Комплекс аппарат гольджи строение. Комплекс Гольджи: описание

Аппарат Гольджи — важная органелла, которая присутствует практически в каждой Пожалуй, единственными клетками, в которых отсутствует этот комплекс, являются эритроциты позвоночных животных. Функции этой структуры весьма разнообразны. Именно в цистернах аппарата скапливают все вырабатываемые клеткой соединения, после чего происходит их дальнейшая сортировка, модификация, перераспределение и транспорт.

Несмотря на то, что аппарат Гольджи был обнаружен еще в 1897 году, и по сегодняшний день некоторые из его функций активно изучаются. Рассмотрим более подробное особенности его строения и функционирования.

Аппарат Гольджи: строение

Эта органелла представляет собой совокупность мембранных цистерн, которые тесно прилегают друг к другу, напоминая стопку. Структурное и функциональной единицей здесь считается диктиосома.

Диктиосома представляет собой отдельную, самостоятельную часть аппарата Гольджи, которая состоит из 3 - 8 тесно прилегающих друг к другу цистерн. Стопка этих мембранных цистерн окружена системой мелкий вакуолей и пузырьков — именно таким образом осуществляется транспорт веществ, а также связь диктиосом между собой и другими клеточными структурами. Как правило, имеют только одну диктиосому, в то время как в растительных структурах их может быть много.

В диктиосоме принято разделять два конца — цис- и транс-стороны. Цис-сторона обращена в сторону ядра и гранулярной эндоплазматической сетки. Сюда в виде мембранных пузырьков транспортируются синтезированные белки и другие соединения. На этом конце диктиосомы постоянно образуются новые цистерны.

Транс-сторона обращена к Как правило, она немного шире. Сюда попадают соединения, которые уже прошли все этапы модификации. От нижней цистерны постоянно отрываются небольшие вакуоли и пузырьки, которые транспортирую вещества к нужным органеллам клетки.

Аппарат Гольджи: функции

Как уже было сказано, функции органеллы весьма разнообразны.

  • Здесь осуществляется модификация новосинтезированных белковых молекул. В большинстве случаев к протеиновой молекуле присоединяется углеводный, сульфатный или фосфорный радикал. Таким образом, аппарат Гольджи отвечает за формирование белкой ферментов и белков лизосом.
  • Аппарат Гольджи отвечает за транспорт модифицированных белков в определенные участки клетки. От транс-стороны постоянно отделяются небольшие пузырьки, в которых содержатся готовые протеины.
  • Здесь происходит образование и транспорт всех ферментов лизосом.
  • В полостях цистерн происходит накопление липидов, а в дальнейшем и образование липопротеидов — комплекса белковой и липидной молекулы.
  • Аппарат Гольджи растительной клетки отвечает за синтез полисахаридов, которые затем идут на образование растения, а также слизи, пектинов, гемицеллюлозы и восков.
  • После деления растительной клетки комплекс Гольджи берет участие в формировании клеточной пластинки.
  • В сперматозоиде эта органелла берет участие в образовании ферментов акросомы, с помощью которых происходит разрушение оболочек яйцеклетки при оплодотворении.
  • В клетках представителей простейших комплекс Гольджи отвечает за образование которые регулируют

Конечно же, это далеко не полный перечень всех выполняемых функций. Современные ученые до сих пор ведут самые разнообразные исследования, используя новейшие технологии. Вполне вероятно, что в ближайшие несколько лет список функций комплекса Гольджи значительно вырастет. Но уже сегодня можно с точностью сказать, что данная органелла поддерживает нормальную жизнедеятельность как клетки, так и всего организма в целом.

Строение комплекса Гольджи

Комплекс Гольджи (КГ), или внутренний сетчатый аппарат , - это особенная часть метаболической системы цитоплазмы, участвующая в процессе выделения и формирования мембранных структур клетки.

КГ видно в оптический микроскоп как сетку или изогнутые палочкообразные тельца, лежащие вокруг ядра.

Под электронным микроскопом выявлено, что эта органелла представлена тремя видами образований:

Все компоненты аппарата Гольджи образованы гладкими мембранами.

Замечание 1

Изредка АГ имеет зернисто – сетчатую структуру и расположен около ядра в виде колпачка.

АГ встречается во всех клетках растений и животных.

Замечание 2

Аппарат Гольджи значительно развит в секреторных клетках. Особенно хорошо он виден в нервных клетках.

Внутреннее межмембранное пространство заполнено матриксом, который содержит специфические ферменты.

Аппарат Гольджи имеет две зоны:

  • зону формирования , куда с помощью везикул поступает материал, который синтезируется в эндоплазматической сети;
  • зону созревания , где формируется секрет и секреторные мешочки. Этот секрет накопляется на терминальных участках АГ, откуда отпочковываются секреторные везикулы. Как правило, такие везикулы переносят секрет за пределы клетки.
  • Локализация КГ

В аполярных клетках (например, в нервных) КГ расположен вокруг ядра, в секреторных он занимает место между ядром и апикальным полюсом.

Комплекс мешочков Гольджи имеет две поверхности:

формировательную (незрелую или регенераторную) цис-поверхность (от лат. Сis – с этой стороны); функциональную (зрелую) – транс-поверхность (от лат. Trans – через, за).

Столбик Гольджи своей выпуклой формировательной поверхностью обращён в сторону ядра, прилегает к гранулярной эндоплазматической сети и содержит мелкие круглые пузырьки, названные промежуточными . Зрелая вогнутая поверхность столбика мешочков обращена к вершине (апикальному полюсу) клетки и оканчивается большими пузырьками.

Образование комплекса Гольджи

Мембраны КГ синтезируются гранулярной эндоплазматической сетью, которая прилегает к комплексу. Соседние с ним участки ЭПС теряют рибосомы, от них отпочковываются мелкие, так называемые, транспортные, или промежуточные везикулы . Они перемещаются к формировательной поверхности столбика Гольджи и сливаются с первым её мешочком. На противоположной (зрелой) поверхности комплекса Гольджи находится мешочек неправильной формы. Его расширение – просекреторные гранулы (конденсирующие вакуоли) – непрерывно отпочковываюся и превращаются в пузырьки, заполненные секретом – секреторные гранулы. Таким образом, в меру использования мембран зрелой поверхности комплекса на секреторные везикулы, мешочки формировательной поверхности пополняются за счёт эндоплазматической сетки.

Функции комплекса Гольджи

Основная функция аппарата Гольджи – выведение синтезированных клеткой веществ. Эти вещества транспортируются по клетках эндоплазматической сети и накопляются в пузырьках сетчатого аппарата. Потом они или выводятся во внешнюю среду или же клетка использует их в процессе жизнедеятельности.

