Кишечная палочка (E. Энтерогеморрагическая бактерия Escherichia coli (E

Микробиологи различают около ста штаммов кишечных палочек. Некоторые из них являются непатогенными, то есть такими, которые не вызывают развитие инфекционного заболевания. Более того, такие бактерии являются обязательным компонентом нормальной кишечной микрофлоры. Но есть и патогенные штаммы, их еще называют диареегенными. Это такие штаммы кишечной палочки, которые способны вызвать кишечную, а в некоторых случаях и генерализованную инфекцию.

Патогенные кишечные палочки

Кишечная палочка (Escherichia coli) - бактерии, относящиеся к роду Escherichia и семейству Enterobacteriaceae. Эти микроорганизмы обладают высокой устойчивостью, они способны жить месяцами в воде, почве, фекалиях. Кишечные палочки также способны длительно храниться и даже размножаться в пищевых продуктах, в особенности молочных и мясных.

Патогенные (диареегенные) кишечные палочки в зависимости от их свойств, принято делить на пять основных категорий:

  1. Энтеротоксигенные (ЭТКП);
  2. Энтероинвазивные (ЭИКП);
  3. Энтеропатогенные (ЭПКП);
  4. Энтерогеморрагические (ЭГКП);
  5. Энтероаггрегативные (ЭАггКП).

Каждая из этих групп кишечных палочек имеет свои особенности. Так, энтеротоксигенные палочки провоцируют у детей и взрослых холероподобную кишечную инфекцию, поскольку эти бактерии продуцируют токсин, схожий с холерным.

Энтероинвазивные кишечные палочки провоцируют развитие кишечной инфекции у детей и взрослых. А энтеропатогенные палочки в отличие от предыдущих штаммов поражают преимущественно детей и вызывают у них развитие коли-энтеритов.

Энтеропатогенные кишечные палочки вызывают развитие геморрагического энтероколита, а энтероаггрегативные - приводят к возникновению кишечной инфекции в основном у ослабленных лиц.

Причины

Диареегенные кишечные палочки приводят к развитию инфекционного заболевания под названием эшерихиоз (кишечная коли-инфекция) . Для этой инфекции характерны симптомы интоксикации и поражения органов желудочно-кишечного тракта.

Источником инфекции являются больные эшерихиозом, в меньшей мере - бактерионосители. Механизм передачи - фекально-оральный. Человек может заболеть коли-инфекцией при употреблении зараженной пищи (молочных и мясных продуктов, овощей), воды, через грязные руки и предметы ухода, игрушки.

Симптомы эшерихиоза

Эшерехиоз сопровождается симптомами поражения желудочно-кишечного тракта. Однако особенности клинической картины зависят от того, каким именно штаммом инфицирован человек.

Так, эшерихиоз, вызванный энтеротоксигенными палочками, протекает с поражением главным образом тонкой кишки, при этом интоксикация выражена слабо. Заболевание возникает остро с внезапно появившейся слабости, разбитости, . Температура при этом может быть немного повышенной или даже нормальной. В животе (преимущественно в эпигастрии) возникают разлитые . Живот , определяется урчание.

Для диагностирования заболеваний органов мочеполовой системы необходимо произвести . Однако наличие кишечных палочек в моче не всегда говорит о наличии заболевания. Бактерии, обнаруженные в малом количестве, могут означать, что женщина перед сдачей анализа не произвела должные гигиенические процедуры. Однако если в анализе мочи определяется не менее 10 2 -10 4 кишечных палочек при наличии симптомов заболевания, это свидетельствует в пользу воспалительного процесса, протекающего в почках или же мочевом пузыре.

Первым эти микроорганизмы изучил и подробно описал австрийский врач Теодор Эшерих. В биологии бактерии группы «кишечная палочка» получили название «эшерихия коли» (Escherichia coli, или сокращенно E.coli). Как выяснилось, по строению, цвету, размеру (морфологические признаки) и типу питания, особенностям размножения (культуральные признаки) с кишечной палочкой совпадают еще несколько родов бактерий, в том числе и печально известные сальмонеллы.

Чтобы облегчить себе жизнь, биологи объединили все эти похожие микроорганизмы в одну большую группу – кишечная палочка (БГКП) – и назвали их колиморфными (или колиформными), т.е. имеющими форму E.coli. Группу относят к довольно обширному семейству энтеробактерий, включающему нормальную микрофлору кишечника.

В группу кишечной палочки входит около 100 видов микроорганизмов. Они составляют часть нормальной микрофлоры кишечника теплокровных животных, птиц и людей. То есть в любом совершенно здоровом организме обязательно обитает некоторое количество кишечных палочек. Проблемы начинаются только в том случае, когда их число резко увеличивается или в организм попадают опасные (патогенные) штаммы бактерий, например, сальмонеллы или шигеллы (возбудители дизентерии). Если кишечная палочка попадает в мочу, возникает опасность циститов, пиелонефритов, уретритов и других заболеваний мочеполовой системы.

В организм человека патогенные микробы проникают из окружающей среды (вода, пища, контакт с больным). Для предотвращения эпидемий проводят регулярные проверки состояния почвы, воды и пищевых продуктов, опираясь на нормативы предельно допустимой концентрации (ПДК). После взятия проб в лаборатории выращивают на питательных средах культуры бактерий и сравнивают с нормативами.

Характеристика колиморфных бактерий

Полезные «домашние» палочки в кишечнике отвечают за выработку витаминов и утилизацию отходов (расщепление неусвоенных остатков пищи). Кишечник новорожденного ребенка заселяется бактериями приблизительно за 40 часов с момента рождения. Они попадают в организм вместе с пищей или от людей, окружающих ребенка, и остаются с хозяином до конца его жизни. Один из непатогенных штаммов кишечной палочки используют в медицине. Он входит в состав пробиотика – препарата, содержащего полезные для организма бактерии.

Кроме кишечной палочки, к колиморфным относят многие патогенные микроорганизмы: сальмонеллу, чумную палочку, возбудителей дизентерии, холеры и т. д.

