Каковы строение и функции оболочки ядра. Ядро клетки: функции и структура

Ядерная оболочка

Эта структура характерна для всех эукариотических клеток. Ядерная оболочка состоит из внешней и внутренней мембран, разделенных перинуклеарным пространством шириной от 20 до 60 нм. В состав ядерной оболочки входят ядерные поры.

Мембраны ядерной оболочки в морфологическом отношении не отличаются от остальных внутриклеточных мембран: они имеют толщину около 7 нм и состоят из двух осмиофильных слоев.

В общем виде ядерная оболочка может быть представлена, как полый двухслойный мешок, отделяющий содержимое ядра от цитоплазмы. Из всех внутриклеточных мембранных компонентов таким типом расположения мембран обладают только ядро, митохондрии и пластиды. Однако ядерная оболочка имеет характерную особенность, отличающую ее от других мембранных структур клетки. Это наличие особых пор в оболочке ядра, которые образуются за счет многочисленных зон слияний двух ядерных мембран и представляет собой как бы округлые перфорации всей ядерной оболочки.

Строение ядерной оболочки

Внешняя мембрана ядерной оболочки, непосредственно контактирующая с цитоплазмой клетки, имеет ряд сруктурных особенностей, позволяющих отнести ее к собственно мембранной системе эндоплазматического ретикулума. Так, на внешней ядерной мембране обычно располагается большое количество рибосом. У большинства животных и растительных клеток внешняя мембрана ядерной оболочки не представляет собой идеально ровную поверхность - она может образовывать различной величины выпячивания или выросты в сторону цитоплазмы.

Внутренняя мембрана контактирует с хромосомным материалом ядра (см. Ниже).

Наиболее характерной и бросающейся в глаза структурой в ядерной оболочке является ядерная пора. Поры в оболочке образуются за счет слияния двух ядерных мембран в виде округлых сквозных отверстий или перфораций с диаметром 80-90 нм. Округлое сквозное отверстие в ядерной оболочке заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют комплексом пор ядра. Тем самым подчеркивается, что ядерная пора не просто сквозная дыра в ядерной оболочке, через которую непосредственно вещества ядра и цитоплазмы могут сообщаться.

Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит со стороны ядра, другой - со стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От этих гранул отходят фибриллярные отростки. Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры. В центре отверстия часто можно видеть так называемую центральную гранулу.

Число ядерных пор зависит от метаболической активности клеток: чем выше синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

Количество ядерных пор в различных объектах

Химия ядерной оболочки

В составе ядерных оболочек обнаруживаются небольшие количества ДНК (0-8%), РНК (3-9%), но основными химическими компонентами являются липиды (13-35%) и белки (50-75%), что для всех клеточных мембран.

Состав липидов сходен с таковым в мембранах микросом или мембранах эндоплазматической сети. Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким - фосфолипидов, обогащенных насыщенными жирными кислотами.

Белковый состав мембранных фракций очень сложен. Среди белков обнаружен ряд ферментов, общих с ЭР (например, глюкозо-6-фосфатаза, Mg-зависимая АТФаза, глютамат-дегидрогеназа и др.) не обнаружена РНК-полимераза. Тут выявлены активности многих окислительных ферментов (цитохромоксидазы, НАДН-цитохром-с-редуктазы) и различных цитохромов.

Среди белковых фракций ядерных мембран встречаются основные белки типа гистонов, что объясняется связью участков хроматина с ядерной оболочкой.

Ядерная оболочка и ядерно-цитоплазматический обмен

Ядерная оболочка - система, разграничивающая два основных клеточных отсека: цитоплазму и ядро. Ядерные оболочки полностью проницаемы для ионов, для веществ малого молекулярного веса, таких, как сахара, аминокислоты, нуклеотиды. Считается, что белки молекулярного веса до 70 тыс. И размером не больше 4,5 нм могут свободно диффундировать через оболочку.