В комплексе так же концентрируются некоторые вещества (например, красители), которые поступают в клетку извне и должны быть выведены из неё.

В растительных клетках комплекс содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения целлюлозной оболочки клетки.

Кроме того, КГ синтезирует те химические вещества, которые образуют клеточную мембрану.

В общем, аппарат Гольджи выполняет такие функции:

  1. накопление и модификация макромолекул, которые синтезировались в эндоплазматической сети;
  2. образование сложных секретов и секреторных везикул путём конденсации секреторного продукта;
  3. синтез и модификация углеводов и гликопротеидов (образование гликокаликса, слизи);
  4. модификация белков – добавление к полипептиду различных химических образований (фосфатных – фосфориллирование, карбоксильных – карбоксилирование), формирование сложных белков (липопротеидов, гликопротеидов, мукопротеидов) и расщепление полипептидов;
  5. имеет важное значение для формирования, обновления цитоплазматической мембраны и других мембранных образований благодаря образованию мембранных везикул, которые в дальнейшем сливаются с клеточной мембраной;
  6. образование лизосом и специфической зернистости в лейкоцитах;
  7. образование пероксисом.

Белковое и, частично, углеводное содержимое КГ поступает с гранулярной эндоплазматической сетки, где оно синтезируется. Основная часть углеводного компонента образуется в мешочках комплекса с участием ферментов гликозилтрансфераз, которые находятся в мембранах мешочков.

В комплексе Гольджи окончательно формируются клеточные секреты, содержащие гликопротеиды и гликозаминогликаны. В КГ созревают секреторные гранулы, которые переходят в пузырьки, и перемещение этих пузырьков в направлении плазмалеммы Окончательный этап секреции – это выталкивание сформированных (зрелых) везикул за пределы клетки. Выведение секреторных включений из клетки осуществляется путём вмонтирования мембран пузырька в плазмалемму и выделение секреторных продуктов за пределы клетки. В процессе перемещения секреторных пузырьков к апикальному полюсу клетки мембраны их утолщаются из начальных 5-7 нм, достигая толщины плазмалеммы 7-10 нм.

Замечание 4

Существует взаимозависимость между активностью клетки и размерами комплекса Гольджи – секреторные клетки имеют большие столбики КГ, тогда как несекреторные содержат небольшое количество мешочков комплекса.

Описание структуры аппарата Гольджи тесно связано с описанием егоосновных биохимических функций, поскольку подразделение этогоклеточного компартмента на отделы производится преимущественно на основе локализации ферментов, расположенных в том или ином отделе.

Чаще всего в аппарате Гольджи выделяют четыре основных отдела: цис- Гольджи, медиал-Гольджи, транс-Гольджи и транс-Гольджи сеть (TGN)

Кроме того к аппарату Гольджи иногда относят так называемыйпромежуточный компартмент, представляющий собой скопление мембранных пузырьков между эндоплазматическим ретикулумом и цис-Гольджи. Аппарат Гольджи является очень полиморфной органеллой; в клетках разных типов и даже на разных стадиях развития одной и той же клетки он может выглядеть по-разному. Основные его характеристики таковы:

1) наличие стопки из нескольких (обычно 3-8) уплощенных цистерн, более или менее плотно прилегающих друг к другу. Такая стопка всегда бывает окружена некоторым (иногда очень значительным) количеством мембранных пузырьков. В животных клетках чаще можно встретить одну стопку, в то время как в растительных клетках их обычно бывает несколько; каждую из них в таком случае называют диктиосомой. Отдельные диктиосомы могут быть связаны между собой системой вакуолей, образуя трехмерную сеть;

2) композиционная гетерогенность, выражающаяся в том, что постоянные (resident) ферменты неоднородно распределены по органелле;

3) полярность, то есть наличие цис-стороны, обращенной к эндоплазматическому ретикулуму и ядру, и транс-стороны,обращенной к поверхности клетки (это особенно характерно для секретирующих клеток);

4) ассоциация с микротрубочками и областью центриоли. Разрушение микротрубочек деполимеризующими агентами приводит к фрагментации аппарата Гольджи, однако его функции при этом существенно не затрагиваются. Аналогичная фрагментация наблюдается и в естественных условиях, во время митоза. После восстановления системы микротрубочек разбросанные по клетке элементы аппарата Гольджи собираются (по микротру-бочкам) в область центриоли,и реконструируется нормальный комплекс Гольджи.

Аппарат Гольджи (комплекс Гольджи) -- мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Комплекс Гольджи был назван так в честь итальянского ученого Камилло Гольджи, впервые обнаружившего его в 1898 году.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединенных трубками стопок.

В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т.д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их окончательное сворачивание, а также модификации -- гликозилирование и фосфорилирование.

Аппарат Гольджи ассиметричен -- цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки -- везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭР), на мембранах которого и происходит синтез белков рибосомами.

Разные цистерны Аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своебразного «знака качества».

Не до конца понятно, каким образом созревающие белки перемещаются по цистернам Аппарата Гольджи, в то время как резидентные белки остаются в большей или меньшей степени ассоциированы с одной цистерной. Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм. Согласно первой (1), транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭР, причем резидентные белки не включаются в отпочковывающуюся везикулу. Согласно второй (2), происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.

В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

В комплексе Гольджи происходит

1. О-гликозилирование, к белкам присоединяются сложные сахара через атом кислорода.

2. Фосфорилирование (присоединение к белкам остатка ортофосфорной кислоты).

3. Образование лизосом.

4. Образование клеточной стенки (у растений).

5. Участие в везикулярном транспорте (формирование трехбелкового потока):

6. созревание и транспорт белков плазматической мембраны;

7. созревание и транспорт секретов;

8. созревание и транспорт ферментов лизосом.

Аппарат Гольджи. Аппарат Гольджи (комплекс Гольджи) - это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков (в нем происходит упаковка секретируемых белков в гранулы) и поэтому особенно развит в клетках, выполняющих секреторную функцию. К важным функциям аппарата Гольджи относится также присоединение углеводных групп к белкам и использование этих белков для построения клеточной мембраны и мембраны лизосом. У некоторых водорослей в аппарате Гольджи осуществляется синтез волокон целлюлозы.

Гольджи аппарат: функции

Функцией аппарата Гольджи является транспорт и химическая модификация поступающих в него веществ. Исходным субстратом для ферментов являются белки, поступающие в аппарат Гольджи из эндоплазматического ретикулума. После модификации и концентрирования, ферменты в пузырьках Гольджи переносятся к «месту назначения», например к месту образования новой почки. Наиболее активно этот перенос осуществляется с участием цитоплазматических микротрубочек.