Общие признаки колиморфных бактерий:

  • небольшие палочки размером от 1 до 3 мкм в длину и 0,5–0,8 мкм в ширину;
  • полиморфные организмы, то есть способные существовать в нескольких формах;
  • могут быть как подвижными (при помощи жгутиков), так и неподвижными;
  • грамотрицательные, то есть не сохраняют цвет при окрашивании по Граму (датский врач, предложивший способ исследования бактерий при помощи анилиновых красителей);
  • не образуют спор;
  • чаще всего живут и размножаются в нижнем отделе кишечника человека и теплокровных животных.

Строение бактериальной клетки эшерихии типично для всех прокариот (безъядерных клеток):

  • наружный слой или клеточная оболочка;
  • цитоплазматическая мембрана, разделяющая оболочку и внутреннее пространство;
  • полужидкая среда (цитоплазма);
  • замкнутая кольцеобразная молекула ДНК, выполняющая роль ядра.

Некоторые виды колиморфных бактерий имеют жгутики, такое строение позволяет им легко перемещаться в окружающей среде.

Кишечные палочки, как и большинство патогенных организмов, относятся к факультативным анаэробам. Они могут жить в кислородосодержащей среде или обходиться без кислорода, меняя тип дыхания в зависимости от условий обитания. Самая комфортная температура для этих бактерий +37⁰С, именно в такой обстановке они предпочитают жить и размножаться. Но и более низкие температуры (до +20⁰) не пугают представителей БГКП.

Что такое предельно допустимая концентрация

В природных водоемах, почве, продуктах питания и на немытых руках вполне могут водиться кишечные палочки, сальмонеллы, возбудители дизентерии чумы и т. д. Конечно, размножаться в таких условиях они не любят, но вполне успеют попасть в любой другой организм, пригодный для обитания бактерий этой группы. Полностью убить кишечную палочку сможет только температура выше 60⁰С, причем при такой температуре процесс должен длиться не менее 15 минут (вот зачем нужно кипятить воду из открытых водоемов!).

Санитарно-гигиенические нормативные документы регламентируют предельно допустимую концентрацию (ПДК) патогенных микроорганизмов в окружающей среде. Существуют ПДК для почвы, природных водоемов (реки, озера, моря). ГОСТ 2874-82 устанавливает гигиенические требования и методы контроля за качеством питьевой воды, в том числе и ПДК для бактерий группы кишечной палочки. Согласно одному из разделов этого документа, общее количество бактерий в 1 мл воды не должно превышать 100, а кишечных палочек на 1 л – не больше 3 шт. (это и есть ПДК).

Для определения числа БГКП в лабораторных условиях проводят посев материала на питательные среды. Кишечные палочки хорошо растут на обычных питательных средах (бульоне, агаре), что упрощает проведение исследований.

Опасные патогены – протеи и шигеллы

Протеи относят к семейству энтеробактерий, царству бактерий, они входят в состав нормальной микрофлоры. Три вида из рода протей являются патогенными (болезнетворными) для организма. Эти мельчайшие нитевидные палочки очень подвижны и вырабатывают токсичные вещества (эндотоксины), опасные для здоровья. Часто протеи вызывают острые кишечные инфекции у маленьких детей с пониженным иммунитетом.

Протеи относительно устойчивы к внешней среде, выдерживают даже полную заморозку и многие дезинфицирующие средства, но к высоким температурам они менее устойчивы. Наряду с кишечной палочкой протеи считаются санитарно-показательными микроорганизмами.

Протеи находят для себя питательную среду в сточных водах, куда бактерии попадают через фекалии или мочу заболевших людей и животных. Чаще всего заражение протеями происходит через пищу или воду (в том числе и купание в открытых водоемах). В группу риска попадают люди со сниженным иммунитетом (новорожденные, пожилые, ослабленные болезнью). Не менее опасно и бесконтрольное употребление антибиотиков.

В организме человека протеи вызывают:

  • заболевания желудочно-кишечного тракта (гастроэнтерит, энтероколит, гастрит);
  • дисбактериоз;
  • при попадании в мочу – пиелонефрит, цистит, простатит;
  • раневые инфекции.

Некоторые внутрибольничные инфекции тоже возникают по вине протеев, например, отиты, холециститы, инфекции в моче, тяжелые формы менингита и сепсиса у маленьких детей.

Шигелла – еще один род бактерий, близких по происхождению к кишечной палочке и сальмонелле. Возбудитель дизентерии, шигелла, распространяется через пищу. При ослабленном состоянии организма бывает достаточно десятка бактерий для инфицирования. Если микробы попадают в организм с пищей, то буквально через считанные часы проявляются признаки дизентерии. При контактном заражении симптомы могут проявиться через несколько дней, и все это время больной остается переносчиком дизентерии.

Ежегодно по всему миру насчитывают около 80 миллионов случаев заболевания дизентерией, из них примерно 700 тысяч со смертельным исходом. Большая скученность, отсутствие элементарной гигиены приводит к широкому распространению болезни. Страшнее всего то, что больше половины случаев заболевания дизентерией приходится на детей до 4 лет. Иммунитет после болезни формируется только на несколько месяцев (до одного года), поэтому повторная опасность возникновения дизентерии существует постоянно.

Попадание кишечной палочки в мочу опасно возникновением воспалительного процесса. В норме этих бактерий в моче быть не должно. К сожалению, E.coli не выводится из организма вместе с мочой, воспаление может протекать бессимптомно, что особенно опасно для беременных женщин. Поэтому регулярная сдача анализа мочи при беременности – это необходимая мера безопасности.

Для лабораторной диагностики заболеваний, вызываемых бактериями группы кишечной палочки, проводят анализы кала, мочи, гноя и др. Анализируемый образец высевают на различные питательные среды и определяют количество патогенных бактерий, опираясь на ПДК. Так, дисбактериоз диагностируют при увеличении колониеобразующих единиц (КОЕ) до 104 КОЕ на 1 гр. На инфекции мочевыводящих путей указывает наличие в анализе мочи 105 микробных тел протея на 1 мл.