Известен и обратный процесс - перенос веществ из ядра в цитоплазму. Это в первую очередь касается транспорта РНК синтезируещегося исключительно в ядре.

Еще один путь транспорта веществ из ядра в цитоплазму связан с образованием выростов ядерной оболочки, которые могут отделяться от ядра в виде вакуолей, содержимое их затем изливается или выбрасывается в цитоплазму.

Таким образом, из многочисленных свойств и функциональных нагрузок ядерной оболочки следует подчеркнуть ее роль как барьера, отделяющего содержимое ядра от цитоплазмы, ограничивающего свободный доступ в ядро крупных агрегатов биополимеров, барьера, активно регулирующего транспорт макромолекул между ядром и цитоплазмой.

Одной из основных функций ядерной оболочки следует считать также ее участие в создании внутриядерного порядка, в фиксации хромосомного материала в трехмерном пространстве ядра.

Анализ результатов нарушения сцепленного наследования генов позволяет определить последовательность расположения генов в хромосоме и составить генетические карты. Как связаны понятия «частота кроссинговера» и «расстояние между генами»? Какое значение имеет изучение генетических карт различных объектов для эволюционных исследований?

Пояснение.

1. Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

На ос­но­ва­нии ли­ней­но­го рас­по­ло­же­ния генов в хро­мо­со­ме и ча­сто­ты крос­син­го­ве­ра как по­ка­за­те­ля рас­сто­я­ния между ге­на­ми можно по­стро­ить карты хромосом.

2. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов.

Подобно тому, как анализ ДНК позволяет установить степень родства между двумя людьми, тот же самый анализ ДНК (сравнение отдельных генов или целых геномов) позволяет выяснить степень родства между видами, а зная количество накопленных различий, исследователи определяют время расхождения двух видов, то есть время, когда жил их последний общий предок.

Примечание .

С развитием молекулярной генетики было показано, что процессы эволюции оставляют следы в геномах в виде мутаций. Например, геномы шимпанзе и человека одинаковы на 96 %, а те немногие области, которые различаются, позволяют определить время существования их общего предка.

Подобно тому, как анализ ДНК позволяет установить степень родства между двумя людьми, тот же самый анализ ДНК (сравнение отдельных генов или целых геномов) позволяет выяснить степень родства между видами, а зная количество накопленных различий, исследователи определяют время расхождения двух видов, то есть время, когда жил их последний общий предок. Например, согласно данным палеонтологии, общий предок человека и шимпанзе жил примерно 6 миллионов лет назад (такой возраст имеют, например, ископаемые находки оррорина и сахелантропа - форм, морфологически близких к общему предку человека и шимпанзе). Для того, чтобы получилось наблюдаемое число различий между геномами, на каждый миллиард нуклеотидов должно было приходиться в среднем 20 изменений за одно поколение.

ДНК человека оказывается гомологичной ДНК макаки на 78%, быка – на 28%, крысы - на 17%, лосося – на 8%, кишечной палочки – на 2%.

Для того, чтобы построить филогенетическое дерево, достаточно рассмотреть несколько генов, присутствующих у всех организмов, которые мы хотим включить в это дерево (обычно чем больше генов, тем статистически достовернее получаются элементы дерева - порядок ветвления и длины ветвей).

Можно, пользуясь генетическими приемами (исследованием строения хромосом, сопоставлением генетических карт, установлением аллельности генов), с достаточной точностью выяснить филогению нескольких родственных видов на протяжении отрезка времени, в течение которого они дивергировали от общего порядка. Но этот подход применим только к весьма близким формам, хорошо генетически изученным и, желательно, скрещиваемым друг с другом, т.е. к очень немногим и весьма узким систематическим группам, возникшим относительно недавно.