Функции аппарата Гольджи очень многообразны. К ним можно отнести:

1) сортировку, накопление и выведение секреторных продуктов;

2) завершение посттрансляционной модификации белков (гликозилирование, сульфатирование и т.д.);

3) накопление молекул липидов и образование липопротеидов;

4) образование лизосом;

5) синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений

(гемицеллюлоза, пектины) и т.п.

6) формирование клеточной пластинки после деления ядра в растительных клетках;

7) участие в формировании акросомы;

8) формирование сократимых вакуолей простейших.

Этот список, без сомнения, неполон, и дальнейшие исследования не только позволят лучше понять уже известные функции аппарата Гольджи, но и приведут к открытию новых. Пока самыми изученными с биохимической точки зрения остаются функции, связаные с транспортом и модификацией новосинтезированных белков.

Министерство образования Республики Беларусь

Учреждение образования

«Международный государственный экологический университет

имени А. Д. Сахарова»

Факультет экологической медицины

АППАРАТ ГОЛЬДЖИ: СТРУКТУРА, ФУНКЦИИ.

Студентки 4 курса

МБД, гр.№ 92062-1

Кисляченко Екатерины

Минск 2012

Введение……………………………………………………………………….…3

1. Структура аппарата Гольджи…………………………………………………4

2. Функции аппарата Гольджи………………………………………………….10

3. Молекулярный механизм функционирования………………………………20

Заключение……………………………………………………………………….22

Список литературы

Введение


Эндоплазматический ретикулум, плазматическая мембрана и аппарат Гольджи составляют единую мембранную систему клетки, в пределах которой происходят процессы обмена белками и липидами с помощью направленного и регулируемого внутриклеточного мембранного транспорта.

Каждая из мембранных органелл характеризуется уникальным составом белков и липидов.

Аппарат Гольджи состоит из группы плоских мембранных мешков - цистерн, собранных в стопки - диктиосомы (~5-10 цистерн, у низших эукариот >30). Число диктиосом в разных клетках от 1 до ~500.

Отдельные цистерны диктиосомы переменной толщины - в центре ее мембраны сближены - просвет 25 нм, на переферии образуются расширения - ампулы ширина которых не постоянна. От ампул отшнуровываются ~50нм-1мкм пузырьки связанные с цистернами сетью трубочек.

У многоклеточных организмов аппарат Гольджи состоит из стопок цистерн связанных между собой в единую мембранную систему. Аппарат Гольджи представляет собой полусферу, основание которой обращено к ядру. Аппарат Гольджи дрожжей представлен изолированными единичными цистернами, окруженными мелкими пузырьками, тубулярной сетью, секреторными везикулами и гранулами. У мутантов дрожжей Sec 7 и Sec 14 наблюдается структура, напоминающая стопку цистерн клеток млекопитающих.

Для комплекса Гольджи характерна полярность его структур. Каждая стопка имеет два полюса: проксимальный полюс (формирующийся, цис-поверхность) и дистальный (зрелый, транс-поверхность). Цис-полюс – сторона мембраны с которой сливаются пузырьки. Транс-полюс – сторона мембраны от которой пузырьки отпочковываются.

  1. Структура аппарата Гольджи.

В 1898 г. итальянский ученый Камилло Гольджи, используя свойства связывания тяжелых металлов (осмия и серебра) с клеточными структурами, выявил в нервных клетках сетчатые образования, которые назвал «внутренним сетчатым аппаратом» (рис. 1).

Рис. 1. Внутриклеточный сетчатый аппарат (Гольджи, 1898)

Дальнейшее усовершенствование метода окраски металлами (импрегнации) дало возможность убедиться, что сетчатые структуры (аппарат Гольджи) встречаются во всех клетках любых эукариотных организмов. Обычно элементы аппарата Гольджи (АГ) расположены около ядра, вблизи клеточного центра (центриоли). Участки аппарата Гольджи, четко выявляемые методом импрегнации, имели в некоторых клетках вид сложных сетей, где ячейки были связаны друг с другом или представлялись в виде отдельных темных участков, лежащих независимо друг от друга (диктиосомы) и имеющих вид палочек, зерен, вогнутых дисков и т. д.(рис. 2).

Рис. 2. Типы аппарата Гольджи

a — сетчатый в клетках кишечного эпителия; б — диффузный в клетках спинального ганглия.

1 — ядро; 2 — аппарат Гольджи; 3 — ядрышко

Между сетчатой и диффузной формой аппарата Гольджи нет принципиального различия, так как часто в одних и тех же клетках наблюдается смена форм этого органоида. Элементы аппарата Гольджи часто связаны с вакуолями, что особенно характерно для секретирующих клеток.

Морфология АГ меняется в зависимости от стадий клеточной секреции, что послужило основанием Д.Н. Насонову (1924) выдвинуть гипотезу о том, что АГ является органоидом, обеспечивающим сепарацию и накопление веществ в самых различных клетках.

Долгое время в растительных клетках не удавалось обнаружить элементов аппарата Гольджи обычными методами микротехники. Однако с появлением метода электронной микроскопии элементы АГ были выявлены во всех растительных клетках, где они расположены по периферии клетки.

Описание структуры аппарата Гольджи тесно связано с описанием его основных биохимических функций, поскольку подразделение этого клеточного компартмента на отделы производится преимущественно на основе локализации ферментов, расположенных в том или ином отделе.

Аппарат Гольджи – это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков (в нем происходит упаковка секретируемых белков в гранулы) и поэтому особенно развит в клетках, выполняющих секреторную функцию.

В состав комплекса Гольджи входит пять функциональных компартментов:

1. Промежуточные везикуло-тубулярные структуры (VTC или ERGIC - ER - Golgi intermediate compartment )

2. Цис-цистерна (cis ) - цистерны расп ближе к ЭР:

3. Срединные (medial ) цистерны – центральные цистерны

4. Транс-цистерна (trans ) - наиболее удаленные от ЭР цистерны.

5. Тубулярная сеть, примыкающая к трансцистерне - транссеть Гольджи (TGN )

Рис.3. Пять компонентов и схема транспорта белков.

