Корреляционный анализ и сферы его применения. Как рассчитать коэффициент корреляции

– это один из самых распространенных методов изучения отношений между численными величинами. Его основная цель состоит в нахождении зависимости между двумя параметрами и ее степени с последующим выведением уравнения. Например, у нас есть студенты, которые сдали экзамен по математике и английскому языку. Мы можем использовать корреляцию для того, чтобы определить, влияет ли успешность сдачи одного теста на результаты по другому предмету. Что касается регрессионного анализа, то он помогает предсказать оценки по математике, исходя из баллов, набранных на экзамене по английскому языку, и наоборот.

Что такое корреляционная диаграмма?

Любой анализ начинается со сбора информации. Чем ее больше, тем точнее полученный в конечном итоге результат. В вышеприведенном примере у нас есть две дисциплины, по которым школьникам нужно сдать экзамен. Показатель успешности на них – это оценка. Корреляционно-регрессионный анализ показывает, влияет ли результат по одному предмету на баллы, набранные на втором экзамене. Для того чтобы ответить на этот вопрос, необходимо проанализировать оценки всех учеников на параллели. Но для начала нужно определиться с зависимой переменной. В данном случае это не так важно. Допустим, экзамен по математике проходил раньше. Баллы по нему – это независимая переменная (откладываются по оси абсцисс). Английский язык стоит в расписании позже. Поэтому оценки по нему – это зависимая переменная (откладываются по оси ординат). Чем больше полученный таким образом график похож на прямую линию, тем сильнее линейная корреляция между двумя избранными величинами. Это означает, что отличники в математике с большой долей вероятности получат пятерки на экзамене по английскому.

Допущения и упрощения

Метод корреляционно-регрессионного анализа предполагает нахождение причинно-следственной связи. Однако на первом этапе нужно понимать, что изменения обеих величин могут быть обусловлены какой-нибудь третьей, пока не учтенной исследователем. Также между переменными могут быть нелинейные отношения, поэтому получение коэффициента, равного нулю, это еще не конец эксперимента.

Линейная корреляция Пирсона

Данный коэффициент может использоваться при соблюдении двух условий. Первое – все значения переменных являются рациональными числами, второе – ожидается, что величины изменяются пропорционально. Данный коэффициент всегда находится в пределах между -1 и 1. Если он больше нуля, то имеет место быть прямо пропорциональная зависимость, меньше – обратно, равен – данные величины никак не влияют одна на другую. Умение вычислить данный показатель – это основы корреляционно-регрессионного анализа. Впервые данный коэффициент был разработан Карлом Пирсоном на основе идеи Френсиса Гальтона.

Свойства и предостережения

Коэффициент корреляции Пирсона является мощным инструментом, но его также нужно использовать с осторожностью. Существуют следующие предостережения в его применении:

  1. Коэффициент Пирсона показывает наличие или отсутствие линейной зависимости. Корреляционно-регрессионный анализ на этом не заканчивается, может оказаться, что переменные все-таки связаны между собой.
  2. Нужно быть осторожным в интерпретировании значения коэффициента. Можно найти корреляцию между размером ноги и уровнем IQ. Но это не означает, что один показатель определяет другой.
  3. Коэффициент Пирсона не говорит ничего о причинно-следственной связи между показателями.

Коэффициент ранговой корреляции Спирмана

Если изменение величины одного показателя приводит к увеличению или уменьшению значения другого, то это означает, что они являются связанными. Корреляционно-регрессионный анализ, пример которого будет приведен ниже, как раз и связан с такими параметрами. Ранговый коэффициент позволяет упростить расчеты.

Корреляционно-регрессионный анализ: пример

Предположим, происходит оценка эффективности деятельности десяти предприятий. У нас есть двое судей, которые выставляют им баллы. Корреляционно-регрессионный анализ предприятия в этом случае не может быть проведен на основе линейного коэффициента Пирсона. Нас не интересует взаимосвязь между оценками судей. Важны ранги предприятий по оценке судей.

Данный тип анализа имеет следующие преимущества:

  • Непараметрическая форма отношений между исследуемыми величинами.
  • Простота использования, поскольку ранги могут приписываться как в порядке возрастания значений, так и убывания.

Единственное требование данного типа анализа – это необходимость конвертации исходных данных.

Проблемы применения

В основе корреляционно-регрессионного анализа лежат следующие предположения:

  • Наблюдения считаются независимыми (пятикратное выпадение «орла» никак не влияет на результат следующего подбрасывания монетки).
  • В корреляционном анализе обе переменные рассматриваются как случайные. В регрессионном – только одна (зависимая).
  • При проверке гипотезы должно соблюдаться нормальное распределение. Изменение зависимой переменной должно быть одинаковым для каждой величины на оси абсцисс.
  • Корреляционная диаграмма – это только первая проверка гипотезы о взаимоотношениях между двумя рядами параметров, а не конечный результат анализа.

Зависимость и причинно-следственная связь

Предположим, мы вычислили коэффициент корреляции объема экспорта и ВВП. Он оказался равным единице по модулю. Провели ли мы корреляционно-регрессионный анализ до конца? Конечно же нет. Полученный результат вовсе не означает, что ВВП можно выразить через экспорт. Мы еще не доказали причинно-следственную связь между показателями. Корреляционно-регрессионный анализ – прогнозирование значений одной переменной на основе другой. Однако нужно понимать, что зачастую на параметр влияет множество факторов. Экспорт обуславливает ВВП, но не только он. Есть и другие факторы. Здесь имеет место быть и корреляция, и причинно-следственная связь, хотя и с поправкой на другие составляющие валового внутреннего продукта.

Гораздо опаснее другая ситуация. В Великобритании был проведен опрос, который показал, что дети, родители которых курили, чаще являются правонарушителями. Такой вывод сделан на основе сильной корреляции между показателя. Однако правилен ли он? Во-первых, зависимость могла быть обратной. Родители могли начать курить из-за стресса от того, что их дети постоянно попадают в переделки и нарушают закон. Во-вторых, оба параметра могут быть обусловлены третьим. Такие семьи принадлежат к низким социальным классам, для которых характерны обе проблемы. Поэтому на основе корреляции нельзя сделать вывод о наличии причинно-следственной связи.

Зачем использовать регрессионный анализ?

Корреляционная зависимость предполагает нахождение отношений между величинами. Причинно-следственная связь в этом случае остается за кадром. Задачи корреляционного и регрессионного анализа совпадают только в плане подтверждения наличия зависимости между значениями двух величин. Однако первоначально исследователь не обращает внимания на возможность причинно-следственной связи. В регрессионном анализе всегда есть две переменные, одна и которых является зависимой. Он проходит в несколько этапов:

  1. Выбор правильной модели с помощью метода наименьших квадратов.
  2. Выведение уравнения, описывающего влияние изменения независимой переменной на другую.

Например, если мы изучаем влияние возраста на рост человека, то регрессионный анализ может помочь предсказать изменения с течением лет.

Линейная и множественная регрессия

Предположим, что X и Y – это две связанные переменные. Регрессионный анализ позволяет предсказать величину одной из них на основе значений другой. Например, зрелость и возраст – это зависимые признаки. Зависимость между ними отражается с помощью линейной регрессии. Фактически можно выразить X через Y или наоборот. Но зачастую только одна из линий регрессии оказывается правильной. Успех анализа во многом зависит от правильности определения независимой переменной. Например, у нас есть два показателя: урожайность и объем выпавших осадков. Из житейского опыта становится ясно, что первое зависит от второго, а не наоборот.