Ядро клетки - важнейшая ее органелла, место хранения и воспроизведения наследственной информации. Это мембранная структура, занимающая 10-40 % которой очень важны для жизнедеятельности эукариотов. Однако даже без наличия ядра реализация наследственной информации возможна. Примером данного процесса является жизнедеятельность бактериальных клеток. Тем не менее особенности строения ядра и его предназначение очень важны для

Расположение ядра в клетке и его структура

Ядро располагается в толще цитоплазмы и непосредственно контактирует с шероховатой и гладкой Оно окружено двумя мембранами, между которыми находится перинуклеарное пространство. Внутри ядра присутствует матрикс, хроматин и некоторое количество ядрышек.

Некоторые зрелые человеческие клетки не имеют ядра, а другие функционируют в условиях сильного угнетения его деятельности. В общем виде строение ядра (схема) представлено как ядерная полость, ограниченная кариолеммой от клетки, содержащая хроматин и ядрышки, фиксированные в нуклеоплазме ядерным матриксом.

Строение кариолеммы

Для удобства изучения клетки ядра, последнее следует воспринимать как пузырьки, ограниченные оболочками от других пузырьков. Ядро - это пузырек с наследственной информацией, находящийся в толще клетки. От ее цитоплазмы он ограждается бислойной липидной оболочкой. Строение оболочки ядра похожее на клеточную мембрану. В действительности их отличает только название и количество слоев. Без всего этого они являются одинаковыми по строению и функциям.

Строение кариолеммы (ядерной мембраны) двуслойное: она состоит из двух липидных слоев. Наружный билипидный слой кариолеммы непосредственно контактирует с шероховатым ретикулумом эндоплазмы клетки. Внутренняя кариолемма - с содержимым ядра. Между наружной и внутренней кариомембраной существует перинуклеарное пространство. Видимо, оно образовалось из-за электростатических явления - отталкивания участков глицериновых остатков.

Функцией ядерной мембраны является создание механического барьера, разделяющего ядро и цитоплазму. Внутренняя мембрана ядра служит местом фиксации ядерного матрикса - цепи белковых молекул, которые поддерживают объемную структуру. В двух ядерных мембранах существуют специальные поры: через них в цитоплазму к рибосомам выходит информационная РНК. В самой толще ядра находятся несколько ядрышек и хроматин.

Внутреннее строение нуклеоплазмы

Особенности строения ядра позволяют сравнить его с самой клеткой. Внутри ядра также присутствует особая среда (нуклеоплазма), представленная гель-золем, коллоидным раствором белков. Внутри нее есть нуклеоскелет (матрикс), представленный фибриллярными белками. Основное отличие состоит только в том, что в ядре присутствуют преимущественно кислые белки. Видимо, такая реакция среды нужна для сохранения химических свойств нуклеиновых кислот и протекания биохимических реакций.

Ядрышко

Строение клеточного ядра не может быть завершенным без ядрышка. Им является спирализованная рибосомальная РНК, которая находится в стадии созревания. Позднее из нее получится рибосома - органелла, необходимая для белкового синтеза. В структуре ядрышка выделяют два компонента: фибриллярный и глобулярный. Они различаются только при электронной микроскопии и не имеют своих мембран.

Фибриллярный компонент находится в центре ядрышка. Он представляет собой нити РНК рибосомального типа, из которых будут собираться рибосомные субъединицы. Если рассматривать ядро (строение и функции), то очевидно, что из них впоследствии будет образован гранулярный компонент. Это те же созревающие рибосомальные субъединицы, которые находятся на более поздних стадиях своего развития. Из них вскоре образуются рибосомы. Они удаляются из нуклеоплазмы через кариолеммы и попадают на мембрану шероховатой эндоплазматической сети.

Хроматин и хромосомы

Строение и клетки органично связаны: здесь присутствует только те структуры, которые нужны для хранения и воспроизведения наследственной информации. Также существует кариоскелет (матрикс ядра), функцией которого является поддержание формы органеллы. Однако самой важной составляющей ядра является хроматин. Это хромосомы, играющие роль картотек различных групп генов.