1. Вход синтезированных белков, мембранных гликопротеинов и лизосомных ферментов в цистерну переходного ЭР, прилегающую к АГ и 2 - их выход из ЭР в пузырьках окаймленных COPI (антероградный транспорт). 3 - возможный транспорт карго от тубуло-везикулярных кластеров к цис-цистерне АГ в пузырьках COPI ; 3* - транспорт карго от более ранних к более поздним цистернам; 4 - возможный ретроградный везикулярный транспорт карго между цистернами АГ; 5 - возврат резидентных протеинов из АГ в tER с помощью пузырьков, окаймленных COPI (ретроградный транспорт); 6 и 6* - перенос лизосомных ферментов с помощью окаймленных клатрином пузырьков соответственно в ранние EE и поздние LE эндосомы; 7 - регулируемая секреция секреторных гранул; 8 - конститутивное встраивание мембранных белков в апикальную плазматическую мембрану ПМ; 9 - опосредованный рецептором эндоцитоз с помощью окаймленных клатрином пузырьков; 10 возвращение ряда рецепторов из ранних эндосом в плазматическую мембрану; 11 - транспорт лигандов из EE в LE и и лизосомы Ly ; 12 - транспорт лигандов в неклатриновых пузырьках.

Эти отделы различаются между собой набором ферментов. В цис-отделе первую цистерну называют "цистерной спасения", так как с ее помощью рецепторы, поступающие из промежуточной эгдоплазматической сети, возвращаются обратно. Фермент цис-отдела: фосфогликозидаза (присоединяет фосфат к углеводу - маннозе). В медиальном отделе находится 2 фермента: манназидаза (отщепляет маннозу) и N -ацетилглюкозаминтрансфераза (присоединяет определенные углеводы - гликозамины). В транс-отделе присутствуют ферменты: пептидаза (осуществляет протеолиз)и трансфераза (осуществляет переброс химических групп).

Аппарат Гольджи является очень полиморфной органеллой; в клетках разных типов и даже на разных стадиях развития одной и той же клетки он может выглядеть по-разному.

Основные характеристики комплекса Гольджи таковы:

  1. наличие стопки из нескольких (обычно 3-8) уплощенных цистерн, более или менее плотно прилегающих друг к другу. Такая стопка всегда бывает окружена некоторым (иногда очень значительным) количеством мембранных пузырьков. В животных клетках чаще можно встретить одну стопку, в то время как в растительных клетках их обычно бывает несколько; каждую из них в таком случае называют диктиосомой (рис. 4). Отдельные диктиосомы могут быть связаны между собой системой вакуолей, образуя трехмерную сеть;

Рис. 4. Схематическое расположение АГ в клетке

2) композиционная гетерогенность, выражающаяся в том, что постоянные (resident ) ферменты неоднородно распределены по органелле;

3) полярность, то есть наличие цис-стороны, обращенной к эндоплазматическому ретикулуму и ядру, и транс-стороны,обращенной к поверхности клетки (это особенно характерно для секретирующих клеток);

4) ассоциация с микротрубочками и областью центриоли. Разрушение микротрубочек деполимеризующими агентами приводит к фрагментации аппарата Гольджи, однако его функции при этом существенно не затрагиваются. Аналогичная фрагментация наблюдается и в естественных условиях, во время митоза. После восстановления системы микротрубочек разбросанные по клетке элементы аппарата Гольджи собираются (по микротру-бочкам) в область центриоли,и реконструируется нормальный комплекс Гольджи.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединенных трубками стопок.

В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т.д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их окончательное сворачивание, а также модификации — гликозилирование и фосфорилирование.

Аппарат Гольджи ассиметричен — цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭР), на мембранах которого и происходит синтез белков рибосомами.

Разные цистерны Аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своебразного «знака качества».

Не до конца понятно, каким образом созревающие белки перемещаются по цистернам Аппарата Гольджи, в то время как резидентные белки остаются в большей или меньшей степени ассоциированы с одной цистерной. Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм:

  1. Согласно первой, транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭР, причем резидентные белки не включаются в отпочковывающуюся везикулу.
  2. Согласно второй, происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.

В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

В комплексе Гольджи происходит:

  1. О-гликозилирование - к белкам присоединяются сложные сахара через атом кислорода.
  2. Фосфорилирование - присоединение к белкам остатка ортофосфорной кислоты.
  3. Образование лизосом.
  4. Образование клеточной стенки (у растений).
  5. Участие в везикулярном транспорте (формирование трехбелкового потока):
  6. созревание и транспорт белков плазматической мембраны;
  7. созревание и транспорт секретов;
  8. созревание и транспорт ферментов лизосом.

2.Функции аппарата Гольджи.

Функции аппарата Гольджи очень многообразны. К ним можно отнести:

  1. Сегрегация белков на 3 потока:
  2. лизосомальный - гликозилированные белки (с маннозой) поступают в цис-отдел комплекса Гольджи, некоторые из них фосфорилируются, образуется маркёр лизосомальных ферментов - манноза-6-фосфат. В дальнейшем эти фосфорилированные белки не будут подвергаться модификации, а попадут в лизосомы.
  3. конститутивный экзоцитоз (конститутивная секреция). В этот поток включаются белки и липиды, которые становятся компонентами поверхностного аппарата клетки, в том числе гликокаликса, или же они могут входить в состав внеклеточного матрикса.
  4. индуцируемая секреция - сюда попадают белки, которые функционируют за пределами клетки, поверхностного аппарата клетки, во внутренней среде организма. Характерен для секреторных клеток.
  5. Формирование слизистых секретов - гликозамингликанов (мукополисахаридов)
  6. Формирование углеводных компонентов гликокаликса - в основном, гликолипидов.
  7. Сульфатирование углеводных и белковых компонентов гликопротеидов и гликолипидов
  8. Частичный протеолиз белков - иногда за счет этого неактивный белок переходит в активный (проинсулин превращается в инсулин).

Секреторная функция аппарата Гольджи.

Мембранные элементы АГ участвуют в сегрегации и накоплении продуктов, синтезированных в ЭПР, участвуют в их химических перестройках, созревании: это главным образом перестройка олигосахаридных компонентов гликопротеинов в составе водорастворимых секретов или в составе мембран (рис. 5).

Рис. 5. Схема связи гранулярного эндоплазматичсского ретикулума (ЭПР), аппарата Гольджи (АГ) с образованием и выделением зимогена из ацинарных клеток поджелудочной железы

1 — переходная зона между ЭПР и АГ; 2 — зона созревания секреторных гранул; 3 — отделившиеся от АГ зимогеновые гранулы; 4 — их выход (экзоцитоз) за пределы клетки

В цистернах АГ происходит синтез полисахаридов, их взаимосвязь с белками, приводящая к образованию мукопротеидов. Но главное, с помощью элементов аппарата Гольджи происходит процесс выведения готовых секретов за пределы клетки. Кроме того, АГ является источником клеточных лизосом.

