Магнитно-резонансная томография. Мр-спектроскопия МРТ и ангиография

Магнитно-резонансная спектроскопия

подготовила студентка

3 курса, 34 гр.

Лисовская Татьяна

МР-спектроскопия

Метод магнитно-резонансной томографии широко применяется во всех областях медицины. Благодаря высокой информативности и безопасности МРТ позволяет максимально точно диагностировать различные заболевания и патологии даже на ранних стадиях развития. Однако, несмотря на высокую точность, бывают случаи, когда традиционной магнитно-резонансной томографии не хватает для постановки диагноза и выявления болезни. Поэтому существуют специальные методики проведения МРТ, такие как МР-ангиография, МР-перфузия и МР-спектроскопия.

Что такое МР-спектроскопия?

Магнитно-резонансная спектроскопия (МРС) - это методика проведения исследования на магнитно-резонансном томографе, которая дает возможность определять биохимические изменения тканей при развитии различных заболеваний. Магнитно-резонансные спектры отображают процессы метаболизма. Нарушения этих процессов происходят еще до клинических проявлений болезни, поэтому магнитно-резонансная спектроскопия позволяет диагностировать заболевания на самых ранних этапах развития. На сегодняшний день этот метод является единственным способом неинвазивно провести исследование обмена веществ в различных анатомических областях. Это метод исследования, базирующийся на принципе классического магнитно-ядерного резонанса, но имеющий некоторые отличия. Если в магнитно-резонансных приборах используется свойство частиц поглощать и излучать электромагнитные волны, то целью спектроскопии является определение наличия и концентрации отдельных химических веществ.

Виды магнитно-резонансной спектроскопии

    МР-спектроскопия биологических жидкостей

    МР-спектроскопия внутренних органов

Магнитно-резонансная спектроскопия базируется на методе ядерного магнитного резонанса, но в отличие от него она не создает анатомические снимки, а позволяет различать распределение компонентов мягких тканей и продуктов обмена веществ согласно их молекулярным свойствам.

Основными показаниями для проведения МР-спектроскопии являются:

    Травматические повреждения

    Эпилепсия

    Нейродегенеративные заболевания

    Воспалительные процессы

  1. Объемные образования головного мозга

    Опухолевые заболевания

Первая установка для МР-спектроскопии сконструирована австрийским профессором Эвальдом Мозером с сотрудниками в 1990 году. В 1996 году выполнены первые исследования метаболизма глюкозы и жирных кислот в головном мозге, скелетных мышцах и печени здоровых испытуемых, а также пациентов с диабетом 1 и 2 типа. К настоящему времени также выполнены клинические исследования МР-спектроскопии сердца и предстательной железы.

Так как обмен веществ в здоровых тканях отличается от обмена веществ, протекающего в пораженных тканях, то в диагностике опухолевых заболеваний и патологических процессов МР-спектроскопия играет важную роль. Обнаружение опухоли или патологического процесса на ранних стадиях существенно облегчает весь дальнейший процесс лечения.

Метод магнитно-резонансной спектроскопии позволяет проводить измерения в живых тканях. Он используется в научных исследованиях и позволяет получить информацию о химическом составе тканей. Протонная магнитно-резонансная спектроскопия (1Н-МРС) основана на определении концентрации N-ацетиласпартата, содержащегося исключительно в нейронах, или холин-креати нина и лактата, содержащихся в глии и нейронах. Определение концентрации веществ в головном мозге помогает выявлять утрату специфических тканей при таких заболеваниях, как болезнь Альцгеймера и ишемически-гипоксическая энцефалопатия, классифицировать опухоли головного мозга, определять сторону эпилептогенного очага при височной эпилепсии. Магнитно-резонансная спектроскопия с определением фосфора (31Р-МРС) может быть полезной в диагностике метаболических миопатий.

В последние годы метод получил широкое распространение в онкологии, так как позволяет определить накопление патологических веществ при различных онкологических заболеваниях.