Хроматин представляет собой сложный белок, который состоит из полипетида четвертичной структуры, соединенного с нуклеиновой кислотой (РНК или ДНК). В плазмидах бактерий хроматин также присутствует. Почти четверть от всего веса хроматина составляют гистоны - белки, ответственные за "упаковку" наследственной информации. Эту особенность структуры изучает биохимия и биология. Строение ядра сложное как раз из-за хроматина и наличия процессов, чередующих его спирализацию и деспирализацию.

Наличие гистонов дает возможность уплотнять и укомплектовать нить ДНК в небольшом месте - в ядре клетки. Это происходит следующим образом: гистоны образуют нуклеосомы, которые представляю собой структуру наподобие бус. Н2В, Н3, Н2А и Н4 - это главные гистоновые белки. Нуклеосома образована четырьмя парами каждого из представленных гистонов. При этом гистон Н1 является линкерным: он связан с ДНК в месте е входа в нуклеосому. Упаковка ДНК происходит в результате "наматывания" линейной молекулы на 8 белков гистоновой структуры.

Строение ядра, схема которого представлена выше, предполагает наличие соленоидподобной структуры ДНК, укомплектованной на гистонах. Толщина данного конгломерата составляет порядка 30 нм. При этом структура может уплотняться и далее, чтобы занимать меньше места и менее подвергаться механическим повреждениям, неизбежно возникающим в процессе жизни клетки.

Фракции хроматина

Ядра клетки зациклены на том, чтобы поддерживать динамические процессы спирализации и деспирализации хроматина. Потому существует две главные его фракции: сильно спирализованная (гетерохроматин) и малоспирализованная (эухроматин). Они разделены как структурно, так и функционально. В гетерохроматине ДНК хорошо защищена от любых воздействий и не может транскрибироваться. Эухроматин защищен слабее, однако гены могут удваиваться для синтеза белка. Чаще всего участки гетерохроматина и эухроматина чередуются на протяжении длины всей хромосомы.

Хромосомы

Строение и функции которого описываются в данной публикации, содержит хромосомы. Это сложный и компактно упакованный хроматин, увидеть который можно при световой микроскопии. Однако это возможно только в случае, если на предметном стекле расположена клетка в стадии митотического или мейотического деления. Одним их этапов является спирализация хроматина с образованием хромосом. Их структура предельно проста: хромосома имеет теломеру и два плеча. У каждого многоклеточного организма одного вида одинаковое строение ядра. Таблица хромосомного набора у него также аналогичная.

Реализация функций ядра

Основные особенности строения ядра связаны с выполнением некоторых функций и необходимостью их контроля. Ядро играет роль хранилища наследственной информации, то есть это своего рода картотека с записанными последовательностями аминокислот всех белков, которые могут синтезироваться в клетке. Значит, для выполнения какой-либо функции клетка должна синтезировать которого закодирована в гене.

Чтобы ядро "понимало", какой конкретно белок нужно синтезировать в нужный час, существует система наружных (мембранных) и внутренних рецепторов. Информация от них поступает к ядру посредством молекулярных передатчиков. Наиболее часто это реализуется посредством аденилатциклазного механизма. Так на клетку воздействуют гормоны (адреналин, норадреналин) и некоторые лекарства с гидрофильной структурой.

Вторым механизмом передачи информации является внутренний. Он свойственен липофильным молекулам - кортикостероидам. Это вещество проникает через билипидную мембрану клетки и направляется к ядру, где взаимодействует с его рецептором. В результате активации рецепторных комплексов, расположенных на клеточной мембране (аденилатциклазный механизм) или на кариолемме, запускается реакция активации определенного гена. Он реплицируется, на его основании строится информационная РНК. Позднее по структуре последней синтезируется белок, выполняющий некоторую функцию.

Ядро многоклеточных организмов

В многоклеточном организме особенности строения ядра такие же, как и в одноклеточном. Хотя существуют некоторые нюансы. Во-первых, многоклеточность подразумевает, что у ряда клеток будет выделена своя специфическая функция (или несколько). Это значит, что некоторые гены постоянно будут деспирализованы, тогда как другие находятся в неактивном состоянии.