Участие АГ в процессах выведения секреторных продуктов было очень хорошо изучено на примере экзокринных клеток поджелудочной железы. Для этих клеток характерно наличие большого числа секреторных гранул (зимогеновых гранул), которые представляют собой мембранные пузырьки, заполненные белковым содержимым. В состав белков зимогеновых гранул входят разнообразные ферменты: протеазы, липазы, карбогидразы, нуклеазы. При секреции содержимое этих зимогеновых гранул выбрасывается из клеток в просвет железы, а затем перетекает в полость кишечника. Так как основным продуктом, выводимым клетками поджелудочной железы, является белок, то исследовали последовательность включения радиоактивных аминокислот в различные участки клетки (рис. 6). Для этого животным вводили меченную тритием аминокислоту (3Н-лейцин) и с помощью электронно-микроскопической радиоавтографии следили во времени за локализацией метки. Оказалось, что через короткий промежуток времени (3—5 мин) метка локализовалась только в базальных участках клеток, богатых гранулярным ЭПР. Так как метка включалась в белковую цепь во время синтеза белка, то было ясно, что ни в зоне АГ, ни в самих зимогеновых гранулах синтез белка не происходит, а он синтезируется исключительно в эргастоплазме на рибосомах. Несколько позднее (через 20-40 мин) метка кроме эргастоплазмы была обнаружена в зоне вакуолей АГ. Следовательно, после синтеза в эргастоплазме белок был транспортирован в зону АГ. Еще позднее (через 60 мин) метка обнаруживалась уже и в зоне зимогеновых гранул. В дальнейшем метку можно было видеть в просвете ацинусов этой железы. Таким образом, стало ясно, что АГ является промежуточным звеном между собственно синтезом секретируемого белка и выведением его из клетки. Так же подробно процессы синтеза и выведения белков были изучены на других клетках (молочная железа, бокаловидные клетки кишечника, щитовидная железа и др.). Исследованы и морфологические особенности этого процесса. Синтезированный на рибосомах экспортируемый белок отделяется и накапливается внутри цистерн ЭПР, по которым он транспортируется к зоне мембран АГ. Здесь от гладких участков ЭПР отщепляются мелкие вакуоли, содержащие синтезированный белок, которые поступают в зону вакуолей в проксимальной части диктиосомы. В этом месте вакуоли могут сливаться друг с другом и с плоскими цис-цистернами диктиосомы. Таким способом белковый продукт переносится уже внутри полостей цистерн АГ.

Рис. 6. Последовательность обнаружения (1—4) метки o т 3Н-лизина при синтезе и выведении белкового секрета из клетки поджелудочной железы

К — кровеносный капилляр; Ц — цитоплазма клетки; П — просвет железы. Стрелки показывают пути миграции метки

По мере модификации белков в цистернах аппарата Гольджи, они с помощью мелких вакуолей переносятся от цистерн к цистерне в дистальную часть диктиосомы, пока не достигают трубчатой мембранной сети в транс-участке диктиосомы. В этом участке происходит отщепление мелких пузырьков, содержащих уже зрелый продукт. Цитоплазматическая поверхность таких пузырьков бывает сходна с поверхностью окаймленных пузырьков, которые наблюдаются при рецепторном пиноцитозе. Отделившиеся мелкие пузырьки сливаются друге другом, образуя секреторные вакуоли. После этого секреторные вакуоли начинают двигаться к поверхности клетки, соприкасаются с плазматической мембраной, с которой сливаются их мембраны, и таким образом содержимое этих вакуолей оказывается за пределами клетки. Морфологически этот процесс экструзии (выбрасывания) напоминает пиноцитоз, только с обратной последовательностью стадий. Он носит название экзоцитоз.

Такое описание событий является только общей схемой участия аппарата Гольджи в секреторных процессах. Дело усложняется тем, что одна и та же клетка может участвовать в синтезе многих выделяемых белков, может их друг от друга изолировать и направлять к клеточной поверхности или же в состав лизосом. В аппарате Гольджи происходит не просто «перекачка» продуктов из одной полости в другую, но и постепенно идет их «созревание», модификация белков, которая заканчивается «сортировкой» продуктов, направляющихся или к лизосомам, или к плазматической мембране, или к секреторным вакуолям.

Модификация белков в аппарате Гольджи.

В цис-зону аппарата Гольджи синтезированные в ЭПР белки попадают после первичного гликозилирования и редукции там же нескольких сахаридных остатков. В конечном итоге все белки там имеют одинаковые олигосахаридные цепи, состоящие из двух молекул N -ацетилглюкозамина и шести молекул маннозы (рис. 7). В цис-цистернах начинается вторичная модификация олигосахаридных цепей и их сортировка на два класса. В результате олигосахариды на гидролитических ферментах, предназначенных для лизосом (богатые маннозой олигосахариды), фосфорилируются, а олигосахариды других белков, направляемых в секреторные гранулы или к плазматической мембране, подвергаются сложным превращениям, теряя ряд сахаров и присоединяя галактозу, N -ацетилглюкозамин и сиаловые кислоты.

Рис. 7. Пути гликозилирования гликопротеидов в аппарате Гольджи

a — белки секреторных гранул и плазматической мембраны; б — белки лизосом. Ман — манноза; Асп — аспарагин; Гл — глюкоза; СК — сиаловая кислота; Га - N -ацетилглюкозамин; Гал — галактоза

При этом возникает специальный комплекс олигосахаридов. Такие превращения олигосахаридов осуществляются с помощью ферментов - гликозилтрансфераз, входящих в состав мембран цистерн аппарата Гольджи. Так как каждая зона в диктиосомах имеет свой набор ферментов гликозилирования, то гликопротеиды как бы по эстафете переносятся из одного мембранного отсека («этажа» в стопке цистерн диктиосомы) в другой и в каждом подвергаются специфическому воздействию ферментов. Так, в цис-участке происходит фосфорилирование манноз в лизосомных ферментах и образуется особая маннозо-6-фосфатная группировка, характерная для всех гидролитических ферментов, которые потом попадут в лизосомы.

В средней части диктиосом протекает вторичное гликозилирование секреторных белков: дополнительное удаление маннозы и присоединение N -ацетилглюкозамина. В транс-участке к олигосахаридной цепи присоединяются галактоза и сиаловые кислоты (рис. 8).

Рис. 8. Локализация ферментов при модификации белков в аппарате Гольджи (АГ)

1 — синтез белка в ЭПР; 2 — фосфорплирование лизосомных олигосахаридов; 3 — отщепление маннозы; 4 — присоединение N -ацетилглюкозамина; 5 — присоединение маннозы; 6 — присоединение сиаловой кислоты; 7 — сортировка белков на рецепторах в транс-сети; 8 — лизосома; 9 — секреторная вакуоль; 10 — плазмалемма

В ряде специализированных клеток в аппарате Гольджи осуществляется синтез собственно полисахаридов.