Множественная регрессия позволяет рассчитать неизвестную величину на основе значений трех и более переменных. Например, урожайность риса на акр земли зависит от качества зерна, плодородности почвы, удобрений, температуры, количества осадков. Все эти параметры влияют на совокупный результат. Для упрощения модели используются следующие допущения:

  • Зависимость между независимой и влияющими на нее характеристиками является линейной.
  • Мультиколлинеарность исключена. Это означает, что зависимые переменные не связаны между собой.
  • Гомоскедастичность и нормальность рядов чисел.

Применение корреляционно-регрессионного анализа

Существует три основных случая использования данного метода:

  1. Тестирование казуальных отношений между величинами. В этом случае исследователь определяет значения переменной и выясняет, влияют ли они на изменение зависимой переменной. Например, можно дать людям разные дозы алкоголя и измерить их артериальное давление. В этом случае исследователь точно знает, что первое является причиной второго, а не наоборот. Корреляционно-регрессионный анализ позволяет обнаружить прямо-пропорциональную линейную зависимость между данными двумя переменными и вывести формулу, ее описывающую. При этом сравниваться могут величины, выраженные в совершенно различных единицах измерения.
  2. Нахождение зависимости между двумя переменными без распространения на них причинно-следственной связи. В этом случае нет разницы, какую величину исследователь назовет зависимой. При этом в реальности может оказаться, что на их обе влияет третья переменная, поэтому они и изменяются пропорционально.
  3. Расчет значений одной величины на основе другой. Он осуществляется на основе уравнения, в которое подставляются известные числа.

Таким образом корреляционный анализ предполагает нахождение связи (не причинно-следственной) между переменными, а регрессионный – ее объяснение, зачастую с помощью математической функции.

1) корреляционный анализ как средство получения информации;

2) особенности процедур определения коэффициентов линейной и ранговой корреляции.

Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).

Когда повышение уровня одной переменной сопровождается повышением уровня другой, то речь идет о положительной корреляции. Если же рост одной переменной происходит при снижении уровня другой, то говорят оботрицательной корреляции. При отсутствии связи переменных мы имеем дело снулевой корреляцией.

При этом переменными могут быть данные тестирований, наблюдений, экспериментов, социально-демографические характеристики, физиологические параметры, особенности поведения и т. д. К примеру, использование метода позволяет нам дать количественно выраженную оценку взаимосвязи таких признаков, как: успешность обучения в вузе и степень профессиональных достижений по его окончании, уровень притязаний и стресс, количество детей в семье и качества их интеллекта, черты личности и профессиональная ориентация, продолжительность одиночества и динамика самооценки, тревожность и внутригрупповой статус, социальная адаптированность и агрессивность при конфликте...

В качестве вспомогательных средств, процедуры корреляции незаменимы при конструировании тестов (для определения валидности и надежности измерения), а также как пилотажные действия по проверке пригодности экспериментальных гипотез (факт отсутствия корреляции позволяет отвергнуть предположение о причинно-следственной связи переменных).

Усиление интереса в психологической науке к потенциалу корреляционного анализа обусловлено целым рядом причин. Во-первых, становится допустимым изучение широкого круга переменных, экспериментальная проверка которых затруднена или невозможна. Ведь по этическим соображениям, к примеру, нельзя провести экспериментальные исследования самоубийств, наркомании, деструктивных родительских воздействий, влияния авторитарных сект. Во-вторых, возможно получение за короткое время ценных обобщений данных о больших количествах исследуемых лиц. В-третьих, известно, что многие феномены изменяют свою специфику во время строгих лабораторных экспериментов. А корреляционный анализ предоставляет исследователю возможность оперировать информацией, полученной в условиях, максимально приближенных к реальным. В-четвертых, осуществление статистического изучения динамики той или иной зависимости нередко создает предпосылки к достоверному прогнозированию психологических процессов и явлений.

Однако следует иметь в виду, что применение корреляционного метода связано и с весьма существенными принципиальными ограничениями.

Так, известно, что переменные вполне могут коррелировать и при отсутствии причинно-следственной связи между собой.

Это иногда возможно в силу действия случайных причин, при неоднородности выборки, из-за неадекватности исследовательского инструментария поставленным задачам. Такая ложная корреляция способна стать, скажем, «доказательством» того, что женщины дисциплинированнее мужчин, подростки из неполных семей более склонны к правонарушениям, экстраверты агрессивнее интровертов и т. п. Действительно, стоит отобрать в одну группу мужчин, работающих в высшей школе, и женщин, предположим, из сферы обслуживания, да еще и протестировать тех и других на знание научной методологии, то мы получим выражение заметной зависимости качества информированности от пола. Можно ли доверять такой корреляции?

Еще чаще, пожалуй, в исследовательской практике встречаются случаи, когда обе переменные изменяются под влиянием некоей третьей или даже нескольких скрытых детерминант.

Если мы обозначим цифрами переменные, а стрелками - направления от причин к следствиям, то увидим целый ряд возможных вариантов:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 и т. д.

Невнимание к воздействию реальных, но неучтенных исследователями факторов позволило представить обоснования того, что интеллект - сугубо наследуемое образование (психогенетический подход) или, напротив, что он обусловлен лишь влиянием социальных составляющих развития (социогенетический подход). В психологии, следует заметить, нераспространены феномены, имеющие однозначную первопричину.

Кроме того, факт наличия взаимосвязи переменных не дает возможности выявить по итогам корреляционного исследования причину и следствие даже в тех случаях, когда промежуточных переменных не существует.

Например, при изучении агрессивности детей было установлено, что склонные к жестокости дети чаще сверстников смотрят фильмы со сценами насилия. Означает ли это, что такие сцены развивают агрессивные реакции или, наоборот, подобные фильмы привлекают самых агрессивных детей? В рамках корреляционного исследования дать правомерный ответ на этот вопрос невозможно.

Необходимо запомнить: наличие корреляций не является показателем выраженности и направленности причинно-следственных отношений.

Другими словами, установив корреляцию переменных, мы можем судить не о детерминантах и производных, а лишь о том, насколько тесно взаимосвязаны изменения переменных и каким образом одна из них реагирует на динамику другой.

При использовании данного метода оперируют той или иной разновидностью коэффициента корреляции. Его числовое значение обычно изменяется от -1 (обратная зависимость переменных) до +1 (прямая зависимость). При этом нулевое значение коэффициента соответствует полному отсутствию взаимосвязи динамики переменных.

Например, коэффициент корреляции +0,80 отражает наличие более выраженной зависимости между переменными, чем коэффициент +0,25. Аналогично, зависимость между переменными, характеризуемая коэффициентом -0,95, гораздо теснее, чем та, где коэффициенты имеют значения +0,80 или + 0,25 («минус» указывает нам только на то, что рост одной переменной сопровождается уменьшением другой).

В практике психологических исследований показатели коэффициентов корреляции обычно не достигают +1 или -1. Речь может идти только о той или иной степени приближения к данному значению. Часто корреляция считается выраженной, если ее коэффициент выше 0,60. При этом недостаточной корреляцией, как правило, считаются показатели, располагающиеся в интервале от -0,30 до +0,30.

Однако, сразу следует оговорить, что интерпретация наличия корреляции всегда предполагает определение критических значений соответствующего коэффициента. Рассмотрим этот момент более подробно.

Вполне может получиться так, что коэффициент корреляции равный +0,50 в некоторых случаях не будет признан достоверным, а коэффициент, составляющий +0,30, окажется при определенных условиях характеристикой несомненной корреляции. Многое здесь зависит от протяженности рядов переменных (т. е. от количества сопоставляемых показателей), а также от заданной величины уровня значимости (или от принятой за приемлемую вероятность ошибки в расчетах).

Ведь, с одной стороны, чем больше выборка, тем количественно меньший коэффициент будет считаться достоверным свидетельством корреляционных отношений. А с другой стороны, если мы готовы смириться со значительной вероятностью ошибки, то можем посчитать за достаточную небольшую величину коэффициента корреляции.