Если ранее было осуществимо лишь исследование крупных органов и значительных изменений, то сейчас стало возможным исследование такого небольшого органа, как предстательная железа с разрешением до <0,5 см3. В здоровой ткани предстательной железы определяется в больших количествах цитрат, или лимонная кислота. При злокачественных новообразованиях количество цитрата уменьшается. Так как общее число клеток при онкологических заболеваниях увеличивается, то возрастает и количество холина, составной части клеточной оболочки. Концентрацию двух этих веществ как раз и позволяет измерить МР спектроскопия. Для получения трехмерного изображения и точной локализации опухоли весь орган делится на небольшие участки менее 0,5 см3, в каждом из которых определяется концентрация указанных веществ.

МР-спектрограмма

Вместо привычных «анатомических» МР-изображений МР- спекторограмма представляет собой график из пиков, соответствующих отдельным метаболитам. Условиями для обнаружения метаболитов в 1Н- спектре являются: наличие в их составе протонов водорода; концентрация метаболита должна превышать определенный минимальный уровень (≥0,5 ммоль/л); метаболиты должны резонировать на различной частоте (так называемое явление химического сдвига); эффективное подавление сигнала от воды. Конкретное положение сигнала от метаболита на горизонтальной оси является постоянной величиной, присущей данному метаболиту. Оно определяется его химическим сдвигом и характеризуется значением «частей на миллион» – parts per million (ppm). Здесь подразумевается, что протоны водорода находятся в специфическом окружении в составе метаболита, приводящем к изменению локального магнитного поля и, следовательно, частоты, на которой эти протоны резонируют во внешнем магнитном поле. В этом собственно и заключается явление химического сдвига. Изменение локального магнитного поля очень невелико (составляет миллионные части).

1Н-МРC может быть реализована в двух вариантах – одновоксельной и мультивоксельной спектроскопии.

    Одновоксельная спектроскопия (single- voxel spectroscopy, SVS) наиболее распространена. При этом получают спектр из кубического участка (вокселя) вещества мозга или опухоли размером 2х2х2 см (8 см3) на что требуется от 3 до 5 мин. В некоторых случаях желательно уменьшить размер вокселя, чтобы измерение производилось именно в опухоли без захвата окружающих тканей. Нежелательным последствием этого становится снижение отношения сигнал - шум. Преимуществом одновоксельной спектроскопии является получение спектров более высокого качества с меньшим количеством шагов постобработки. Главный недостаток – ограниченная зона исследования, ввиду чего правильное расположение вокселя имеет критическое значение. Не следует включать в зону исследования кровь и ее продукты, воздух, ликвор, жир, некроз, кость, кальцинаты, метал. Все эти среды приводят к неоднородности локального магнитного поля и образованию недиагностичных спектров. Положение вокселя должно соответствовать наиболее жизнеспособным участкам опухоли, которые, в противоположность некрозу, обычно накапливают контрастное вещество (кроме глиом I и II степени злокачественности). Мультивоксельная спектроскопия, также называемая chemical shift imaging (CSI) или spectroscopic imaging, позволяет расположить несколько вокселей в зоне интереса, может быть реализована в двухмерном и трехмерном пространстве.

    Мультивоксельная спектроскопия является предпочтительным методом исследования при внутричерепных опухолях. Ее преимуществом перед одновоксельной спектроскопией является наложение цветных карт метаболитов или их соотношений на достаточно большой по размерам участок мозга, включающий не только зону опухоли, но и противоположное полушарие, что делает возможным прямое сравнение опухоли и неизмененных участков мозга. Техническая реализация мультивоксельной спектроскопии более сложна, так как требует поддержки гомогенности магнитного поля на гораздо большем участке. В задней черепной ямке из-за ее уменьшенного объема и близости костных структур часто проще получить качественные спектры с помощью одновоксельной спектроскопии. Ввиду сложности шиммирования (выравнивания однородности магнитного поля), длительного времени сбора (от 8 до 19 мин) и многоступенчатого процесса обработки информации мультивоксельная спектроскопия до недавнего времени была доступна только в специализированных центрах

ОСНОВНЫЕ МЕТАБОЛИТЫ ПРИ 1Н-МР-СПЕКТРОСКОПИИ

    Н-ацетил аспартат (NAA) – нейрональный маркер. Присутствует с телах нейронов и аксонах, указывает на их жизнеспособность. В физиологических условиях NAA постепенно увеличивается у новорожденных и уменьшается у пожилых. При патологических состояниях снижение уровня NAA указывает на потерю нейронов, что имеет место при глиомах, ишемии, дегенеративных заболеваниях головного мозга. Пики NAA расположены на 2,02 ppm, 2,5 ppm и 2,6 ppm.