К примеру, в клетках жировой ткани синтез белков будет идти малоактивно, а потому большая часть хроматина спирализована. А в клетках, к примеру, экзокринной части поджелудочной железы, процессы биосинтеза белка идут постоянно. Потому их хроматин деспирализован. На тех участках, гены которых реплицируются чаще всего. При этом важна ключевая особенность: хромосомный набор всех клеток одного организма одинаков. Только из-за дифференциации функций в тканях некоторые из них выключаются из работы, а другие деспирализуются чаще прочих.

Безъядерные клетки организма

Существуют клетки, особенности строения ядра которых могут не рассматриваться, потому как они в результате своей жизнедеятельности либо угнетают его функцию, либо вовсе избавляются от него. Простейший пример - эритроциты. Это кровяные клетки, ядро у которых присутствует только на ранних стадиях развития, когда синтезируется гемоглобин. Как только его количества достаточно для переноса кислорода, ядро удаляется из клетки, дабы облегчить ее не мешать транспорту кислорода.

В общем виде эритроцит представляет собой цитоплазматический мешок, наполненный гемоглобином. Похожая структура характерна и для жировых клеток. Строение клеточного ядра адипоцитов предельно упрощено, оно уменьшается и смещается к мембране, а процессы белкового синтеза максимально угнетаются. Эти клетки также напоминают "мешки", наполненные жиром, хотя, разумеется, разнообразие биохимических реакций в них чуть большее, чем в эритроцитах. Тромбоциты также не имеют ядра, однако их не стоит считать полноценными клетками. Это осколки клеток, необходимые для реализации процессов гемостаза.

Ядерная оболочка (нуклеолемма) представляет собой сложное образование, отделяющее содержимое ядра от цитоплазмы и других элементов живой клетки. Данная оболочка выполняет ряд важных функций, без которых является невозможным функционирование ядер, полноценное . Чтобы определить роль ядерных мембран в жизнедеятельности эукариотных клеток, необходимо узнать не только главные функции, но и особенности строения.

В статье подробно рассматриваются функции ядерной оболочки. Описывается строение, структурные компоненты нуклеолеммы, их взаимосвязь, механизмы транспортировки веществ, процесс деления при митозе.

Строение оболочки

Главное отличие эукариот заключается в наличии ядра и ряда других органелл, необходимых для его поддержания. Такие клетки входят в состав всех растений, грибов, животных, в то время как клетки-прокариоты представляют собой простейшие безъядерные организмы.

Нуклеолемма состоит из двух структурных элементов - внутренней и наружной мембран. В промежутке между ними существует свободное пространство, называемое перинуклеарным. Ширина перинуклеарного промежутка нуклеолеммы составляет от 20 до 60 нанометров (нм).

Внешняя мембрана нуклеолеммы контактирует с клеточной цитоплазмой. На ее наружной поверхности располагается существенное число рибосом, которые отвечают за из отдельных аминокислот. Внешняя мембрана не содержит рибосом.

Мембраны, образующие нуклеолемму, состоят из белковых соединений и двойного слоя фосфолипидных веществ. Механическая прочность оболочки обеспечивается сетью филаментов - нитевидных белковых структур. Наличие филаментной сети характерно для большинства эукариот. Они соприкасаются с внутренней мембраной.

Сети филаментов располагаются не только в области нукелолеммах. Такие структуры также располагаются в цитоплазме. Их функция заключается в сохранении целостности клетки, а также в формировании контактов между клетками. При этом, отмечается, что слои, образующие сеть, регулярно перестраиваются. Данный процесс наиболее активен в период роста клеточного ядра перед делением.

Сеть филаментов, которая поддерживает мембраны, называется ядерной ламиной. Она формируется из определенной последовательности белков-полимеров, которые называются ламинами. Она взаимодействует с хроматином - веществом, участвующим в формировании хромосом. Также ламина контактирует с молекулами рибонуклеиновой кислоты, ответственными за .