Существуют стандартные таблицы с критическими значениями коэффициентов корреляции. Если полученный нами коэффициент окажется ниже, чем указанный в таблице для данной выборки при установленном уровне значимости, то он считается статистически недостоверным.

Работая с такой таблицей, следует знать, что пороговой величиной уровня значимости в психологических исследованиях обычно считается 0,05(или пять процентов). Разумеется, риск ошибиться будет еще меньше, если эта вероятность составляет 1 на 100 или, еще лучше, 1 на 1000.

Итак, не сама по себе величина подсчитанного коэффициента корреляции служит основанием для оценки качества связи переменных, а статистическое решение о том, можно ли считать вычисленный показатель коэффициента достоверным.

Зная это, обратимся к изучению конкретных способов определения коэффициентов корреляции.

Значительный вклад в разработку статистического аппарата корреляционных исследований внес английский математик и биолог Карл Пирсон (1857-1936), занимавшийся в свое время проверкой эволюционной теории Ч. Дарвина.

Обозначение коэффициента корреляции Пирсона (r) происходит от понятия регрессии - операции по сведению множества частных зависимостей между отдельными значениями переменных к их непрерывной (линейной) усредненной зависимости.

Формула для расчета коэффициента Пирсона имеет такой вид:

где x , y - частные значения переменных,-(сигма) - обозначение суммы, а
- средние значения тех же самых переменных. Рассмотрим порядок использования таблицы критических значений коэффициентов Пирсона. Как мы видим, в левой ее графе указано число степеней свободы. Определяя нужную нам строчку, мы исходим из того, что искомая степень свободы равнаn -2, гдеn - количество данных в каждом из коррелируемых рядов. В графах же, расположенных с правой стороны, указаны конкретные значения модулей коэффициентов.

Число степеней «свободы»

Уровни значимости

Причем, чем правее расположен столбик чисел, тем выше достоверность корреляции, увереннее статистическое решение о её значимости.

Если у нас, например, коррелируют два ряда цифр по 10 единиц в каждом из них и получен по формуле Пирсона коэффициент, равный +0,65, то он будет считаться значимым на уровне 0,05 (так как больше критического значения в 0,632 для вероятности 0,05 и меньше критического значения 0,715 для вероятности 0,02). Такой уровень значимости свидетельствует о существенной вероятности повторения данной корреляции в аналогичных исследованиях.

Теперь приведем пример вычисления коэффициента корреляции Пирсона. Пусть в нашем случае необходимо определить характер связи между выполнением одними и теми же лицами двух тестов. Данные по первому из них обозначены как x , а по второму - какy .

Для упрощения расчетов введены некоторые тождества. А именно:

При этом мы имеем следующие результаты испытуемых (в тестовых баллах):

Испытуемые

Четвертый

Одиннадцатый

Двенадцатый


;

;

Заметим, что число степеней свободы равно в нашем случае 10. Обратившись к таблице критических значений коэффициентов Пирсона, узнаем, что при данной степени свободы на уровне значимости 0,999 будет считаться достоверным любой показатель корреляции переменных выше, чем 0,823. Это дает нам право считать полученный коэффициент свидетельством несомненной корреляции рядов x иy .

Применение линейного коэффициента корреляции становится неправомерным в тех случаях, когда вычисления производятся в пределах не интервальной, а порядковой шкалы измерения. Тогда используют коэффициенты ранговой корреляции. Разумеется, результаты при этом получаются менее точными, так как сопоставлению подлежат не сами количественные характеристики, а лишь порядки их следования друг за другом.

Среди коэффициентов ранговой корреляции в практике психологических исследований довольно часто применяют тот, который предложен английским ученым Чарльзом Спирменом (1863-1945), известным разработчиком двухфакторной теории интеллекта.

Используя соответствующий пример, рассмотрим действия, необходимые для определения коэффициента ранговой корреляции Спирмена .

Формула его вычисления выглядит следующим образом:

;

где d -разности между рангами каждой переменной из рядовx иy ,

n - число сопоставляемых пар.

Пусть x иy - показатели успешности выполнения испытуемыми некоторых видов деятельности(оценки индивидуальных достижений). При этом мы располагаем следующими данными:

Испытуемые

Четвертый

Заметим, что вначале производится раздельное ранжирование показателей в рядах x иy . Если при этом встречается несколько равных переменных, то им присваивается одинаковый усредненный ранг.

Затем осуществляется попарное определение разности рангов. Знак разности несущественен, так как по формуле она возводится в квадрат.

В нашем примере сумма квадратов разностей рангов
равна 178. Подставим полученное число в формулу:

Как мы видим, показатель коэффициента корреляции в данном случае составляет ничтожно малую величину. Тем не менее, сопоставим его с критическими значениями коэффициента Спирмена из стандартной таблицы.

Вывод: между указанными рядами переменных x иy корреляция отсутствует.

Надо заметить, что использование процедур ранговой корреляции предоставляет исследователю возможность определять соотношения не только количественных, но и качественных признаков, в том, разумеется, случае, если последние могут быть упорядочены по возрастанию выраженности(ранжированы).

Нами были рассмотрены наиболее распространенные, пожалуй, на практике способы определения коэффициентов корреляции. Иные, более сложные или реже применяемые разновидности данного метода при необходимости можно найти в материалах пособий, посвященных измерениям в научных исследованиях.

ОСНОВНЫЕ ПОНЯТИЯ: корреляция; корреляционный анализ; коэффициент линейной корреляции Пирсона; коэффициент ранговой корреляции Спирмена; критические значения коэффициентов корреляции.

Вопросы для обсуждения:

1. Каковы возможности корреляционного анализа в психологических исследованиях? Что можно и что нельзя выявить с помощью данного метода?

2. Какова последовательность действий при определении коэффициентов линейной корреляции Пирсона и ранговой корреляции Спирмена?

Упражнение 1:

Установите, являются ли статистически достоверными следующие показатели корреляции переменных:

а) коэффициент Пирсона +0,445 для данных двух тестирований в группе, состоящей из 20 испытуемых;

б) коэффициент Пирсона -0,810 при числе степеней свободы равном 4;

в) коэффициент Спирмена +0,415 для группы из 26 человек;

г) коэффициент Спирмена +0,318 при числе степеней свободы равном 38.

Упражнение 2:

Определите коэффициент линейной корреляции между двумя рядами показателей.

Ряд 1: 2, 4, 5, 5, 3, 6, 6, 7, 8, 9

Ряд 2: 2, 3, 3, 4, 5, 6, 3, 6, 7, 7

Упражнение 3:

Сделайте выводы о статистической достоверности и степени выраженности корреляционных отношений при числе степеней свободы равном 25, если известно, что
составляет: а) 1200; б) 1555; в) 2300

Упражнение 4:

Выполните всю последовательность действий, необходимых для определения коэффициента ранговой корреляции между предельно обобщёнными показателями успеваемости школьников («отличник», «хорошист» и т.д.) и характеристиками выполнения ими теста умственного развития (ШТУР). Сделайте интерпретацию полученных показателей.

Упражнение 5:

С помощью коэффициента линейной корреляции рассчитайте показатели ретестовой надежности имеющегося в вашем распоряжении теста интеллекта. Выполните исследование в студенческой группе с интервалом времени между тестированиями в 7-10 дней. Сформулируйте выводы.

Изучение реальной действительности показывает, что практически каждое общественное явление находится в тесной связи и взаимодействии с другими явлениями, какими бы случайными они не казались на первый взгляд. Так, например, уровень урожайности сельскохозяйственных культур зависит от множества природных и экономических факторов, тесно связанных между собой.