В аппарате Гольджи растительных клеток происходит синтез полисахаридов матрикса клеточной стенки (гемицеллюлозы, пектины). Кроме того, диктиосомы растительных клеток участвуют в синтезе и выделении слизей и муцинов, в состав которых входят также полисахариды. Синтез же основного каркасного полисахарида растительных клеточных стенок — целлюлозы, происходит, как уже говорилось, на поверхности плазматической мембраны.

В аппарате Гольджи клеток животных осуществляется синтез длинных неразветвленных полисахаридных цепей глюкозаминогликанов. Один из них - гиалуроновая кислота, входящая в состав внеклеточного матрикса соединительной ткани, содержит несколько тысяч повторяющихся дисахаридных блоков. Многие глюкозаминогликаны ковалентно связаны с белками и образуют протеогликаны (мукопротеины). Такие полисахаридные цепи модифицируются в аппарате Гольджи и связываются с белками, которые в виде протеогликанов секретеруются клетками. В аппарате Гольджи происходит также сульфатирование глюкозаминогликанов и некоторых белков.

Сортировка белков в аппарате Гольджи.

Через аппарат Гольджи проходят, по крайней мере, три потока синтезированных клеткой белков:

  1. поток гидролитических ферментов в компартмент лизосом;
  2. поток выделяемых белков, которые накапливаются в секреторных вакуолях и выделяются из клетки только по получении специальных сигналов;
  3. поток постоянно выделяемых секреторных белков.

Следовательно, должен быть какой-то специальный механизм пространственного разделения этих разных белков и их путей следования.

В цис- и средних зонах диктиосом все эти белки идут вместе без разделения, они только раздельно модифицируются в зависимости от их олигосахаридных маркеров.

Собственно разделение белков, их сортировка, происходит в транс-участке аппарата Гольджи. Этот процесс не до конца расшифрован, но на примере сортировки лизосомных ферментов можно понять принцип отбора определенных белковых молекул (рис. 9).

Рис. 9. Сортировка кислых гидролаз в аппарате Гольджи (АГ)

1 — поступление гидролаз из ЭПР; 2 — фосфорилирование; 3 — перенос в транс-сеть АГ; 4 — связывание с рецептором; 5 — клатриновая оболочка; 6 — первичная лизосома; 7 — объединение со вторичной лизосомой; 8 — диссоциация от рецептора; 9 — дефосфорилирование; 10 — активированная гидролаза; 11 — возврат (рециклизация) рецепторов

Известно, что только белки-предшественники лизосомных гидролаз имеют специфическую олигосахаридную, а именно маннозную, группу. В цис-цистернах эти группировки фосфорилируются и дальше вместе с другими белками переносятся от цистерны к цистерне через среднюю зону в транс-участок. Мембраны транс-сети аппарата Гольджи содержат трансмембранный белок-рецептор (манноза-6-фосфатный рецептор, или М-6-Ф-рецептор), который узнает фосфорилированные маннозные группировки олигосахаридной цепи лизосомных ферментов и связывается с ними. Это связывание происходит при нейтральных значениях рН внутри цистерн транс-сети. На мембранах эти М-6-Ф-рецепторные белки образуют кластеры - группы, которые концентрируются в зонах образования мелких пузырьков, покрытых клатрином. В транс-сети аппарата Гольджи происходят их отделение, отпочковывание и дальнейший перенос к эндосомам. Следовательно, М-6-Ф-рецепторы, являясь трансмембранными белками, связываясь с лизосомными гидролазами, отделяют их (отсортировывают) от других белков (например, секреторных, нелизосомных) и концентрируют их в окаймленных пузырьках. Оторвавшись от транс-сети, эти пузырьки быстро теряют клатриновую «шубу», сливаются с эндосомами, перенося свои лизосомные ферменты, связанные с мембранными рецепторами, в эту вакуоль. Как уже говорилось, внутри эндосом из-за активности протонного переносчика происходит закисление среды. Начиная с рН 6 лизосомные ферменты отделяются от М-6-Ф-рецепторов, активируются и начинают работать в полости эндолизосомы. Участки же мембран вместе с М-6-Ф-рецепторами возвращаются путем рециклизации мембранных пузырьков обратно в транс-сеть аппарата Гольджи.

Вероятнее всего, что та часть белков, которая накапливается в секреторных вакуолях и выводится из клетки после поступления сигнала (например, нервного или гормонального), проходит такую же процедуру отбора (сортировки) на рецепторах транс-цистерн аппарата Гольджи. Эти секреторные белки попадают сначала в мелкие вакуоли, тоже одетые клатрином, которые затем сливаются друг с другом. В секреторных вакуолях часто происходит агрегация накопленных белков в виде плотных секреторных гранул. Это приводит к повышению концентрации белка в этих вакуолях примерно в 200 раз по сравнению с его концентрацией в аппарате Гольджи. Затем эти белки по мере накопления в секреторных вакуолях выбрасываются из клетки путем экзоцитоза после получения клеткой соответствующего сигнала.

От аппарата Гольджи исходит и третий поток вакуолей, связанный с постоянной (конститутивной) секрецией. Так, фибробласты выделяют большое количество гликопротеидов и муцинов, входящих в основное вещество соединительной ткани. Многие клетки постоянно выделяют белки, способствующие связыванию их с субстратами. К поверхности клетки беспрерывно идет поток мембранных пузырьков, несущих элементы гликокаликса и мембранных гликопротеидов. Этот поток выделяемых клеткой компонентов не подлежит сортировке в рецепторной транс-системе аппарата Гольджи. Первичные вакуоли этого потока также отщепляются от мембран аппарата Гольджи и относятся по своей структуре к окаймленным вакуолям, содержащим клатрин (рис. 10).

Рис. 10. Три потока транспорта белков через аппарат Гольджи (АГ)

1 — лизосомный поток; 2 — поток постоянной секреции; 3 — поток регулируемой секреции

В комплексе Гольджи происходит не только транспорт везикул от ЭПР к плазматической мембране. Существует ретроградный перенос везикул. Так, от вторичных лизосом отщепляются вакуоли и возвращаются вместе с рецепторными белками в зону транс-АГ. Кроме того, существует поток вакуолей от транс-зоны к цис-зоне АГ, а также от цис-зоны к эндоплазматическому ретикулуму. В этих случаях вакуоли одеты белками СОР I -комплекса. Считается, что таким путем возвращаются различные ферменты вторичного гликозилирования и рецепторные белки в составе мембран.