    Креатинин (Cr) – маркер аэробного метаболизма клеток головного мозга. Концентрация выше в сером веществе, чем в белом. Самый постоянный пик, независящий от уровня оксигенации и перфузии, ввиду чего используется как «внутренний стандарт» для расчета отношений

концентраций метаболитов. Снижается при опухолях, инфекциях, гипоксии, инсульте. Пики на 3,02 ppm и 3,94 ppm.

    Холин (Cho) – компонент фосфолипидного метаболизма, маркер клеточных мембран, отражающий пролиферацию клеток. Повышение уровня Cho связано с увеличением синтеза мембран и пролиферацией клеток (опухоли головного мозга). Снижается при абсцессах, некрозе. Пик на 3,22 ppm.

    Лактат (Lac) – конечный продукт анаэробного гликолиза, маркер гипоксии. У здоровых добровольцев концентрация лактата находится на уровне предела чувствительности метода, то есть обычно на спектрах не обнаруживается. Увеличивается при ишемии, опухолях. Двойной пик лактата находится на 1,33 ppm, причем при ТЕ 135 мсек он инвертирован (находится в противофазе), при ТЕ 30 мсек – направлен вверх (находится в фазе).

    Липиды (lip) – индикатор некроза и разрушения миелиновых оболочек. Обычно не выявляются у здоровых добровольцев, повышаются при опухолях, некрозе, абсцессах, демиелинизации. Пики на 0,8 ppm и 1,3 ppm. Сигнал от липидов лучше всего выявляется при низких значениях ТЕ (меньше 35 мсек) и снижается при более высоких. Поскольку Lac и lip резонируют на одной и той же частоте (1,3 ppm), то в случае присутствия в исследуемом участке обоих метаболитов их пики могут быть неразличимы. Для выделения пика Lac рекомендуется обращать внимание на следующие моменты: Lac имеет двойной пик; при ТЕ порядка 135 мсек пик Lac инвертирован; при использовании высоких значений ТЕ (270 мсек) сигнал от lip подавляется и остается сигнал только от Lac.

    Мио-инозитол (ml) – продукт деградации миелина. Повышается при рассеянном склерозе, снижается при опухолях. Пики на 3,56 ppm и 4,06 ppm.

    Глютамин и глютамат (Glx) – маркер астроцитов и нейрототоксин соответственно. Повышаются при энцефалопатии. Пики на 2,1 ppm и 2,55 ppm.

    Аланин – двойной пик находится на 1,48 ppm. Аналогично лактату пик аланина при ТЕ 135 мсек инвертирован, а при ТЕ 30 мсек направлен вверх.

Для интерпретации МР-спектров необходимо оценить метаболиты количественно и сравнить полученные значения с нормальными. Для количественной характеристики можно измерять высоту (амплитуду) пиков и площадь под ними (интеграл). Чаще используют интеграл, так как площадь под индивидуальными пиками пропорциональна концентрации каждого из метаболитов, к тому же интеграл не зависит от неоднородности магнитного поля и менее чувствителен к шуму. Величину МР-сигнала не выражают в абсолютных цифрах, поскольку она находится под влиянием многих местных и внешних условий. Поэтому в МРС принято вычислять отношения интегралов пиков друг к другу.

Метод МР-спектроскопии является очень многообещающим. В комбинации с обычной магнитно-резонансной томографией правильный диагноз устанавливается в 80-85% случаев. Ошибки происходят в тех случаях, когда опухолевая ткань значительно не отличается от нормальной по степени зрелости, и количество холина в ней приближено к нормальной ткани.

Уникальность МР спектроскопии головного мозга – возможность изучать метаболизм здоровых и патологических клеток. Основа функционирования метода – регистрация спектра от ядер атомов водорода (протонов), входящих в состав разных химических соединений.