Стандарты для пищевых продуктов

Колиморфные бактерии имеют значение как показатель чистоты водопроводной воды и пищевых продуктов. Эти микроорганизмы называют санитарно-показательными. Существуют специальные ГОСТы, регламентирующие количество кишечных палочек в образцах продукции и в пробах воды, так как именно БГКП отвечают за пищевые отравления людей и различные заболевания животных, в особенности домашнего скота и птицы:

  1. ГОСТ 31747-2012, являющийся национальным стандартом Российской Федерации с 01.07.13 г., распространяется на пищевые продукты, кроме молока и молочной продукции, и регламентирует методы обнаружения и определения числа колиморфных бактерий в определенном количестве продукта. В ГОСТе прописаны четкие рекомендации по проведению лабораторных исследований с описанием аппаратуры, питательных сред, реактивов, методов отбора проб и проведения испытаний.
  2. Молоко и молочные продукты проверяют на соответствие ГОСТу 27930-88 с определением общего количества бактерий или по ГОСТ Р 53430-2009, где установлены методы обнаружения и подсчета бактерий группы кишечной палочки. Санитарно-биологическое исследование для молока и молочных продуктов проводят по ГОСТ 9225-68, согласно которому высчитывают количество патогенной микрофлоры в молоке (50–100 мл) или масле, сыре, твороге, взятых для пробы.
  3. Для проверки пищевых продуктов на бактерии рода сальмонелл применяют ГОСТ 31659-2012, в котором подробно расписано необходимое оборудование (химикаты, инструменты) и все этапы метода обнаружения патогенных микробов, вызывающих вспышки сальмонеллеза.
  4. По ГОСТу 31468-2012 проверяют мясо птицы, а также полуфабрикаты из него на наличие сальмонелл.
  5. Не менее опасное заболевание (листериоз) у людей и животных вызывает бактерия листерия (Listeria). Проверку пищевых продуктов на обнаружение этого микроба регламентирует ГОСТ 32031-2012.

Это только некоторые из множества государственных стандартов, устанавливающих параметры проверки пищевых продуктов.

Патогенная микрофлора обсеменяет продукты в процессе приготовления, хранения, транспортировки. В молоко кишечная палочка может попасть во время удоя, поэтому большое значение имеет проверка сырого молока на количество патогенных микроорганизмов. Так, ПДК кишечной палочки в молоке, годном для переработки, не должно превышать 100 в 1 мл.

В пастеризованном молоке в идеале кишечной палочки быть не должно, однако это не всегда соответствует действительность. Поэтому для маленьких детей и ослабленных людей желательно кипятить даже пастеризованное молоко. Еще одни способ долго сохранить молоко свежим – стерилизация. К сожалению, этот процесс убивает не только все патогены, но и многие полезные свойства молока.

Показатель чистоты воды

Бактерии группы кишечной палочки попадают в окружающую среду в основном из сточных вод, куда они выводятся вместе с фекальными стоками. Они находят богатую питательную среду в фекалиях и отлично выживают в отрыве от организма-носителя в течение нескольких недель. И все это время остаются опасными для здоровья.

Колиморфные бактерии наиболее устойчивы к обеззараживанию, следовательно, если количество их в образце соответствует норме, то и все остальные патогенные организмы (возбудители чумы, дизентерии, тифа) успешно уничтожены в процессе санитарной обработки стоков.

Для очистки сточных вод используются различные реагенты и фильтры, в том числе фильтры с обратным осмосом. Процесс осмоса представляет собой просачивание (диффузию) через полупроницаемую мембрану молекул из раствора с большей концентрацией в жидкость с меньшей концентрацией вещества. Фильтры для воды построены на принципе обратного осмоса, т.е. вода подается на мембрану (сетку с размером пор, примерно соответствующим размерам молекулы воды). В результате обратного осмоса на мембране задерживаются различные примеси и патогенные бактерии.

После очистки воды обязательно проводят санитарно-бактериологическую оценку на число бактерий группы кишечной палочки. Для этого делают посев на питательных средах и определяют коли-индекс (число бактерий в 1 л воды), а затем сравнивают его с показателем ПДК.

«Подопытные кролики» генетики

Кишечная палочка имеет большое значение в генетических исследованиях, т.к. бактерии, относящиеся к этой группе, легко вырастить на питательных средах в лабораторных условиях. Пожалуй, это самая исследованная бактерия на сегодняшний день.

Штаммы, культивируемые для микробиологических исследований, не способны заселить кишечник, но отлично растут на питательных средах, что объясняет их использование в качестве модельного организма. На основе наблюдений за теми или иными свойствами, процессами, явлениями таких бактерий можно построить модель поведения других более или менее похожих организмов. Так, американские ученые на примере кишечной палочки доказали, что бактерии подчиняются мутационным закономерностям, что привело к интенсивному развитию генетических исследований.

Кишечной палочкой (Escherichia coli) учёные называют палочковидную условно-патогенную бактерию, которая способна нормально функционировать и размножаться только в условиях отсутствия кислорода. Была открыта в восемнадцатом веке Теодором Эшерихом, благодаря которому и получила своё название.

Бактерия имеет довольно много штаммов (разновидностей) и большинство из них считаются безвредными (они живут в кишечнике человека, участвуют в синтезировании витаминоподобных соединений, обладают бактерицидными свойствами по отношению к некоторым патогенным микроорганизмам), но встречаются и такие, которые могут вызывать развитие серьёзных проблем со здоровьем, начиная с нарушений работы ЖКТ и заканчивая развитием , поэтому лечение кишечной палочки должно быть качественным и своевременным.