Исследования и измерения взаимосвязей и взаимозависимостей социально-экономических явлений является одной из важнейших задач статистики.

Для исследования взаимосвязей между явлениями статистика использует ряд методов и приемов: статистические группировки (простые и комбинационные). индексный, корреляционный и дисперсионный анализ, балансовый, табличный, графический и др. Содержание, специфика и возможности применения некоторых из перечисленных методов уже были рассмотрены в предыдущих разделах учебника. Индексный и графический методы рассматриваются соответственно в 11 и 12 главах.

Наряду с уже рассмотренными методами изучения взаимосвязей особое место занимает метод корреляции, который является логическим продолжением таких методов как аналитическое группировки, дисперсионный анализ и сопоставление параллельных рядов. В сочетании с этими методами он предоставляет статистическому анализу законченный, завершенный характер.

Основателями теории корреляции являются английские статистики Ф.Гальтон (1822-1911 гг.) и К.Пірсон (1857-1936 гг.).

Срок корреляция происходит от английского слова correlation - соотношение, соответствие (взаимосвязь, взаимозависимость) между признаками, которая проявляется при массовом наблюдении изменения средней величины одного признака в зависимости от значения другой. Признаки, связанные между собой корреляционным связью, называют корельованими.

Корреляционный анализ дает возможность измерить степень влияния факторных признаков на результативные, установить единую меру тесноты связи и роль изучаемого фактора (факторов) в общем изменении результативного признака. Корреляционный метод позволяет получить количественные характеристики степени связи между двумя и большим числом признаков, а потому в отличие от рассмотренных выше методов, дает более широкое представление о связи между ними.

Связи между факторами достаточно разнообразны. При этом одни признаки выступают в роли факторов, действующих на другие, вызывая их изменение, вторые-в роли действия этих факторов. Первые из них называют факторными признаками, вторые -результативными.

Исследуя связи между признаками, необходимо выделить прежде всего два вида связей: 1) функциональный (полный) и 2) корреляционная (статистическая) связь.

Функциональным называют такую связь между признаками, при которой каждому значению одной переменной (аргумента) соответствует строго определенное значение другой переменной (функции). Такие связи наблюдаются в математике, физике, химии, астрономии и других науках.

Например, площадь круга (8 = яР2) и длина окружности (С = 27ГЇР) полностью определяется величиной радиуса, площади треугольника и прямоугольника - длина их сторон и т.д. Так, с увеличением радиуса окружности на 1 см его длина увеличивается на 6,28 см, на 2 см - на 12,56 см и т.д.

В сельскохозяйственном производстве примером функциональной связи может быть связь между выручкой от продажи продукции, цене реализации 1 ц и количеством реализованной продукции; валовому сбору, урожайности и размеру посевной площади; фондоотдачей, стоимостью валовой продукции и основных фондов; заработной платой и количеством отработанного времени при повременной оплате и т.д.

Функциональная связь проявляется как в совокупности в целом, так и в каждой ее единицы абсолютно точно и выражается с помощью аналитических формул.

В социально-экономических явлениях функциональные связи между признаками случаются редко. Здесь чаще всего имеют место следующие связи между переменными величинами, при которых численному значению одной из них соответствует несколько значений другого. Такая связь между признаками получил название корреляционной (статистической) связи. Например, известно, что с увеличением доз минеральных удобрений и улучшением их структуры (соотношения), как правило, урожайность сельскохозяйственных культур повышается, но хорошо известно, что прирост урожайности в каждом отдельном случае будет разным при одинаковых нормах внесения удобрений. Кроме того, одни и те же нормы удобрений, даже при очень выровненных условиях, часто по-разному влияют на урожайность. Кроме самих удобрений на величину формирования урожайности влияют также другие факторы, прежде всего, такие как качество почвы, осадки, сроки и способы сева и уборки и т.д. Известна закономерность между урожайностью и удобрениями проявится при достаточно большом количестве наблюдений и при сравнении достаточно большого количества средних значений результативного и факторного признаков.

Примером корреляционной связи в сельскохозяйственном производстве может быть связь между продуктивностью животных и уровнем кормления, качеством кормов, породностью скота; между стажем работы и производительностью труда рабочих и т.д.

Корреляционная связь является неполным, он проявляется при большом количестве наблюдений, при сравнении средних значений результативного и факторного признаков. В этом отношении выявление корреляционных зависимостей связано с действием закона больших чисел: только при достаточно большом количестве наблюдений индивидуальные особенности и второстепенные факторы сгладятся и зависимость между результативным и факторным признаками, если она имеет место, окажется достаточно отчетливо.

С помощью корреляционного анализа решают следующие основные задачи:

а) определение среднего изменения результативного признака под влиянием одного или нескольких факторов (в абсолютном или относительном выражении);

б) характеристика степени зависимости результативного признака от одного из факторов при фиксированном значении других факторов, включенных в корреляционной модели;

в) определение тесноты связи между результативными и факторными признаками (как со всеми факторами, так и с каждым фактором в отдельности при исключении влияния других);

г) определение и разложения общего объема вариации результативного признака на соответствующие части и установление роли каждого отдельного фактора в этой вариации;

д) статистическая оценка выборочных показателей корреляционной связи. Корреляционная связь выражается соответствующими математическими уравнениями. По направлению связь между корелюючими признакам может быть прямым и обратным. При прямой связи оба признака изменяются в одном направлении, то есть с увеличением факторного признака возрастает результативная и наоборот (например, связь между качеством почвы и урожайностью, уровнем кормления и продуктивностью животных, стажем работы и производительностью труда). При обратном связи оба признака изменяются в разных направлениях (например, связь между урожайностью и себестоимостью продукции, производительностью труда и себестоимостью продукции).

По форме или аналитическим выражением различают связи прямолинейные (или просто линейные) и нелинейные (или криволинейные). Если связь между признаками выражается уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой (параболы, гиперболы, показательной, степенной и т.д.), то такую связь называют нелинейной или криволинейным.

в Зависимости от количества исследуемых признаков различают парную (простую) и множественную корреляцию. При парной корреляции изучают связь между двумя признаками (результативным и факторным), при множественной корреляции - связь между тремя и большим числом признаков (результативным и двумя и большим числом факторов).

С помощью метода корреляционного анализа решается две главных задачи: 1) определение формы и параметров уравнения связи; 2) измерение тесноты связи.

Первая задача решается нахождением уравнения связи и определению его параметров. Второе - с помощью расчета различных показателей тесноты связи (коэффициент корреляции, корреляционного отношения, индекса корреляции и др.).

Схематично корреляционный анализ можно разделить на пять этапов:

1) постановка задачи, установление наличия связи между исследуемыми признаками;

2) отбор наиболее существенных факторов для анализа;

3) определение характера связи, его направления и формы, выбор математического уравнения для выражения существующих связей;

4) расчет числовых характеристик корреляционной связи (определение параметров уравнения и показателей тесноты связи);

5) статистическая оценка выборочных показателей связи.

Научно обоснованное применение корреляционного метода требует прежде всего глубокого понимания сущности взаимосвязей социально-экономических явлений. Сам метод не устанавливает наличие и причин возникновения связей между изучаемыми явлениями, его назначение состоит в их количественном измерении. На первом этапе корреляционного анализа осуществляется общее ознакомление с исследуемым объектом и явлениями, уточняются цель и задачи исследования, устанавливается теоретическая возможность причинно-следственной связи между признаками.

Установление причинных зависимостей в изучаемом явлении предшествует собственно корреляционному анализа. Поэтому применению методов корреляции должен предшествовать глубокий теоретический анализ, который охарактеризует основной процесс, протекающий в исследуемом явлении, определит существенные связи между отдельными его сторонами и характер их взаимодействия.