МР спектроскопия головного мозга – что это такое

Для изучения биохимического обмена мозговой ткани анализируются спектральные частоты соединений, концентрация и соотношение которых изменяется при патологических состояниях.

При оценке, сколько стоит мр спектроскопия головного мозга и где сделать в СПб и Москве, следует учитывать задачи исследования, влияющие на выбор режима анализа спектрального ряда:

  1. Лактата;
  2. Глутамина (глутамата);
  3. Ацетиласпартата;
  4. Креатинина;
  5. Холина;
  6. Липидных комплексов;
  7. Миоинозитола.

Уникальное преимущество исследования при сравнении с другими МРТ аналогами – выявление патологического метаболизма в мозговой ткани до появления клинических симптомов болезни.

В зависимости от целей выделяют 2 вида МР-спектроскопии:

  1. Внутренних органов;
  2. Биологических жидкостей.

Первая разновидность назначается для анализа метаболизма белого вещества, вторая – для оценки состава спинномозговой жидкости.

Современное технологическое новшество – мультиядерная спектроскопия – выявляет концентрацию углерода, фосфора, некоторых других химических элементов одновременно от нескольких отделов мозга на основе спектрального графика. Подход позволяет сравнивать метаболизм противоположных центров, периферических участков опухоли.

Клинические цели МР-спектроскопии

Самое частое применение протонной спектроскопии – оценка особенностей новообразований мозга, дифференциальная диагностика разных типов опухолей. Обследование не выявляет гистологический тип образования, но достоверно верифицирует рак. Измененный метаболизм злокачественных клеток характеризуется уменьшением соотношения между ацетиласпартатом и креатинином, увеличением холина, лактата.

Эффективное использование МР спектроскопии головного мозга при эпилепсии обусловлено выявлением специфичных для заболевания метаболических расстройств. Определение биохимического спектра протонов используется для диагностики рассеянного склероза.

Часто применяется протонная спектроскопия в онкологической практике после оперативного вмешательства для ранней диагностики рецидива образования, метастазов, определения участков гибели белого вещества.

Еще одна цель назначения МР-H-спектроскопии – отличие вторичных и первичных патологических очагов, разграничение воспалительных и демиелинизирующих (протекающих с разрушением оболочек нервов) процессов.

При некоторых инфекционных заболеваниях метод выявляет внутримозговые абсцессы (ограниченные гнойные полости), характеризующиеся увеличением лактата, липидных комплексов, некоторых аминокислот (лейцин, валин), сукцината и ацетата.

Распространенные показания для МР-спектроскопии головного мозга:

  • Микроишемические нарушения без выраженной клиники;
  • Эпилептические расстройства;
  • Демиелинизирующие заболевания (рассеянный склероз, энцефаломиелит);
  • Воспалительные внутримозговые процессы;
  • Мелкие и крупные образования;
  • Нейродегенеративные состояния.

В заключение отметим, что изучение метаболических изменений мозга путем регистрации спектрального ряда протонов разных химических соединений – основа раннего выявления опухолей, диагностики заболеваний.

Развитие нейрорентгенологии идёт по пути "от изучения анатомии к изучению функций головного мозга". Сегодня МРТ позволяет не только дифференцировать типы тканей (кровь, жировую, мышечную ткань, белое и серое вещество мозга и т.д.), но и оценивать скорость и направление движения молекул воды; различать ткани, отличающиеся по транспорту молекул и ионов (К+, Na+) ; по рН среды и активности фагоцитоза. По количеству кислорода в крови МРТ позволяет выявить области мозга с повышенной активностью, обнаружить участки нарушения гематоэнцефалического барьера, количественно оценить проницаемость тканей, состояние рецепторов, гормональную активность, наличие конкретного антигена или белковых структур в тканях.

Диффузионную МРТ, МР трактографию, перфузионную, функциональную МРТ и MP-спектроскопию относят к методам молекулярной визуализации.

MP-спектроскопия - это неинвазивная методика, основанная на свойстве ядер атомов водорода индуцировать МР сигналы в магнитных полях высокой напряженности, после воздействия радиочастотного импульса. Последующий анализ этих данных позволяет судить о наличии и концентрации в тканях различных метаболитов, а также об их изменениях при различных патологических состояниях.