Общие сведения

Безопасные штаммы этого микроорганизма обитают в кишечнике человека, при этом их количество варьирует от 10 6 до 10 8 КОЕ (микробиологический показатель – колониеобразующая единица) на один грамм содержимого кишечника. Сразу стоит рассказать о том, что бактерии заселяют организм человека в первые дни после рождения, поэтому кишечные палочки у грудничков появляются сразу, и в том случае если их количество не превышает норму, они приносят кишечнику пользу, а значит, лечить такое состояние не нужно.

Однако стоит помнить, что некоторые штаммы этого микроорганизма токсичны, особенно для детей и беременных женщин (кишечная палочка в моче при беременности может свидетельствовать о развитии острого или хронического инфекционного заболевания, угрожающего здоровью плода), так что очень важно вовремя диагностировать это состояние и назначить адекватное лечение.

Кишечные палочки бывают условно-патогенные (к которым относится гемолизирующая кишечная палочка) и патогенные. Учёные смогли выделить больше сотни патогенных штаммов этой бактерии, которые впоследствии были разделены на четыре основных класса, а именно:

  • энтероинвазивные;
  • энтеротоксигенные;
  • энтеропатогенные;
  • энтерогеморрагические.

Эти микроорганизмы могут стать причиной развития эшерихиозов – заболеваний инфекционного характера, которые по статистике чаще всего встречаются у детей и женщин (инфекция передаётся фекально-оральным путём в основном через пищу или воду).

Симптомы

Симптомы заражения кишечной палочкой проявляются по-разному, поэтому каждый класс патогенных бактерий необходимо рассматривать в отдельности. Состояние здоровья заражённого человека будет зависеть от того, в какую группу относятся и с какой скоростью размножаются кишечные палочки, симптомы заболеваний описаны ниже.

Энтеропатогенные бактерии

Энтеропатогенные микроорганизмы чаще всего встречаются у детей до одного года жизни и их присутствие, как правило, обнаруживается ещё в роддоме. Сопровождаются водянистой диареей, иногда рвотой, отказом от еды и беспокойным сном.

Энтеротоксигенные бактерии

Энтеротоксигенные кишечные палочки опасны тем, что могут прикрепляться именно к слизистой оболочке кишечника, чем существенно нарушают его работу. Инфекция передаётся через немытые руки или фрукты, поэтому симптомы жизнедеятельности кишечных бактерий в человеческом организме иногда называют «диареей путешественника», которая сопровождается водянистым поносом без крови, тошнотой, приступообразной болью в животе.

Энтерогеморрагические бактерии

Энтерогеморрагические эшерихиозы характеризуется диареей с примесью крови и сопровождаются развитием острой гемолитической анемии. Опасность заболевания состоит в том, что гемолитическая кишечная палочка разрушает кровяные тельца, а это может привести к летальному исходу (чаще всего болезнь поражает женщин). Характерным признаком заболевания является то, что в каловых массах обнаруживается большое количество слизи и примесей зеленоватого оттенка, при этом гемолизирующая кишечная палочка не вызывает повышения температуры тела.

Энтероинвазивные бактерии

Энтероинвазивные патогенные микроорганизмы вызывают боли внизу живота и обильный стул (иногда с примесью крови). Встречаются в основном у детей, временно нарушают работу иммунной системы. Следует сказать о том, что чёткой клинической картины эшерихиозов не существуют, пациенты жалуются на боли в животе (которые могут быть локализованы в любой его части), жидкий стул и рвотные позывы, следовательно, лечение кишечных палочек должно быть комплексным и обязательно проходить под контролем врача. Кстати говоря, лактозонегативная кишечная палочка не должна обнаруживаться в кале в слишком больших количествах (норма – 10 5), а увеличение этого показателя можно заметить даже самостоятельно, об этом свидетельствуют непереваренные кусочки пищи в кале и чередование диареи с запорами.

Кишечная палочка, как возбудитель заболеваний мочеполовой системы

В норме кишечная палочка в моче обнаруживаться не должна, но если при сдаче анализов она была там найдена, врач должен в срочном порядке заняться её лечением. Обычно этот микроорганизм обнаруживается врачами-гинекологами при осмотре беременных женщин, причём для многих наличие этого микроорганизма в микрофлоре влагалища становится сюрпризом. Обнаруженная кишечная палочка в мазке свидетельствует о начале развития воспалительного процесса одного или нескольких органов мочеполовой системы (существует вероятность того, что бактерия передаётся половым путём от одного партнёра к другому).

Нужно сказать о том, что кишечная палочка во влагалище, должна стать поводом к тому, чтоб из лаборатории, сразу же отправиться в кабинет к врачу. Дело в том, что она существенно ослабляет местный иммунитет и делает организм больного человека практически беззащитным перед другими опасными бактериями, например, перед протеусом или стафилококком, что в итоге может стать причиной развития или , следовательно, лечить это состояние должен только специалист.

Гемолизирующая кишечная палочка является причиной развития 80% заболеваний мочеполовой системы, к которым относится:

  • острый и хронический (кишечная палочка в мазке при диагностике простатита обнаруживается практически в 65% случаев);
  • воспаление яичников и у женщин;
  • (если кишечная палочка в мазке на вагинит обнаруживается сразу, то лечение этого недуга проходит максимально быстро, а отсутствие адекватной терапии может стать причиной развития серьёзных проблем со здоровьем);
  • (очень часто гемолизирующая кишечная палочка обнаруживается при диагностике пиелонефрита у беременных);
  • кольпит и так далее.

На самом деле в гинекологии гемолизирующая кишечная палочка занимает особенное место, потому что при попадании во влагалище она провоцирует развитие ряда таких заболеваний, которые впоследствии приводят к бесплодию и трудно поддаются лечению. По этой причине врачи советуют делать профилактику и диагностику этого возбудителя (определяется кишечная палочка в мазке) хотя бы один раз в год.

Как лечить?

Лечить кишечную палочку должен врач, который вначале делает бактериальный посев и точно определяет штамм возбудителя. Интенсивность и длительность лекарственной терапии зависит от вида бактерии, её локализации и индивидуальных особенностей организма больного человека. В процессе лечения важную роль играет диета и приём пробиотиков – препаратов, нормализующих кишечную микрофлору. После окончания курса лекарственной терапии все анализы сдаются повторно.