Эти особенности поведения транспортных везикул дали основу гипотезе о существовании двух типов транспорта компонентов АГ (рис. 11).

Рис. 11. Модели транспорта продуктов в аппарате Гольджи (АГ)

а — модель стабильных компартментов; 6 — модель созревания цистерн АГ.

1 — секретируемые белки; 2 — постоянные ферменты АГ; 3 — перенос к эндосомам; 4, 5 — перенос к плазматической мембране; I — ЭПР-АГ-комплекс; II — цис-участок АГ; III — промежуточный участок АГ; IV — транс-учасюк АГ; V — транс-АГ-сеть

По одному из них, наиболее старому, в АГ существуют стабильные мембранные компоненты, к которым от ЭПР эстафетно переносятся вещества с помощью транспортных вакуолей. По альтернативной модели, АГ является динамическим производным ЭПР: «отшнуровавшись» от ЭПР мембранные вакуоли сливаются друг с другом в новую цис-цистерну, которая затем продвигается через всю зону АГ и в конце распадается на транспортные везикулы. По этой модели, ретроградные COP I -везикулы возвращают постоянные белки АГ в более молодые цистерны.

3. Молекулярный механизм возврата белков комплекса Годьджи.

Гептамерный цитозольный белковый комплекс, называемый COP I (мембранный комплекс Гольджи, коатомер) , в соединении с GTP -связывающим белком ARF 1 образует оболочку таким образом, что, будучи ассоциированным в мембраны Гольджи, предположительно содействует мембранному экзоцитозу и реакциям расщепления, связанным с мембранным транспортом Гольджи. Включение COP I в мембраны Гольджи требует присутствия ARF 1, который работает по GTP азному циклу. ARF 1- GTP осуществляет включение COP I в мембраны Гольджи, тогда как гидролиз GTP предположительно запускает высвобождение COP I из мембраны в цитозоль, что делает возможным включение COP I в периодические циклы сборки-разборки оболочки. Таким образом, ARF 1 функционирует в качестве двойного переключателя, осуществляющего управление интеграцией COP I в мембраны и, следовательно, регулировку его функции.

Первоначально предполагалось, что связывающиеся с мембраной ARF 1 и коатомер участвуют неселективно в формировании транспортных пузырьков. Данная модель предполагала наличие значительного потока транспортируемых веществ через секреторные пути и постулировала, что полимеризация коатомера, управляемая посредством циклизации GTP с помощью ARF 1, обеспечивает механико-химическую энергию для образования пузырьков. В результате проведенных с тех пор разнообразных исследований указанная точка зрения была скорректирована. Активация ARF 1 оказывает значительное влияние на фосфолипидный состав мембраны и стимулирует встройку, актина и других белков цитозоля в мембраны Гольджи. Это предполагает способность ARF 1 облегчать процессы сортировки, эндоцитоза и стыковки мембран комплекса Гольджи.

Для фрагмента коатомера была также обнаружена способность связывать два остатка лизина в С-концевом мотиве трансмембранных белков, обеспечивающих циклический транспорт между Гольджи и ЭР и функционирующих, как предполагают, в качестве возвращающих в ЭР последовательностей. Взаимодействуя подобным образом с цитоплазматическими фрагментами транспортирующих белков, COP I может собирать транспортируемые вещества в везикулы и опосредовать сортировку транспортирных белков.

Что касается последней из указанных функций, предметом значительных дискуссий был вопрос о том, упаковывает ли мембраносвязанный COP I транспортируемые вещества в везикулы экзо- или эндоцитозного или обоих типов.

У дрожжей мутантные субъединицы COP I были идентифицированы по схеме, разработанной для обнаружения мутантов, неспособных удерживать/реутилизировать маркированные двумя остатками лизина молекулы при сохранении остальной части цикла.

В результате возникло предположение о том, что ассоциированный с содержащими дилизиновые мотивы трансмембранными транспортирующими белками COP I опосредует обратный транспорт. Однако, дальнейший анализ отдельных аллелей sec 21 (гамма- COP ) показал наличие зависящих от типа транспортируемого вещества селективных дефектов и при прямом транспорте. Более того, коатомер распознает также последовательности, родственные дилизиновым и диаргининовым, в цитоплазаматических фрагментах белков p 24 , большого семейства потенциальных переносчиков, которыми изобилирует Гольджи и для которых было показано участие в двунаправленном транспорте. С учетом этих, как и предыдущих биохимических и морфологических данных, подтверждающих роль коатомера в прямом транспорте, становится неясным направление (т. е., прямое или обратное) переноса везикул. Дополнительная возможность заключается в том, что опосредованная ARF 1 ассоциация COPI с мембраной может служить для латерального разделения белков и липидов в отдельные группы, транспортируемые в дальнейшем прямым или обратным способом. Наличие данной функции было предложено в результате наблюдения того, что блокирование ассоциации COP I с мембраной у мутантов с ингибированием ARF 1 либо посредством обработки брефельдином А (BFA ) , предотвращающим активацию ARF 1, само по себе не препятствует мембранному транспорту, но дестабилизирует его, что приводит к неселективности возврата белков в ЭР.

Заключение.


Комплекс (аппарат) Гольджи (или диктиосома) - мембранная органелла общего назначения, есть у всех клеток (кроме эритроцитов и кератинизированных клеток ороговевающего эпителия) в количество 1 или более (в активно синтезирующих клетках).

В КГ постоянно поддерживается динамическое равновесие между количество мембран, которые "уходят" вместе с отщепляющимися везикулами, количеством мембран, которые "приходят" от ЭПС с синтезированным продуктом нуждающимися в доработке.

Комплекс Гольджи – мультифункциональная структура. Он выполняет разнообразные функции:

1. Транспорт - через АГ проходят три группы белков: белки периплазматической мембраны, белки, предназначенные на экспорт из клетки, и лизосомные ферменты.

2. C ортировка для транспорта: сортировка для дальнейшего транспорта к органеллам, ПМ, эндосомам, секреторным пузырькам происходит в транс-комплексе Гольджи.

3. Секреция - секреция продуктов, синтезируемых в клетке.

3. Гликозилирование белков и липидов: гликозидазы удаляют остатки сахаров - дегликозилирование, гликозилтрансферазы прикрепляют сахара обратно на главную углеводную цепь - гликозилирование.В нем происходят гликозилирование олигосахаридных цепей белков и липидов, сульфатирование ряда ахаров и тирозиновых остатков белков, а также активация предшественников полипептидных гормонов и нейропептидов.