На сегодняшний день этот метод является единственным способом неинвазивно провести исследование обмена веществ (метаболизма) внутренних органов, в частности головного мозга. Нарушения этих процессов происходят еще до клинических проявлений болезни, поэтому магнитно-резонансная спектроскопия позволяет диагностировать заболевания на самых ранних этапах развития.

MP-спектроскопию в настоящее время довольно широко используют для оценки различных объёмных образований головного мозга. Данные MP-спектроскопии не позволяют с уверенностью предсказать гистологический тип новообразования, тем не менее, опухолевые процессы в целом характеризуются низким соотношением NAA/Cr, увеличением соотношения Cho/Cr и, в некоторых случаях, появлением пика лактата. В большинстве исследований МР- спектроскопию применяли в дифференциальной диагностике астроцитом, эпендимом и примитивных нейроэпителиальных опухолей, предположительно определяя тип опухолевой ткани.

В медицинской практике важно использовать MP-спектроскопию в послеоперационном периоде для диагностики продолженного роста новообразования, рецидива опухоли либо лучевого некроза. В сложных случаях МР-спектроскопия становится полезным дополнительным методом в дифференциальной диагностике наряду с данными перфузионно-взвешенных изображений. Характерным признаком некроза служит наличие так называемого мёртвого пика, широкого лактат-липидного комплекса на фоне полной редукции пиков остальных метаболитов.

Очень широко используют информативность МР-спектроскопии в дифференциальной диагностике первичных опухолей мозга и метастазов в головной мозг, в дифдиагностике этих поражений с инфекционными и демиелинизирующими процессами. Также МР спектроскопия становится все более востребованной при эпилепсии, при оценке метаболических нарушений и дегенеративных поражений белого вещества головного мозга у детей, при черепно-мозговой травме, ишемии мозга и других заболеваниях.


МР-трактография на сегодняшний день является одним из новейших методов, которая позволяет дать возможность целостной диагностики и определить направление проводящих каналов головного мозга. Применение данного метода диагностики позволяет оценить характер распространения новообразования (опухоли). Также данный метод применяется как диагностика после инсульта, для определения степени повреждения нервных волокон.

В отличии МРТ и КТ, трактография в данный момент находится на стадии исследования и доработки. Однако на данный момент существует еще более усовершенствованная трактография на 257 проекций против стандартных 51.

Нейровизуализация головного мозга включает в себя ряд диагностических методов, которые позволяют визуализировать мозговую структуру, функции и биохимические показатели мозга.

На сегодня разделяют 2 глобальные категории:

  • Структурная , которая позволяет описать саму структура мозга и непосредственно диагноз внутричерепных заболеваний, например опухоль и черепно-мозговая травма.
  • Функциональная нейровизуализация, которая используется для диагностики метаболических расстройства на начальной стадии их развития, например Болезнь Альцгеймера, а также широко применяется в неврологии и когнитивных расстройствах.

ОФЭКТ головного мозга является диагностическим методом ядерной медицины, которая позволяет специалиста с точность увидеть функции организма, с помощью трехмерных графических изображений. ОФЭКТ наиболее часто применяется для выявления новообразований и исследования сердечно-сосудистой системы.

Однако все же онкология является главной направленностью данного метода диагностики. ОФЭКТ обладает точностью для , а также для определения его стадии прогрессирования.

  • Наиболее часто применяется для определения:
  • Рака молочной и предстательной железы;
  • Рака кости первичного характера;
  • Нейроэндокринных опухолей;
  • Аденом околощитовидной железы;
  • Новообразования в мозге и ;
  • Рака печени;

Метод формирует особые 3D изображения, что дает удобную объемную модель диагностируемого органа. Возможность проведения двух сканов в ходе исследования, ОФЭКТ позволяет предоставить картинку высочайшего качества. Поэтому оно играет важнейшую роль визуализированной диагностики воспалений, эмболии легких, инсульта и многих других.