Предварительный анализ данных создает основу для формулирования конкретной задачи исследования связей, отбора важнейших факторов, установление возможной формы взаимосвязи признаков и тем самым приводит к математической формализации - к выбору математического уравнения, которое наиболее полно реализует существующие связи.

Одним из важнейших вопросов корреляционного анализа является отбор результативной и факторной (факторных) признаков. Факторные и результативные признаки, отбираемые для корреляционного анализа, должны быть существенными, первые должны непосредственно влиять на другие. Отбор факторов для включения их в корреляционную модель должен базироваться прежде всего на теоретических основах и практическом опыте анализа исследуемого социально-экономического явления. Большую помощь в решении этой задачи могут оказать такие статистические приемы и методы, как сопоставление параллельных рядов, построение таблиц распределения численностей по двум признакам (корреляционных таблиц, построение статистических группировок как по результативным признаком с анализом взаимосвязанных с ним факторов, так и по факторным признаком (или комбинацией факторных признаков) с анализом их влияния на результативный признак.

Отбор факторов для парных корреляционных моделей не сложный: из множества факторов, влияющих на результативный признак, отбирается один из важнейших факторов, который в основном определяет вариацию результативного признака или же фактор, существенность влияния которого на результативный признак предполагается изучить или проверить. Отбор факторов для множественных корреляционных моделей имеет ряд особенностей и ограничений. Они будут рассмотрены при изложении вопросов множественной корреляции.

Одной из главных проблем построения корреляционной модели является определение формы связи и на этой основе установление типа аналитической функции, отражающей механизм связи результативного признака с факторным (факторными). Под формой корреляционной связи понимают тип аналитического уравнения, выражающего зависимость между исследуемыми признаками.

Выбор того или иного уравнения для исследования связей между признаками является наиболее трудным и ответственным заданием, от которого зависят результаты корреляционного анализа. Все дальнейшие найретельніші расчеты могут быть обезцінені, если форма связи выбрана неверно. Важность этого этапа заключается в том, что правильно установленная форма связи позволяет подобрать и построить наиболее адекватную модель и на основе ее решения получить статистически достоверные и надежные характеристики.

Установление формы связи между признаками в большинстве случаев обосновывается теорией или практическим опытом предыдущих исследований. Если форма связи неизвестна, то при парной корреляции математическое уравнение может быть установлено с помощью составления корреляционных таблиц, построения статистических группировок, просмотра различных функций на ЭВМ и выбор такого уравнения, которое дает наименьшую сумму квадратов отклонений фактических данных от выровненных (теоретических) значений и др.

в Зависимости от исходных данных теоретической линией регрессии могут быть различные типы кривых или прямая линия. Так, если изменение результативного признака под влиянием фактора характеризуется постоянными приращениями, то это указывает на линейный характер связи, если же изменения результативного признака под влиянием фактора характеризуется постоянными коэффициентами роста, то есть основание предположить криволинейный связь.

Особое место в обосновании формы связи при проведении корреляционного анализа относится графиков, построенных в системе прямоугольных координат на основе эмпирических данных. Графическое изображение фактических данных дает наглядное представление о наличии и форму связи между исследуемыми признаками.

Согласно правилам математики при построении графика на оси абсцисс откладывают значения факторного признака, а на оси ординат - значения результативного признака. Отложив на пересечении соответствующих значений двух признаков точки, получим точечный график, который называют корреляционным полем. По характеру размещения точек на корреляционному поле делают вывод о направление и форму связи. Достаточно взглянуть на график, чтобы прийти к выводу о наличие и форму связи между признаками. Если точки концентрируются вокруг мнимой оси направленного слева, снизу, направо, вверх, то связь прямая, если к напротив слева, сверху, направо, вниз - связь обратная. Если точки разбросаны по всему полю, то это свидетельствует о том, что связь между признаками отсутствует или очень слабый. Характер размещения точек на корреляционному поле указывает также и на наличие прямолинейного или криволинейного связи между исследуемыми признаками.

С помощью графика подбирают соответствующее математическое уравнение для количественной оценки связи между результативным и факторным признаками. Уравнение, отражающее связь между признаками, называют уравнением регрессии или корреляционным уравнением. Если уравнение регрессии связывает только два признака, то оно называется уравнением парной регрессии. Если уравнение связи отражает зависимость результативного признака от двух и более факторных признаков, оно называется уравнением множественной регрессии. Кривые, построенные на основе уравнений регрессии, называют кривыми регрессии или линиями регрессии.

Различают эмпирическую и теоретическую линии регрессии. Если на корреляционному поле соединить точки отрезками прямой линии, то получим ломаную линию с некоторой тенденцией, которая называется эмпирической линией регрессии. в Теоретической линией регрессии называется та линия, вокруг которой концентрируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи. Теоретическая линия регрессии должна отражать изменение средних величин результативного признака по мере изменения величин факторного признака при условии полного взаємопогашення всех других - случайных по отношению к фактору - причин. Следовательно, эта линия должна быть проведена так, чтобы сумма отклонений точек корреляционного поля от соответствующих точек теоретической линии равнялась нулю, а сумма квадратов отклонений была бы минимальной величине. Поиск, построение, анализ и практическое применение теоретической линии регрессии называют регрессионным анализом.

По эмпирической линией регрессии не всегда удается установить форму связи и добрать уравнения регрессии. В таких случаях строят и решают различные уравнения регрессии. Затем оценивают их адекватность и подбирают такое уравнение, которое обеспечивает наилучшую аппроксимацию (приближение) фактических данных к теоретическим и достаточную статистическую достоверность и надежность.

Если подходить строго, регресійно-корреляционный анализ следует расчленить на регрессионный и корреляционный. Регрессионный анализ решает вопрос построения, разрешения и оценки уравнений регрессии, а при корреляционному анализе этих вопросов присоединяется еще круг вопросов, связанных с определением тесноты связи между результативным и факторным (факторными) признакам. В дальнейшем изложении регресійно-корреляционный анализ рассматривается как единое целое и называется просто корреляционный анализ.

Чтобы результаты корреляционного анализа нашли практическое применение и дали научно обоснованные результаты, должны выполняться определенные требования в отношении объекта исследования и качества исходной статистической информации. Основные из этих требований следующие:

Качественная однородность исследуемой совокупности, что предполагает близость формирование результативных и факторных признаков. Необходимость выполнения этого условия вытекает из содержания параметров уравнения связи. Из математической статистики известно, что параметры являются средними величинами. В качественно однородной совокупности они будут типичными характеристиками, в качественно разнородной - искаженными, что искажают характер связи. Количественная однородность совокупности заключается в отсутствии единиц наблюдения, которые за своими числовыми характеристиками существенно отличаются от основной массы данных. Такие единицы наблюдения следует исключать из совокупности и изучать отдельно;

Достаточно большое число наблюдений, поскольку связи между признаками обнаруживаются только в результате действия закона больших чисел. Количество единиц наблюдения должна в 6 - 8 раз превышать число включенных в модель факторов;

Случайность и независимость отдельных единиц совокупности друг от друга. Это означает, что значения признаков в одних единиц совокупности не должны зависеть от значений других единиц данной совокупности;

Устойчивость и независимость действия отдельных факторов;

Постоянство дисперсии результативного признака при изменении факторных признаков; - нормальное распределение признаков.