Genetika carries out scientific research in microbial and cell culture biotechnology mainly in the form of research projects requested by industry. Our results are available as patents, license and know-how. Since its foundation (1968) Genetika has been one of the most significant Russian research centers in microbial genetics and molecular biology and at the same time served as the main source of new strains and processes for Russian biotechnological industry.

Technologies developed in Genetika (threonine — 1979, riboflavin — 1991, acrylamide — 2000, phytase — 2008) are used all over the world by leading biotechnology companies. Governmental granted basic research as well as collaboration with other Russian and international research organizations helps to bridge the gap between applied and basic research. A range of interdisciplinary research projects is driving the innovative development forward. Now Genetika is ready to pursue the implementation of innovative research in industrial and social applications all around the world.more

New article in CELL by Genetika researchers Alex Mironov and Svetlana Eremina.

Bacterial Nitric Oxide Extends the Lifespan of C. elegans (download the article)

Ivan Gusarov, Laurent Gautier, Olga Smolentseva, Ilya Shamovsky, Svetlana Eremina, Alexander Mironov, Evgeny Nudler.,

ABSTRACT Nitric oxide (NO) is an important signaling molecule in multicellular organisms. Most animals produce NO from L-arginine via a family of dedicated enzymes known as NO synthases (NOSes). A rare exception is the roundworm Caenorhabditis elegans, which lacks its own NOS. However, in its natural environment, C. elegans feeds on Bacilli that possess functional NOS. Here, we demonstrate that bacterially derived NO enhances C. elegans longevity and stress resistance via a defined group of genes that function under the dual control of HSF-1 and DAF-16 transcription factors. Our work provides an example of interspecies signaling by a small molecule and illustrates the lifelong value of commensal bacteria to their host.

New review article "Microbial Producers of Butanol" (Download the article)

O. V. Berezina, N. V. Zakharova, C. V. Yarotsky, and V. V. Zverlov

Abstract—This review is written due to an increased interest in the production of energy carriers and basic substrates of the chemical industry from renewable natural resources. In this review, the microbiological aspects of biobutanol production are reflected and the microbial producers of butanol (both natural, i.e., members of the Clostridium genus, and recombinant), obtained by genetic modification of Clostridia and other microorganisms, are characterised.


Изобретение относится к биотехнологии, касается получения продуцентов для пробиотических препаратов - бактерийных препаратов на основе живых культур микроорганизмов-симбионтов, используемых для профилактики и лечения дисбактериозов и других расстройств желудочно-кишечного тракта. В штамм Escherichia coli М17 - продуцент для пробиотического препарата колибактерин - введена неконьюгативная, немобилизуемая плазмида p Сolap, несущая гены продукции колицина Е1 и детерминант устойчивости к ампициллину в дозах до 150 мг/л. Полученный штамм лишен нежелательного адгезивного фенотипа инактивированием гена адгезина fimH пилей 1-го типа интеграцией гена устойчивости к канамицину - неомицину npt. Штамм E.coli М17 fim H::Kan/p Colap депонирован в ВКПМ под номером В-7448, Это позволяет создать пробиотический препарат со сниженной способностью к колонизации отличных от интестинальной ниш, с повышенной антагонистической активностью и резидентный на фоне антибиотикотерапии. Введенные в сконструированный штамм признаки стабильно сохраняются в популяции. Это облегчает получение стандартного препарата на основе штамма и гарантирует, что при приеме препарата пациентом без сопутствующей антибиотикотерапии не произойдет элиминация плазмиды. 4 ил., 1 табл.

Настоящее изобретение относится к биотехнологии и касается создания усовершенствованного штамма Escherichia coli, который может быть использован для получения пробиотиков - бактерийных препаратов на основе живых культур микроорганизмов-симбионтов. Пробиотики (другие названия препаратов данной группы: нормофлоры, эубиотики, микробиотики) являются эффективным средством для профилактики и лечения дисбактериоза кишечника. Дисбактериоз - это выраженное изменение в видовом и количественном соотношении микробов, которое проявляется в бурном развитии условно-патогенных микроорганизмов, в частности бактерий семейства кишечной группы (Enterobacteriaceae), и сопровождается различными болезненными проявлениями. Важной причиной дисбактериозов является применение антибиотиков и других противомикробных препаратов [Красноголовец В. Н. "Клиническое значение дисбактериоза кишечника, развившегося в результате применения антибиотиков". В кн. "Применение колибактерина для профилактики и лечения кишечных заболеваний и технология его производства". М., 1967, с. 223 - 243]. В настоящее время в России известны препараты пробиотиков "Колибактерин" и "Бификол", которые получают на основе штамма Escherichia coli М17, который, по-существу, является производным штамма Е.coli, выделенного А. Ниссле и используемого для получения препарата "Mutaflor" (Германия) [Перетц Л.Г. "Сухой колибактерин. Новые методы диагностики, лечения и профилактики кишечных заболеваний". В кн. "Тезисы докладов Пленуму Уч. мед. сов. МЗ РСФСР". М., 1961, с. 52-54]. Однако, в отличие от исходного штамма штамм Е. coli М17 утратил способность к синтезу колицина B и, следовательно, снизил свою антагонистическую активность в отношении бактерий кишечной группы [Шемчук Л.Ф. "Стандартизация колибактерина", автореф. канд.б.н., М., 1983, с. 16]. Другим недостатком штамма Е.coli М17 и его предшественника является наличие у них высокоадгезивного М н фенотипа фимбрий 1-го типа, необычного и нежелательного для кишечного штамма. Такой фенотип часто обнаруживается у выделяемых из макроорганизма штаммов при инфекции мочевыводящих путей и внутрибольничной пневмонии [Сокуренко Е.В., Чеснокова В.Л. "Способ модификации адгезивного фенотипа диких изолятов Е. coli в применении к штаммам - продуцентам препарата колибактерин". Бюллетень экспериментальной биологии и медицины, 1997, Том 124, N 9, с. 334 - 338]. Недостатком штамма E.coli М17 является также чувствительность его к антибиотикам. Поэтому препараты на его основе не могут быть эффективными на фоне приема антибиотиков. Между тем одновременное применение антибиотиков и пробиотиков может предотвращать развитие дисбактериоза и тем самым повышать эффективность терапевтических мероприятий, сокращать сроки лечения. Задачей изобретения является создание штамма Е.coli - производного E.coli М17, который позволяет устранить упомянутые выше недостатки известного штамма Е. coli М17, а именно: пониженная антагонистическая активность, нежелательный адгезивный фенотип, чувствительность к антибиотикам. Технический результат состоит в конструировании штамма с повышенной антагонистической активностью, сниженной способностью к колонизации отличных от первичной интестинальной ниш в макроорганизме и с резистентностью к умеренным дозам антибиотиков пенициллинового ряда. Указанная цель достигается тем, что с помощью генетических и генно-инженерных методов конструируют штамм Е.coli М17 fimH::kan/pColap, который продуцирует колицин E1, устойчив к умеренным концентрациям ампициллина (до 150 ЕД/мл) и содержит инактивированный ген fimH, кодирующий фимбриальный адгезин. Штамм Е.coli М17 fimH::kan/pColap депонирован во Всероссийской коллекции промышленных микроорганизмов под регистрационным номером В-7448. В основе патентуемой конструкции штамма лежат следующие положения. Нами впервые показано, что инактивирование гена адгезина fimH пилей 1-го типа в геноме Escherichia coli штамма М17 и введение в штамм Escherichia coli М17 неконьюгативной, немобилизуемой плазмиды pColap, несущей гены продукции колицина E1 и детерминант устойчивости к ампициллину в дозах до 150 мг/л позволяет создать пробиотический препарат со сниженной способностью к колонизации отличных от интестинальной ниш, с повышенной антагонистической активностью и резидентный на фоне антибиотикотерапии. Сущность патентуемого генно-инженерного решения поясняется чертежами, где:

На фиг. 1 показана схема получения рекомбинантного штамма E. coli M17fimH::kan/pColap с дефектом в гене адгезина fimH пилей 1-го типа,

На фиг. 2 - схема конструирования гибридной плазмиды pColap,

На фиг. 3 приведены результаты исследования адгезивной активности сконструированного штамма Escherichia coli М17 fimH::kan/pColap,

На фиг. 4 - результаты исследования стабильности сконструированного штамма Escherichia coli М17 fimH::kan/pColap. При получении штамма Е.coli М17 fimH::kan/pColap в качестве исходного использовали его ближайший аналог - штамм Е.coli М17. Для элиминации фимбриального адгезина, сообщающего клеткам Е.coli М17 нежелательный высокоадгезивный М н фенотип, получали рекомбинантный штамм, у которого в хромосомный ген fimH, кодирующий адгезин, был интегрирован ген устойчивости к канамицину-неомицину npt. С этой целью использовали плазмиду pCH103, производную плазмиды R6K, которая имеет pir-зависимую систему репликации и может поддерживаться только в штаммах, содержащих ген pir, обеспечивающий ее репликацию [Сокуренко Е.В., Чеснокова В.Л. "Способ модификации адгезивного фенотипа диких изолятов Е.coli в применении к штаммам - продуцентам препарата колибактерин". Бюллетень экспериментальной биологии и медицины, 1997, Том 124, N 9, с. 334 - 338]. Плазмида pCH103 несет ген устойчивости к ампициллину и фрагмент хромосомы, содержащий гены fim-кластера, в котором целостность гена fimH нарушена вставкой гена устойчивости к канамицину (неомицину) npt. После трансформации ее в штамм Е.coli М17 она не может поддерживаться в клетках, и устойчивые к канамицину трансформанты могут возникать или при интеграции ее целиком в хромосому в результате одного кроссинговера или в результате двойного кроссинговера (фиг. 1). Трансформанты второго класса остаются чувствительными к ампициллину. Среди них был отобран штамм, обозначенный Е.coli M17fimH::kan (или М17 fimH::npt). Проведенное исследование подтвердило отсутствие у полученного штамма маннозо-чувствительной адгезии, т.е. FimH - фенотип. Для повышения антагонистической активности штамма Е. coli М17 и придания ему устойчивости к ампициллину на основе плазмиды ColE1 известными методами ["Методы молекулярной генетики и генной инженерии", 1990, Новосибирск, "Наука", Сибирское отделение, с. 7-10, 39-44] была сконструирована гибридная плазмида pColap (фиг. 1). Исходная плазмида ColE1, выделенная из непатогенного штамма Е.coli, детально изучена. Она имеет довольно узкий круг хозяев (в основном - штаммы кишечной палочки) и стабильно поддерживается в бактериальных клетках. Известны ее полная нуклеотидная последовательность, функции всех ее генетических элементов, регуляция их активности. Плазмида детерминирует синтез колицина E1, который губительно действует на клетки родственных бактерий. Недостатком плазмиды ColE1 является ее способность к мобилизации в другие клетки с помощью конъюгативных плазмид, которая обусловлена присутствием в ее структуре mob-области. Используя эндонуклеазу рестрикции BspLu11.1, эту область полностью удалили и при этом практически не затронули другие генетические элементы плазмиды. Затем, используя эндонуклеазу рестрикции BspH1, из известного вектора pUC19 вырезали фрагмент, содержащий ген b1a, кодирующий синтез - лактамазы, и лигировали его с фрагментом плазмиды ColE1, лишенным mob-области. В результате получили плазмиду pColap. Эта плазмида неконъюгативна и немобилизуема и, следовательно, практически не может быть передана в клетки других бактерий. В отличие от вектора pUC19 и других плазмид pColap обеспечивает только умеренный уровень устойчивости к ампициллину трансформированным ею штаммам Е.coli (табл. 1). Такое ухудшение экспрессии гена - лактамазы наблюдается из-за нарушений в промоторной области гена (боксе Гильберта) и 5" - участке, повышающем эффективность экспрессии , произошедших в результате генетических манипуляций в процессе конструирования рекомбинантной плазмиды pColap. Чувствительность штаммов, несущих pColap, к повышенным концентрациям антибиотика следует считать благоприятным фактором. Так, если по каким-либо причинам присутствие штаммов, содержащих эту плазмиду, в кишечнике пациента становится нежелательным или если в результате какого-либо исключительного события плазмида переносится в другой штамм, то все клетки, содержащие ее, можно элиминировать из организма, применив высокие концентрации -лактамных антибиотиков. Плазмидой pColap трансформировали штамм Е. coli М17 fimH::kan и получили штамм Е.coli М17 fimH::kan/pColap. Штамм имеет следующие характеристики. Морфология. Грамотрицательные слабоподвижные тонкие палочки с закругленными концами 1,5 - 2 мкм в длину. Культурально-физиологические признаки. Мясо-пептонный агар и агаризованный бульон Хотингера. Через 36 ч роста при 37 o C образует круглые беловатые полупрозрачные колонии диаметром 1,5 - 2,5 мм, поверхность колоний