ОФЭКТ обладает всеми преимуществами и является одним из ключевых методов современной диагностики, на сегодняшний день. Главная разница между однофотонной эмиссионной томографией и КТ, это то что ОФЭКТ способна первым распознать какой-либо патологический процесс происходящий в мозге, с помощью радиоактивных молекул и атомов. КТ же обладает только рентгенологическим способом диагностики.

Однако оба исследования дополняют друг друга. Диагностики проводятся последовательно, а затем объединяются вместе в одном аппарате.

Магнитно резонансная венография головного мозга применятся для венозной визуализации и строения венозной системы, а также для определения скорости тока крови и тромбоза вен. В некоторых случаях для уточнения строения венозной системы проводится с использованием контрастного вещества.

Видео

Рубрика: Диагностика в Германии

Это метод исследования, базирующийся на принципе классического магнитно-ядерного резонанса, но имеющий некоторые отличия. Если в магнитно-резонансных приборах используется свойство частиц поглощать и излучать электромагнитные волны, то целью спектроскопии является определение наличия и концентрации отдельных химических веществ . Метод магнитно-резонансной спектроскопии позволяет проводить измерения в живых тканях. Так, с помощью ядер водорода (Н 1) возможно определять количество N-ацетиласпартата в нейронах головного мозга или количество холина в клеточных мембранах. Молекулы фосфора Р 31 применяются, главным образом для изучения обмена веществ на клеточном уровне, а молекулы углерода С 13 - для отслеживания метаболизма глюкозы.

Первая установка для МР-спектроскопии сконструирована австрийским профессором Эвальдом Мозером с сотрудниками в 1990 году. В 1996 году выполнены первые исследования метаболизма глюкозы и жирных кислот в головном мозге, скелетных мышцах и печени здоровых испытуемых, а также пациентов с диабетом 1 и 2 типа. К настоящему времени также выполнены клинические исследования МР-спектроскопии сердца и предстательной железы .

В ПОМОЩЬ ОНКОЛОГУ

В последние годы метод получил широкое распространение в онкологии , так как позволяет определить накопление патологических веществ при различных онкологических заболеваниях.

Если ранее было осуществимо лишь исследование крупных органов и значительных изменений, то сейчас стало возможным исследование такого небольшого органа, как предстательная железа с разрешением до <0,5 см 3 . В здоровой ткани предстательной железы определяется в больших количествах цитрат, или лимонная кислота. При злокачественных новообразованиях количество цитрата уменьшается. Так как общее число клеток при онкологических заболеваниях увеличивается, то возрастает и количество холина, составной части клеточной оболочки. Концентрацию двух этих веществ как раз и позволяет измерить МР спектроскопия. Для получения трехмерного изображения и точной локализации опухоли весь орган делится на небольшие участки менее 0,5 см 3 , в каждом из которых определяется концентрация указанных веществ.

На рисунке показана разница в содержании различных метаболитов в нормальной ткани предстательной железы (А) и в ткани карциномы предстательной железы (Б). При этом Cholin - холин, Kreatin - креатин, а Citrat - cоли лимонной кислоты. В злокачественной ткани преобладает повышенная концентрация холина, но снижена концентрация цитрата. (Источник: Dr. Scheidler. Patienteninfo Prostata-Spektroskopie. Radiologische Zentrum München-Pasing, 2010 ).

Комбинация МРТ (определение морфологической структуры) с МР спектроскопией (выявление и определение концентрации химических соединений) позволяет охарактеризовать и спланировать лечение рака предстательной железы.

ПРИ РАКЕ ПРОСТАТЫ

Для такого исследования требуется МРТ-установка с высоким разрешением, а также две передающие капсулы: одна располагается поверхностно на передней брюшной стенке в области предстательной железы, а другая - ректально. Для обработки сигнала необходим также специальный прибор и программное обеспечение. Для получения достоверных результатов врачу требуется достаточный опыт работы с оборудованием. Только в 2010 году была завершена экспериментальная фаза применения МР- спектроскопии для диагностики рака предстательной железы. В Германии такое обследование можно пройти, например, в радиологическом центре Мюнхен-Пазинг. Врачами этого центра с 1993 года обследовано более 7000 пациентов. В сентябре 2003 года здесь был проведен первый в Германии курс для врачей по диагностике рака предстательной железы с помощью МР-спектроскопии.