КУРСОВАЯ РАБОТА

Тема: Корреляционный анализ

Введение

1. Корреляционный анализ

1.1 Понятие корреляционной связи

1.2 Общая классификация корреляционных связей

1.3 Корреляционные поля и цель их построения

1.4 Этапы корреляционного анализа

1.5 Коэффициенты корреляции

1.6 Нормированный коэффициент корреляции Браве-Пирсона

1.7 Коэффициент ранговой корреляции Спирмена

1.8 Основные свойства коэффициентов корреляции

1.9 Проверка значимости коэффициентов корреляции

1.10 Критические значения коэффициента парной корреляции

2. Планирование многофакторного эксперимента

2.1 Условие задачи

2.2 Определение центр плана (основной уровень) и уровня варьирования факторов

2.3 Построение матрицы планирования

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

2.5 Коэффициенты уравнения регрессии

2.6 Дисперсия воспроизводимости

2.7 Проверка значимости коэффициентов уравнения регрессии

2.8 Проверка адекватности уравнения регрессии

Заключение

Список литературы

ВВЕДЕНИЕ

Планирование эксперимента -математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований - от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование экспериментадаёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

Планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

Планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

Планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

Планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

Планирование при изучении динамических процессов и т.д.

Целью изучения дисциплины является подготовка студентов к производственно-технической деятельности по специальности с применением методов теории планирования и современных информационных технологий.

Задачи дисциплины: изучение современных методов планирования, организации и оптимизации научного и промышленного эксперимента, проведения экспериментов и обработки полученных результатов.

1. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

1.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, может ли рост влиять на вес человека или может ли давление влиять на качество продукции?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы. Зависимость подразумевает влияние, связь - любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (рисунок 1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

Рисунок 1 - Связь между эффективностью решения задачи и силой мотивационной тенденции

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (рисунок 2). При отрицательной корреляции соотношения обратные (рисунок 3). При положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.

Рисунок 2 – Прямая корреляция

Рисунок 3 – Обратная корреляция


Рисунок 4 – Отсутствие корреляции

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

1.2 Общая классификация корреляционных связей

В зависимости от коэффициента корреляции различают следующие корреляционные связи:

Сильная, или тесная при коэффициенте корреляции r>0,70;

Средняя (при 0,50

Умеренная (при 0,30

Слабая (при 0,20

Очень слабая (при r<0,19).

1.3 Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (x i , y i) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i и y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения x i и y i . Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x i и y i графически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: μ x , μ y – средние значения (математические ожидания); σ x ,σ y – стандартные отклонения случайных величин Х и Y и р – коэффициент корреляции, который является мерой связи между случайными величинами Х и Y.
Если р = 0, то значения, x i , y i , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рисунок 5, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y.


Рисунок 5 - Графическая интерпретация взаимосвязи между показателями

Если р = 1 или р = -1, то между случайными величинами Х и Y существует линейная функциональная зависимость (Y = c + dX). В этом случае говорят о полной корреляции. При р = 1 значения x i , y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются), при р = -1 прямая имеет отрицательный наклон (рисунок 5, б). В промежуточных случаях (-1 < p < 1) точки, соответствующие значениям xi , y i , попадают в область, ограниченную некоторым эллипсом (рисунок 5, в, г), причем при p > 0 имеет место положительная корреляция (с увеличением x i значения y i имеют тенденцию к возрастанию), при p < 0 корреляция отрицательная. Чем ближе р к , тем уже эллипс и тем теснее экспериментальные значения группируются около прямой линии. Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях мы рассматривали бы так называемую, нелинейную (или криволинейную) корреляцию (риунок 5, д).

Таким образом, визуальный анализ корреляционного поля помогает выявить не только наличия статистической зависимости (линейную или нелинейную) между исследуемыми признаками, но и ее тесноту и форму. Это имеет существенное значение для следующего шага в анализе ѕ выбора и вычисления соответствующего коэффициента корреляции.

Корреляционную зависимость между признаками можно описывать разными способами. В частности, любая форма связи может быть выражена уравнением общего вида Y = f(X), где признак Y – зависимая переменная, или функция от независимой переменной X, называемой аргументом. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

1.4 Этапы корреляционного анализа

Практическая реализация корреляционного анализа включает следующие этапы:

а) постановка задачи и выбор признаков;

б) сбор информации и ее первичная обработка (группировки, исключение аномальных наблюдений, проверка нормальности одномерного распределения);

в) предварительная характеристика взаимосвязей (аналитические группировки, графики);

г) устранение мультиколлинеарности (взаимозависимости факторов) и уточнение набора показателей путем расчета парных коэффициентов корреляции;

д) исследование факторной зависимости и проверка ее значимости;

е) оценка результатов анализа и подготовка рекомендаций по их практическому использованию.

1.5 Коэффициенты корреляции

Коэффициенты корреляции является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Коэффициент корреляции - показатель степени взаимозависимости, статистической связи двух переменных; изменяется в пределах от -1 до +1. Значение коэффициента корреляции 0 указывает на возможное отсутствие зависимости, значение +1 свидетельствует о согласованности переменных.

Различают следующие коэффициенты корреляции:

Дихотомический - показатель связи признаков (переменных) измеряемых по дихотомическим шкалам наименований;

Пирсона (Pearson product-moment correlation) - коэффициент корреляции, используемый для континуальных переменных;

Ранговой корреляции Спирмена (Spearmen"s rank-order correlation) - коэффициент корреляции для переменных, измеренных в порядковых (ранговых) шкалах;

Точечно-бисериальной корреляции (point-biserial correlation) - коэффициент корреляции, применяемый в случае анализа отношения переменных, одна из которых измерена в континуальной шкале, а другая - в строго дихотомической шкале наименований;

J - коэффициент корреляции, используемый в случае, если обе переменные измерены в дихотомической шкале наименований.

Тетрахорический (четырехпольный) (tetrachoric) - коэффициент корреляции, используемый в случае, если обе переменные измерены в континуальных шкалах.

Линейная связь между переменными X i и X j оценивается коэффициентом корреляции:

,


где X i и X j – исследуемые переменные; mX i и mX j – математические ожидания переменных; σ X и σ X – дисперсии переменных.

Выборочный коэффициент корреляции определяют по формуле:

,

или по преобразованной формуле:

,

где i =1, 2, ..., n, j = 1, 2, ..., m, u = 1, 2, ..., N; N – число опытов(объем выборки); x i , x j – оценки математических ожиданий; S Xi , S Xj – оценки среднеквадратических отклонений.

Только при совместной нормальной распределенности исследуемых случайных величин X i и X j коэффициент корреляции имеет определенный смысл связи между переменными. В противном случае коэффициент корреляции может только косвенно характеризовать эту связь.

1.6 Нормированный коэффициент корреляции Браве-Пирсона

В качестве оценки генерального коэффициента корреляции р используется коэффициент корреляции r Браве-Пирсона. Для его определения принимается предположение о двумерном нормальном распределении генеральной совокупности, из которой получены экспериментальные данные. Это предположение может быть проверено с помощью соответствующих критериев значимости. Следует отметить, что если по отдельности одномерные эмпирические распределения значений x i и y i согласуются с нормальным распределением, то из этого еще не следует, что двумерное распределение будет нормальным. Для такого заключения необходимо еще проверить предположение о линейности связи между случайными величинами Х и Y. Строго говоря, для вычисления коэффициента корреляции достаточно только принять предположение о линейности связи между случайными величинами, и вычисленный коэффициент корреляции будет мерой этой линейной связи.
Коэффициент корреляции Браве–Пирсона () относится к параметрическим коэффициентам и для практических расчетов вычисляется по формуле:

Из формулы видно, что для вычисления необходимо найти средние значения признаков Х и Y, а также отклонения каждого статистического данного от его среднего . Зная эти значения, находятся суммы . Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным для f = n –2. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Пример 1.10 студентам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли взаимосвязь между временем решения этих задач? Переменная X - обозначает среднее время решения наглядно-образных, а переменная Y- среднее время решения вербальных заданий тестов.