4. Синтез полисахаридов - многие полисахариды образуются в АГ в том числе пектин и гемицеллюлоза, образующие клеточные стенки растений и большинство гликозаминогликанов образующих межклеточный матрикс у животных

5. Сульфатирование - большинство сахаров, добавляемых к белковай сердцевине протеогликана, сульфатируются

6. Добавление маннозо-6-фосфата: М-6- P добавляется как направляюций сигнал к ферментам, предназначенным для лизосом.

Аппарат Гольджи входит в состав почти всех животных (исключение составляют эритроциты млекопитающих) и растительных клеток.

Список литературы.

  1. Грин Н . Биология – М., 2003
  2. Де Робертис Э. Новинский В., Саэс Ф. Биология клетки. М., Мир, 2001
  3. Зегнбуш П.Молекулярная и клеточная биология. М., Мир, т2004
  4. Неницеску К. Д. Общая химия. Пер. с рум./ Под ред. Аблова А. В. – М.: Мир, 1968.
  5. Свенсон К., Уэбстер П. Клетка. М., Мир, 2000.
  6. Сидоров Е.П. Общая биология – М., 2003
  7. Соловьев Ю. И., Эволюция основных теоретических проблем химии, М., 1971
  8. Ярыгин В.Н. Биология – М., 2001

Комплекс или аппарат Гольджи был открыт в 1898 году Камилло Гольджи. Сам аппарат – это полиморфная, асимметричная структура в составе клетки, представляющая собой дискообразные цистерны, уложенные в виде стопок. С этими цистернами связано еще другое образование – пузырьки Гольджи, которые подходят к цистернам и сливаются с ними. Затем в другом отделе пузырьки отпочковываются от комплекса. Пузырьки иначе называют везикулами.

В растительных и животных клетках анатомически аппарат Гольджи выглядит по-разному:

  • В животных клетках представлена одна большая стопка цистерн, иногда несколько стопок цистерн, соединенных трубкообразными структурами;
  • В растительных клетках он представлен так называемыми диктиосомами. Диктиосомы – это обособленные комплексы стопок цистерн с пузырьками-везикулами. Диктиосомы представлены не только в растительных клетках, но и в клетках ряда простейших беспозвоночных. В диктиосомах вырабатываются полисахаридные комплексы, которые участвуют в построение клеточных стенок растений. Некоторые ученые считают, что диктиосомы имеют функцию также в построение вакуолей. Они утверждают, что вакуоли формируют путем разбухания межмембранного пространства самих диктиосом. Известно, что вакуоль в растительной клетке занимает большую ее часть.

Строение аппарата условно можно поделить на три отдела:

  1. Цис-отдел – асимметричный начальный отдел с незрелым белком.
  2. Средний отдел. Иначе его еще называют медиальным отделом.
  3. Транс-отдел. Это отдел с вызревшим протеиновым комплексом. Здесь формируются и отходят пузырьки, несущие уже вполне сформированные зрелые протеины.

Транспорт веществ из ЭПС

Аппарат Гольджи осуществляет функцию транспорта веществ из эндоплазматической сети . Асимметричная часть аппарата находится ближе к ядру и содержит незрелые белки. Сюда регулярно подходят пузырьки. Поступление белков из эндоплазматической сети в аппарат, проходи не очень избирательно, но белки с неправильной структурой в аппарат не проникают.

При наличии специальной сигнальной аминокислотной последовательности происходит обратный транспорт белков из аппарата в ЭПС.

Преобразование белков

В мешочках комплекса Гольджи осуществляется функция преобразования протеинов . Здесь вызревают белки для секреции, трансмембранные и комплексы, входящие в состав лизосом.

Стопки цистерн содержат разный набор ферментов, которые катализируют процессы преобразования белков: белки переходят из одной цистерны в другую и подвергаются различного рода ферментно-каталитическому преобразованию. Каким образом осуществляется переход белков из одной цистерны в другую до конца не выяснено. Это представляет собой предмет изучения биохимии. Здесь протекают сложнейшие химические реакции с участием рецепторов.

Пройдя систему цистерн аппарата, белок попадает в транс-отдел. От него начинают постепенно отделяться пузырьки, наполненные сформированным белком. Нужно сказать, что каждый белок транспортируется к той органелле, для которой он был создан. В аппарате гольджи белки приобретают своеобразную метку рецепторов, благодаря которым транспортная система распознает белок и передает его в то место назначения, для которого он был создан.

Условно транс-отдел вырабатывает белки трех направлений:

  1. Лизосомные ферменты – это группа веществ, которые направляются в лизосомы.
  2. Белки для строительства мембраны.
  3. Секреты.

Образование лизосом

Один из потоков трехнаправленного движения белка – это формирование лизосом . От транс-отдела аппарата гольджи отходят пузырьки-везикулы, которые несут ферменты в органеллу –лизосому. Лизосома – это образование из слившихся везикул, имеющая кислую реакцию и набор автолитических ферментов. Лизосомы выполняют ряд важнейших функций в клетке:

  • Переваривание инородных частиц и клеток, в том числе бактерий, захваченных в процессе эндоцитоза.
  • Аутофагия – в переводе на русский – «самопоедание». Несмотря на страшное название – это весьма полезная функция – лизирование и растворение на элементарные компоненты отмирающих органелл. Замена стареющих структур на новые.
  • Автолиз – это процесс самоуничтожения клеток. Сложный процесс каскадных реакций. Яркий пример автолиза – это процесс превращения головастика в лягушку. Как известно, у головастика есть хвост, а у взрослой лягушки его нет. На поздних этапах развития у головастика хвост постепенно уменьшается и исчезает вовсе. Это связано с тем, что в основании хвоста активно проистекают процессы автолиза клеток. Клетки разрушаются, а их питательные компоненты всасываются и идут на построение тела животного.

Секреция

В аппарате Гольджи созревает множество секретов клеточной структуры . Это компоненты белкой природы и также небелковые компоненты. Отсюда они транспортируются во все участки клеток. Схема секреции следующая: синтезированные в эндоплазматическом ретикулуме белки через особый компартмент попадают в аппарат Гольджи. Из аппарата Гольджи из транс-отдела отпочковываются везикулы, которые несут компоненты к органеллам и за пределы клетки.

Компоненты за пределы клетки попадают сквозь мембрану путем экзоцитозного переноса. Визикула, подходя к мембране, встраивается в нее и раскрывает свое содержимое на противоположной стороне клетки. В результате все содержимое оказывается за пределами клетки. В этом случае двойная польза – перенос компонентов и достраивание мембраны .

Видео

Разобраться в строении клетки и в том, что такое комплекс Гольджи, вам поможет это видео.

Похожие публикации