В настоящее время «золотым стандартом» ранней диагностики рака предстательной железы является определение опухолевого маркера, простатспецифического антигена (ПСА). При повышении ПСА выполняется дальнейшая диагностика - поиск злокачественного новообразования или доброкачественных изменений (гиперплазии). Основным недостатком метода является низкая специфичность, то есть повышение ПСА и при других, например, воспалительных заболеваниях.

В случае повышения ПСА на помощь как раз может прийти такой метод как МР-спектроскопия. Особенно МР-спектроскопия показана пациентам с постоянно повышенным уровнем ПСА, но неподтвержденными с помощью гистологического исследования злокачественными изменениями предстательной железы.

ПРОЦЕДУРА

Как же выполняется исследование предстательной железы? Самым приятным фактом является отсутствие специальной подготовки пациента. Лишь незадолго до процедуры рекомендуется естественное опорожнение кишечника и мочевого пузыря. Контрастное средство в исследовании не применяется.

Противопоказанием к исследованию является наличие искусственного водителя ритма. При наличии искусственных клапанов сердца или протезов внутреннего уха необходимо обязательно информировать врача, имея при себе описание (аннотацию или паспорт) данных протезов. Исследование проводится в закрытом помещении, в специальной продолговатой кабине. Если имеет место боязнь закрытых пространств - клаустрофобия, то перед исследованием пациент получает успокаивающее средство. Исследование длится около часа, в положении лежа на спине.

Метод МР-спектроскопии является очень многообещающим. В комбинации с обычной магнитно-резонансной томографией правильный диагноз устанавливается в 80-85% случаев. Ошибки происходят в тех случаях, когда опухолевая ткань значительно не отличается от нормальной по степени зрелости, и количество холина в ней приближено к нормальной ткани. Редко наблюдаются случаи, когда клетки опухоли рассеяны по всей предстательной железе, а не сконцентрированы на определенном участке, тогда в диагностике поможет исследование ткани под микроскопом.

В СПЕКТРЕ НАУКИ

В Германии признанным международным центром МР-спектроскопии является Франкфурт-на-Майне, где располагаются Центр биомолекулярной МР-спектроскопии, Институт Макса Планка и исследовательские группы Университета Гете. С помощью МР-спектроскопии здесь изучаются внутриклеточные белки, их изменения под воздействием различных медикаментов и температурных колебаний. В берлинской клинике Шарите и Рейнском университете Фридриха Вильгельма в Бонне активно изучается применение МР- спектроскопии для диагностики рассеянного склероза. Показано, что в неповрежденных клетках головного мозга содержится значительное количество N-ацетил-аспартата, снижение которого может указывать на развитие заболевания.

Др. София Ротэрмель



Остеоденситометрия: прочны ли ваши кости? Точный диагноз благодаря точной локализации опухоли и ее метастазов: новая диагностика с помощью высокочувствительного онкомаркера при раке простаты. Компьютерная томография в помощь ортопеду

Остеоденситометрия, или просто денситометрия - это несложный и безболезненный метод измерения плотности костной ткани. Конечно, необязательно это делать каждому, пусть и в целях профилактики...

Людгер А., в профилактических целях регулярно обследовался по подозрению на рак простаты. Однако три биопсии не подтвердили наличие опухоли. Для окончательной ясности 75-летний пациент...

все это и многое другое вы найдете на страницах журнала в разделе "Информация для врачей".
Общественный транспорт Германии

Прилетая на самолете на лечение в Германию, вы из аэропорта можете относительно недорого добраться до места назначения по железной дороге. Страна обладает разветвленной сетью железных дорог. Концерн «Немецкие железные дороги» - Deutsche Bahn (DB) предлагает несколько видов поездов, отличающихся не только внешним видом, но и, в первую очередь, скоростью и стоимостью проезда. ICE (Интер Сити Экспресс) и IC (Интер Сити) - это самые быстрые и комфортабельные экспрессы, на которых можно добраться не только до крупных городов Германии, но и 6-ти соседних стран: Австрии, Бельгии, Дании, Нидерландов, Франции и Швейцарии.

Похожие публикации