Решение. Представим исходные данные в виде таблицы 4, в которой введены дополнительные столбцы, необходимые для расчета по формуле.

Таблица 1 – Условия задачи

№ испытуемых x y х i - (х i -) 2 y i - (y i - ) 2
1 19 17 -16,7 278,89 -7,2 51,84 120,24
2 32 7 -3,7 13,69 -17,2 295,84 63,64
3 33 17 -2,7 7,29 -7,2 51,84 19,44
4 44 28 8,3 68,89 3,8 14,44 31,54
5 28 27 -7,7 59,29 2,8 7,84 -21,56
6 35 31 -0,7 0,49 6,8 46,24 -4,76
7 39 20 3,3 10,89 -4,2 17,64 -13,86
8 39 17 3,3 10,89 -7,2 51,84 -23,76
9 44 35 8,3 68,89 10,8 116,64 89,64
10 44 43 8,3 68,89 18,8 353,44 156,04
Сумма 357 242 588,1 1007,6 416,6
Среднее 35,7 24,2

Рассчитываем эмпирическую величину коэффициента корреляции по формуле расчета коэффициента корреляции Браве–Пирсона:

Определяем критические значения для полученного коэффициента корреляции по таблице. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степеней свободы рассчитывается как f = n – 2 = 8. r крит =0,72 > 0,54 , следовательно, гипотеза Н 1 отвергается и принимается гипотеза H 0 , иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.

1.7 Коэффициент ранговой корреляции Спирмена

Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена ():

где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений x i и y i .

Когда ранги всех значений x i и y i строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений x i и y i совпадают и = 1; если зависимость монотонно убывающая, то ранги обратны и = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.

Из формулы видно, что для вычисления необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy) 2 . Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.

Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

Если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;

Когда значения x i и (или) y i заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 2. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

x i ,кг~55; 45; 43; 47; 47; 51; 48; 60; 53;50

y i , кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

1. Расчет рангового коэффициента корреляции Спирмена произведем по формуле:

где: d x и d y - ранги показателей х и у ;

n - число коррелируемых пар или исследуемых.

2 Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

Таблица 2 – Данные тестирования

x i d x y i d y
55 9 26 9 0 0
45 2 20 4 -2 4
43 1 25 7 -6 36
47 3.5 22 5 -1.5 2.25
47 3.5 7 8 -4.5 20.25
51 7 28 10 -3 9
48 5 16 2 3 9
60 10 15 1 9 81
53 8 18 3 5 25
50 6 24 6 0 0
= 0 = 186,5

Тогда

3. Сравнить расчетное значение рангового коэффициента корреляции(r ф =-0,13) с табличным значением для n = 10 при α = 5% и сделать вывод.

1) т.к. r ф = -0,13 < 0, то между данными выборок наблюдается прямая отрицательная взаимосвязь, т.е. увеличением показателей веса вызывает снижение максимального количество сгибаний и разгибаний рук в упоре лежа в группе исследуемых;

2) т.к. r ф = -0,13 < r st = 0,64 для n = 10 при α = 5%, то с уверенностью Р = 95% можно говорить о том, что выявленная зависимость недостоверна.

1.8 Основные свойства коэффициентов корреляции

К основным свойствам коэффициента корреляции необходимо отнести следующие:

Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи;

Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1;

При независимом варьировании признаков, когда связь между ними отсутствует, r= 0;

При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный знак и находится в пределах от 0 до +1, т.е. 0 < r < 1;

При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1, т.е. -1 < r <0;

Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к 1. Если r = ±1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y;

Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы f= n –2, где n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.

1.9 Проверка значимости коэффициентов корреляции

Для проверки значимости коэффициентов корреляции чаще всего используют распределение Стьюдента и условие:

, f = N – 2, α = 0,05.


Если условие выполняется, то гипотеза об отсутствии корреляционной связи принимается.

1.10 Критические значения коэффициента парной корреляции

Таблица 3 - Критические значения коэффициента парной корреляции при α=0,05

Для проверки значимости коэффициента парной корреляции нужно сравнить его значение с табличным (критическим) значением r, которое приведено в таблице 3. Для пользования этой таблицей нужно знать число степеней свободы f = N – 2 и выбрать определенный уровень значимости, например равный 0,05. Такое значение уровня значимости называют еще 5%-ным уровнем риска, что соответствует вероятности верного ответа при проверке нашей гипотезы Р = 1 – α = 0,95, или 95%. Это значит, что в среднем только в 5% случаев возможна ошибка при проверке гипотезы.

В практических исследованиях 5%-ный уровень риска применяется наиболее часто. Но экспериментатор всегда свободен в выборе уровня значимости, и возможны ситуации, в которых, например, требуется 1%-ный уровень риска. При этом возрастает надежность ответа. Проверка гипотезы сводится к сравнению абсолютной величины коэффициента парной корреляции с критическим значением. Если экспериментально найденное значение r меньше критического, то нет оснований считать, что имеется тесная линейная связь между параметрами, а если больше или равно, то гипотеза о корреляционной линейной связи не отвергается.

2. РЕШЕНИЕ ЗАДАЧИ

Таблица 1 – Условие задачи

Таблица 2 – Функция отклика

У1 65 60 63 46 47 47 56 54
У2 55 47 46 47 58 56 49 61
УЗ 55 51 61 57 58 53 55 52

2.2 Определение центра плана (основной уровень) и уровня варьирования факторов

Находим центр плана:

.

Находим полуразмах:


Рассчитываем и оформляем в виде таблицы.

,

,

,

Таблица 3 – Центр плана и полуразмах

Рассчитываем нижний уровень варьирования факторов:

Рассчитываем верхний уровень варьирования факторов:

2.3 Построение матрицы планирования

Так как мы имеем 2 уровня варьирования факторов и 3 фактора, то получаем матрицу . Число опытов равно 8.

Таблица 3 – Матрица планирования типа

№ опыта
1 + + -
2 + + +
3 + - +
4 + - -
5 - + -
6 - + +
7 - - +
8 - - -

Составляем расширенную матрицу планирования для того, чтобы учесть взаимодействие факторов.

Таблица 4 – Расширенная матрица планирования

№ опыта
1 + + + - + - - - 65 55 55 58,3
2 + + + + + + + + 60 47 51 52,7
3 + + - + - + - - 63 46 61 56,7
4 + + - - - - + + 46 47 57 50
5 + - + - - + - + 47 58 58 54,3
6 + - + + - - + - 47 56 53 52
7 + - - + + - - + 56 49 55 53,3
8 + - - - + + + - 54 61 52 55,7

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

Для проверки однородности дисперсии был выбран критерий Кохрена. Для этого рассчитываем дисперсию в каждом опыте по формуле:

.

Условия проверки однородности дисперсий по критерию Кохрена:


Для уровня значимости 0,05 равна 0,32.

<, следовательно, дисперсия однородна и измерения в разных сериях равноточны.

2.5 Коэффициенты уравнения регрессии

Находим коэффициенты уравнения регрессии.

Следовательно, уравнение регрессии примет вид:

2.6 Дисперсия воспроизводимости

Вычисляем значение дисперсии воспроизводимости по формуле:

2.7 Проверка значимости коэффициентов уравнения регрессии

Проверяем значимость коэффициентов уравнения регрессии по критерию Стьюдента:

Условие значимости Для уровня значимости α = 0,05 и числа степеней свободы f = N - 1 =8 - 1 = 7 находим табличное значение критерия Стьюдента

Сравниваем расчетное значение с табличным и видим, что значение незначительные и их коэффициенты следует исключить из уравнения регрессии. Так как коэффициенты получились незначимы и мы не имеем возможности заново поставить новый эксперимент и продолжаем вычисления, выбрав наиболее близкие к значимым коэффициенты.

