) , распределены по нормальному закону . Таким образом, всего лишь одно слово может в корне изменить решение! Будьте начеку и вникайте в смысл.

И коль скоро всё идёт по кругу, то ноги нас приносят на ту же автобусную остановку:

Пример 4

Автобусы некоторого маршрута идут строго по расписанию и интервалом 7 минут. Составить функцию плотности случайной величины – времени ожидании очередного автобуса пассажиром, который наудачу подошёл к остановке. Найти вероятность того, что он будет ждать автобус не более трёх минут. Найти функцию распределения и пояснить её содержательный смысл.

Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

  • равномерное распределение вероятностей непрерывной случайной величины;
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

Дадим понятие равномерного и показательного законов распределения, формулы вероятности и числовые характеристики рассматриваемых функций.

Показатель Раномерный закон распределения Показательный закон распределения
Определение Равномерным называется распределение вероятностей непрерывной случайной величины X, плотность которого сохраняет постоянное значение на отрезке и имеет вид Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью, имеющей вид

где λ – постоянная положительная величина
Функция распределения
Вероятность попадания в интервал
Математическое ожидание
Дисперсия
Среднее квадратическое отклонение

Примеры решения задач по теме «Равномерный и показательный законы распределения»

Задача 1.

Автобусы идут строго по расписанию. Интервал движения 7 мин. Найти: а) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее двух минут; б) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус не менее трех минут; в) математическое ожидание и среднее квадратическое отклонение случайной величины X – времени ожидания пассажира.

Решение. 1. По условию задачи непрерывная случайная величина X={время ожидания пассажира} равномерно распределена между приходами двух автобусов. Длина интервала распределения случайной величины Х равна b-a=7, где a=0, b=7.

2. Время ожидания будет менее двух минут, если случайная величина X попадает в интервал (5;7). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
Р(5 < Х < 7) = (7-5)/(7-0) = 2/7 ≈ 0,286.

3. Время ожидания будет не менее трех минут (т.е. от трех до семи мин.), если случайная величина Х попадает в интервал (0;4). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
Р(0 < Х < 4) = (4-0)/(7-0) = 4/7 ≈ 0,571.

4. Математическое ожидание непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: М(Х)=(a+b)/2 . М(Х) = (0+7)/2 = 7/2 = 3,5.

5. Среднее квадратическое отклонение непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: σ(X)=√D=(b-a)/2√3 . σ(X)=(7-0)/2√3=7/2√3≈2,02.

Задача 2.

Показательное распределение задано при x ≥ 0 плотностью f(x) = 5e – 5x. Требуется: а) записать выражение для функции распределения; б) найти вероятность того, что в результате испытания X попадает в интервал (1;4); в) найти вероятность того, что в результате испытания X ≥ 2 ; г) вычислить M(X), D(X), σ(X).

Решение. 1. Поскольку по условию задано показательное распределение , то из формулы плотности распределения вероятностей случайной величины X получаем λ = 5. Тогда функция распределения будет иметь вид:

2. Вероятность того, что в результате испытания X попадает в интервал (1;4) будем находить по формуле:
P(a < X < b) = e −λa − e −λb .
P(1 < X < 4) = e −5*1 − e −5*4 = e −5 − e −20 .

3. Вероятность того, что в результате испытания X ≥ 2 будем находить по формуле: P(a < X < b) = e −λa − e −λb при a=2, b=∞.
Р(Х≥2) = P(1< X < 4) = e −λ*2 − e −λ*∞ = e −2λ − e −∞ = e −2λ - 0 = e −10 (т.к. предел e −х при х стремящемся к ∞ равен нулю).

4. Находим для показательного распределения:

  • математическое ожидание по формуле M(X) =1/λ = 1/5 = 0,2;
  • дисперсию по формуле D(X) = 1/ λ 2 = 1/25 = 0,04;
  • среднее квадратическое отклонение по формуле σ(Х) = 1/λ = 1/5 = 1,2.

Рассмотрим равномерное непрерывное распределение. Вычислим математическое ожидание и дисперсию. Сгенерируем случайные значения с помощью функции MS EXCEL СЛЧИС() и надстройки Пакет Анализа, произведем оценку среднего значения и стандартного отклонения.

Равномерно распределенная на отрезке случайная величина имеет :

Сгенерируем массив из 50 чисел из диапазона }

Похожие публикации