гладкая, края ровные, структура однородная, консистенция пастообразная, легко эмульгируются. Агаризованная минимальная среда М9 с глюкозой (0,2%). Через 40 ч роста образует колонии 1-2 мм в диаметре, серовато-беловатые, полупрозрачные, круглые, выпуклые, с ровными краями. Мясо-пептонный бульон и бульон Хотингера. Через 18-24 ч роста при 37 o C наблюдается сильное равномерное помутнение, небольшой осадок, характерный запах. Жидкая минимальная среда М9 с глюкозой (0,2 %). Через 20-24 ч роста с аэрацией наблюдается сильное равномерное помутнение, запах слабый или отсутствует. Рост по уколу в мясо-пептонном агаре. Хороший рост по всему уколу. Микроорганизм является факультативным анаэробом. Отношение к температуре и pH среды. Хорошо растет при температуре от 30 до 42 o C и при pH 6,8 - 7,2. Биохимические свойства. Хорошо усваивает глюкозу, сахарозу, лактозу, фруктозу, маннозу, ксилозу, маннит и сорбит с образованием кислоты и газа. Рамнозу, галактозу и арабинозу - со слабым кислотообразованием; салицин - с замедленным кислото- и газообразованием; рафинозу - только с кислотообразованием. Инозит не усваивает. Сероводород не образует; индол вырабатывает. Отношение к антибиотикам. Устойчив к ампициллину при концентрациях в среде до 150 мг/л. Продукция бактериоцинов. Продуцирует колицин E1. Содержание плазмид. Клетки содержат многокопийную неконъюгативную и немобилизуемую плазмиду pColap (5239 п.н.), детерминирующую устойчивость к ампициллину и синтез колицина E1. Штамм имеет антигенную формулу О2:L1:H6 и агглютинируется сывороткой при титре сыворотки не ниже 1:64000. Изобретение иллюстрируется примерами, которые характеризуют устойчивость штаммов, несущих различные плазмиды, к ампициллину, стабильность их признаков в процессе культивирования. Пример 1. Изучение роста штамма Е. coli М17 и его производных, содержащих плазмиды, на средах с разными концентрациями ампициллина (табл. 1). Исследуемые штаммы кишечной палочки (таблица 1) выращивались в течение 18 ч в бульоне Луриа (LB - 10 г триптона, 5 г дрожжевого экстракта, 5 г NaCl на 1 л дистиллированной воды) при 37 o C с аэрацией. Затем готовили последовательные разведения бактериальных культур до 10 -7 в физиологическом растворе и высевали каждую культуру на чашки с LA (LB + 1,6 % агар), содержащие ампициллин в следующих концентрациях (мкг/мл): 5, 50, 75, 100, 125, 150, 200, 250. Оценку роста колоний производили через 18-24 ч. Результаты представлены в таблице 1. Как видно из таблицы 1, исходный штамм кишечной палочки М17 проявляет высокую чувствительность к ампициллину. Плазмида pUC19, содержащаяся в штамме М17/pUC19, которая явилась источником гена - лактамазы для сконструированной нами плазмиды pColap, придает бактериальной клетке устойчивость к концентрациям ампициллина до 2 г/л. В то же время плазмида pColap, содержащаяся в штамме М17 fimH::kan/pColap, обеспечивает устойчивость к концентрациям ампициллина не выше 150 мг/л. Таким образом, полученные штаммы обладают умеренным уровнем устойчивости к ампициллину. Пример 2. Исследование адгезивных свойств и определение адгезивного фенотипа штамма Е. coli М17 и его производных. Адгезивный фенотип определяли стандартным методом "исследования роста" . Из свежей культуры исследуемых штаммов бактерий готовили суспензию бактериальных клеток в физиологическом растворе с оптической плотностью 1.0 при длине волны 540 нм. Параллельно приготовили планшеты для микротитрования с плоскодонными лунками с иммобилизованными в лунках субстратами для адгезии, а именно: МН (дрожжевой маннан), РН (бычья РНКаза В) и БСА (бычий сывороточный альбумин). Затем бактериальную суспензию помещали в лунки и инкубировали в течение 40 мин. Несвязавшиеся бактериальные клетки тщательно отмывали физиологическим раствором. В лунки добавляли богатую питательную среду и инкубировали с постоянным перемешиванием при 37 o C в течение 2,5 - 3 ч до появления помутнения в лунках. Оптическая плотность в каждой лунке учитывалась на автоматическом ридере микропланшет (Molecular Devices, Inc., Menlo Park, Calif., USA). В данном эксперименте исследовались следующие штаммы Е.coli: М17 - исходный штамм; М17 fimH::kan - штамм М17 с инактивированным геном адгезина fimH: М17 fimH: : kan/pPKL91 - штамм fimH::kan, трансформированный плазмидой pPKL91, содержащей регуляторный ген fimB, включающий экспрессию пилей 1-го типа бактериальной клеткой; штамм M17fimH::kan/pColap - штамм М17 fimH::kan, трансформированный сконструированной нами плазмидой pColap, несущей детерминанты устойчивости к ампициллину и продукции колицина Е1. Результаты исследования адгезивной активности штаммов Е.coli М17 и производных штамма Е.coli М17, оцененной с помощью метода "исследования роста", представлены на фиг. 3 (по оси ординат отложены значения оптической плотности при длине волны 540 нм; на оси абсцисс - исследуемые штаммы Е. coli: 1 - М17; 2 - М17 fimH::kan, 3 - M17fimH::kan/pPKL91, 4 - М17 fimH::kan/pColap). Как видно из фиг. 3, исходный штамм Е. coli М17 хорошо связывается и с РНКазой B, и с маннаном, что указывает на МН адгезивный фенотип, нежелательный для интестинального штамма кишечной палочки. Полученный нами рекомбинантный штамм М17 fimH::kan проявляет нулевую адгезивную активность как сам по себе, так и после введения в него плазмиды, включающей экспрессию пилей 1-го типа. Нулевая адгезиная активность сохраняется в этом штамме и после введения в него плазмиды pColap (штамм М17 fimH::kan/pColap). Пример 3. Исследование стабильности признаков штамма Escherichia coli М17 fimH::kan/pColap, детерминируемых плазмидой pColap. Сконструированная нами плазмида pColap обеспечивает продукцию колицина Е1 и устойчивость к ампициллину. Сохранение этих признаков зависит от стабильности поддержания плазмиды в клетках бактерий: утрата плазмиды сопровождается утратой соответствующих признаков. Определяли стабильность сохранения устойчивости к ампициллину и колициногенности полученных штаммов при культивировании их в жидкой питательной среде в отсутствие селективного агента на протяжении 100 генераций. В качестве положительного контроля использовали исходную плазмиду ColE1, а отрицательного - плазмиду pBR322, производную ColE1, не содержащую локуса cer, который влияет на стабильность плазмид. Культуры штаммов М17 fimH::kan/pColap, М17/ColЕ1 и M17/pBR322 выращивались в течение 18 ч с усиленной аэрацией при 37 o C в LB с ампициллином (100 мкг/мл). Штамм М17/ColЕ1 выращивали в тех же условиях, но без ампициллина. Полученные культуры содержали примерно 10 o бактериальных клеток в 1 мл. Затем в пробирки с 10 мл LB (без добавленного антибиотика) вносили 10 мкл (10 6) соответствующей бактериальной культуры. Полученную суспензию выращивали, как описано выше. При таком культивировании бактериальные клетки успевали пройти 10 делений. Повторив эту операцию 10 раз, мы получили бактериальную культуру, прошедшую 100 генераций с момента первого засева в среду без селективного агента. Перед каждым засевом отбирались пробы бактериальной культуры и проверялись на наличие свойств устойчивости к ампициллину и продукции колицина. Для этого суспензии клеток рассевались на чашках с LA до получения отдельных колоний. Затем по 100 колоний каждого штамма проверялись на способность к росту на той же среде в присутствии ампициллина (100 мкг/мл). Кроме того, колонии проверялись на способность продуцировать колицин Е1. Для этого использовался тест с нанесением верхнего агара (Миллер Дж. "Эксперименты в молекулярной генетике", М. , "Мир", 1976, стр. 183-189). Тест заключается в следующем: на чашки с твердой питательной средой, содержащей 1,6 % агар, репликатором или зубочисткой перекалывают исследуемые колонии. Чашки инкубируют при 37 o C в течение 3 - 4 ч, индуцируют продукцию колицина облучением ультрафиолетом в течение 4-5 с и инкубируют в тех же условиях в течение ночи. Затем клетки лизируют парами хлороформа при комнатной температуре в течение 30 - 40 мин. Важно проследить, чтобы на следующем этапе весь хлороформ выветрился из чашки. Наслаивают на нижний слой агара 3 - 5 мл полужидкого (0,7 %) агара, содержащего 10 7 /мл бактериальных клеток тест-штамма Е. coli (чувствительного к колицину Е1). Инкубируют ночь при 37 o C. Регистрируют наличие зон просветления в слое тест-культуры вокруг пятен исследуемых штаммов. Результаты исследования стабильности сконструированного штамма Escherichia coli М17/pColap приведены на фиг. 2 (ColE1 соответствует штамму М17/ColЕ1, pBR322 - штамму M17/pBR322, pColap - штамму М17/pColap). Присутствие плазмиды в бактериальной клетке следует из сохранения ею исходных свойств (колициногенности и/или устойчивости к ампициллину). Результаты эксперимента (фиг. 2) свидетельствуют, что лишенная cer локуса плазмида pBR322 быстро элиминируется из бактериальной популяции при выращивании в среде, лишенной антибиотика, в то время как две другие плазмиды (исходная ColE1 и рекомбинантная pColap) стабильно наследуются клетками в этих условиях. Это свойство является одним из важным преимуществ нашей конструкции, поскольку, с одной стороны, облегчает получение стандартного препарата на основе штамма, содержащего pColap, а с другой стороны, гарантирует, что при приеме препарата пациентом без сопутствующей антибиотикотерапии не произойдет элиминация плазмиды. Промышленная применимость. Приведенное описание способа конструирования патентуемого штамма Escherichia coli М17 rimH::kan/pColap достаточно для повторного получения штамма с использованием стандартных методик, реагентов и оборудования, применяемых в генно-инженерных исследованиях.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Штамм бактерий Escherichia coli M 17 fim H::kan/p Colap ВКПМ В-7448, используемый для получения пробиотического препарата.
Похожие публикации