Уравнение регрессии примет вид:

2.8 Проверка адекватности уравнения регрессии

Для проверки используется критерий Фишера:

где d – количество коэффициентов уравнения регрессии.

Находим значения :

Найдем значение

Находим табличное значение критерия Фишера для степеней свободы

Сравниваем условие <, значит, модель адекватна.

Уравнение регрессии имеет вид:

Анализ значимости коэффициентов уравнении регрессии показал, что влияние всех факторов незначимо.

Модель адекватна, так как критерий адекватности меньше табличного.

Измерения в различных серий равноточны.

ЗАКЛЮЧЕНИЕ

Термин «корреляция» был введен в науку выдающимся английским естествоиспытателем Френсисом Гальтоном в 1886 году. Однако точную формулу для подсчета коэффициента корреляции разработал его ученик Карл Пирсон.

Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико-механические, технологические, экономические, художественно-эстетические и другие параметры (прочность, эластичность, относительное удлинение и т.д.). Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.

Обычно оптимизируется одна функция, наиболее важная с точки зрения цели исследования, при ограничениях, налагаемых другими функциями. Поэтому из многих выходных параметров выбирается один в качестве параметра оптимизации, а остальные служат ограничениями. Всегда полезно исследовать возможность уменьшения числа выходных параметров. Для этого и используется корреляционный анализ.

С использованием результатов корреляционного анализа исследователь может делать определённые выводы о наличии и характере взаимозависимости, что уже само по себе может представлять существенную информацию об исследуемом объекте. Результаты могут подсказать и направление дальнейших исследований, и совокупность требуемых методов, в том числе статистических, необходимых для более полного изучения объекта.

Особенно реальную пользу применение аппарата корреляционного анализа может принести на стадии ранних исследований в областях, где характеры причин определённых явлений ещё недостаточно понятны. Это может касаться изучения очень сложных систем различного характера: как технических, так и социальных.

СПИСОК ЛИТЕРАТУРЫ

1 Сидоренко Е.В. Методы математической обработки в психологии. Спб.: ООО «Речь», 2000. – 350 с.

2 Лекция на тему: "Корреляционный анализ""// www.kgafk.ru, 2006, 8 с.

3 Ковалев В.В, Волкова О.Н., Анализ хозяйственной деятельности предприятия//polbu.ru, 2005, 2 с.

4 Поляков Л.Е., Коэффициент ранговой корреляции Спирмена//www.eduhmao.ru, 1971, 2 с.

5 Бондарь А.Г., Статюха Г.А. Планирование эксперимента в химической технологии. Киев: Высшая школа, 1976 – 335 с.

6 Адлер Ю.П., Грановский Ю.В., Маркова Е.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976.–278 с.

7 Андерсон Т., Введение в многомерный статистический анализ//www.ami.nstu.ru, 1963, 24 с.

Исследование объективно существующих связей между явлениями - важнейшая задача статистики. В процессе статистического исследования зависимостей выявляются причинно-следственные отношения между явлениями. Причинно-следственные отношения - это такая связь явлений и процессов, когда изменение одного из них - причины ведет к изменению другого - следствия.

Признаки явлений и процессов по их значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называют факторными , или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными .

В статистике различают функциональные и стохастические (вероятностные) связи явлений и процессов:

  • Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного.
  • Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической (вероятностной) . Частным случаем стохастической связи является корреляционная связь.

Кроме того, связи между явлениями и их признаками классифицируются по степени тесноты, направлению и аналитическому выражению.

По направлению выделяют связь прямую и обратную:

  • Прямая связь - это такая связь, при которой с увеличением (уменьшением) значений факторного признака происходит увеличение (уменьшение) значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства.
  • В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные:

  • Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида: у=а+bх.
  • Если же связь может быть выражена уравнением какой-либо кривой линии (параболы, гиперболы и др.), то такую связь называют нелинейной (криволинейной) связью .

Теснота связи показывает меру влияния факторного признака на общую вариацию результативного признака. Классификация связи по степени тесноты представлена в таблице 1.

Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: приведения параллельных данных, аналитических группировок, графический, корреляции. Основным методом изучения статистической взаимосвязи является статистическое моделирование связи на основе корреляционного и регрессионного анализа .

Корреляция - это статистическая зависимость между случайными величинами, не имеющая строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой. В статистике принято различать следующие виды корреляции :

  • парная корреляция - связь между двумя признаками (результативным и факторным, или двумя факторными);
  • частная корреляция - зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков;
  • множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование.

Задачей корреляционного анализа является количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции, которые давая количественную характеристику тесноты связи между признаками, позволяют определять «полезность» факторных признаков при построении уравнения множественной регрессии.

Корреляция взаимосвязана с регрессией, поскольку первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму.

Регрессионный анализ заключается в определении аналитического выражения связи в виде уравнения регрессии.

Регрессией называется зависимость среднего значения случайной величины результативного признака от величины факторного, а уравнением регрессии – уравнение описывающее корреляционную зависимость между результативным признаком и одним или несколькими факторными.

Формулы корреляционно-регрессионного анализа для прямолинейной связи при парной корреляции представлены в таблице 2.

Таблица 2 - Формулы корреляционно-регрессионного анализа для прямолинейной связи при парной корреляции
Показатель Обозначение и формула
Уравнение прямой при парной корреляции y x = a +bx, где b - коэффициент регрессии
Система нормальных уравнений способом наименьших квадратов для определения коэффициентов a и b
Линейный коэффициент корреляции для определения тесноты связи,
его интерпретация:
r = 0 – связь отсутствует;
0 -1 r = 1 – связь функциональная
Эластичность абсолютная
Эластичность относительная

Примеры решения задач по теме «Основы корреляционного анализа»

Задача 1 (анализ прямолинейной связи при парной корреляции) . Имеются данные о квалификации и месячной выработке пяти рабочих цеха:

Для изучения связи между квалификацией рабочих и их выработкой определить линейное уравнение связи и коэффициент корреляции. Дать интерпретацию коэффициентам регрессии и корреляции.

Решение . Расширим предлагаемую таблицу.

Определим параметры уравнения прямой y x = a +bx . Для этого решим систему уравнений:

Значит коэффициент регрессии равен 18.

Поскольку в - положительное число, то имеется прямая связь между параметрами x и у.
а=92-4×18
а=20
Линейное уравнение связи имеет вид у х =20+18х.

Для определения тесноты (силы) связи между изучаемыми признаками определим величину коэффициента корреляции по формуле:

= (2020-20×460/5)/(√10×√3280) ≈ 180/181,11=0,99. Поскольку коэффициент корреляции больше 0,7, то связь в данном ряду сильная.

Задача 2 . На предприятии цены на изделия снижены с 80 руб. за единицу до 60 руб. После снижения цен продажа возросла с 400 до 500 единиц в день. Определить абсолютную и относительную эластичность. Сделать оценку эластичности с целью возможности (или невозможности) дальнейшего снижения цен.

Решение . Рассчитаем показатели, позволяющие провести предварительный анализ эластичности:

Как видим, темпы снижения цены равны по абсолютной величине темпам увеличения спроса.

Абсолютную и относительную эластичность найдем по формулам:

= (500-400)/(60-80) =100/(-20) -5 - эластичность абсолютная

= (100:400)/(-20:80) = -1 - эластичность относительная

Модуль относительной эластичности равен 1. Это подтверждает тот факт, что темп роста спроса равен темпу снижения цены. В такой ситуации вычислим выручку, получаемую предприятием ранее и после снижения цены: 80*400 = 32 000 руб. в день, 60*500 = 30 000 руб. в день – как видим, выручка снизилась и дальнейшее снижение цен не является целесообразным.

Похожие публикации