Внешняя мембрана ядра взаимодействует с мембраной, окружающей эндоплазматический ретикулум. В определенных участках оболочки происходит контакт перинуклеарного пространства и внутреннего пространства ретикулума.

Функции эндоплазматического ретикулума:

  • Синтез и транспортировка белков
  • Хранение продуктов синтеза
  • Формирование новой оболочки при митозе
  • Хранение , выполняющих функцию медиатора
  • Продукция гормонов

Внутри оболочки располагаются ядерные поровые комплексы. Это каналы, посредством которых происходит перенос молекул между клеточным ядром, цитоплазмой и другими клеточными органеллами. На одном квадратном микроне поверхности нуклеолеммы располагает от 10 до 20 поровых комплекса. Исходя из этого, в оболочке 1 соматической клетки может находится всего от 2 до 4 тысяч ЯПК.

Помимо транспорта веществ, оболочка выполняет опорную и защитную функцию. Она отделяет ядро от содержимого цитоплазмы, в том числе продуктов деятельности других органелл. Защитная функция заключается в предохранении генетической информации ядра от негативного воздействия, например, .

Считается, что двойная мембрана ядерной оболочки сформировалась в ходе эволюции путем захвата одних клеток другими. Вследствие этого, некоторые поглощенные клетки сохранили собственную активность, но при этом их ядро было окружено двойной мембраной - собственной, и мембраной клетки-хозяина.

Таким образом, ядерная оболочка представляет собой сложную структуру, состоящую из двойной мембраны, содержащей ядерные поры.

Строение и свойства ЯПК

Ядерный поровый комплекс - это симметричный канал, местом локализации которого является сличение наружной и внутренней мембран. ЯПК состоят из набора веществ, включающих около 30 видов белков.

Ядерные поры имеют бочкообразную форму. Образуемый канал не ограничивается ядерными мембранами, а незначительно выступает за их пределы. В результате с двух сторон оболочки возникают кольцеобразные выступы. Размер этих выступов отличается, так как с одной стороны кольцеобразное образование имеет больший диаметр, чем с другой. Элементы ядерных пор, выступающих за пределы мембраны, называются терминальными структурами.

Цитоплазматическая терминальная структура (та что находится на внешней поверхности ядерной мембраны) состоит из восьми коротких фибрилл-нитей. Ядерная терминальная структура также состоит из 8 фибрилл, однако они образуют кольцо, выполняющего функции корзины. Во многих клетках от ядерной корзины исходят дополнительные фибриллы. Терминальные структуры являются местами, где происходит контакт молекул, транспортируемых через ядерные поры.

В месте расположения ЯПК происходит слияние наружной и внутренней ядерной мембраны. Такое слияние объясняется необходимостью обеспечить фиксацию ядерных пор в мембранах с помощью белков, соединяющих их также с ядерной ламиной.

В настоящее время общепринятым считается модульное строение ядерных каналов. Такая модель предусматривает структуру поры, состоящую из нескольких кольцевидных образований.

Внутри ядерной поры постоянно находится плотное вещество. Ее происхождение точно не известно, однако считается, что оно является одним из элементов ЯПК, за счет которого осуществляется транспортировка молекул от цитоплазмы к ядру и наоборот. Благодаря исследованию с использованием электронных микроскопов с высоким разрешением удалось выяснить, что плотная среда внутри ядерного канала способна менять свое месторасположение. Ввиду этого, считается, плотная внутренняя среда ЯПК является карго-рецепторным комплексом.

Транспортные функции ядерной оболочки возможны благодаря наличию ядерных поровых комплексов.

Виды ядерного транспорта

Транспортировка веществ через ядерную оболочку называется ядерно-цитоплазматическим транспортом веществ. Данный процесс предусматривает своеобразный обмен молекулами, синтезируемыми в ядре, и веществами, обеспечивающими жизнедеятельность самого ядра, импортируемыми из цитоплазмы.

Существуют такие виды транспортировки:

  1. Пассивная. Посредством данного процесса осуществляется перемещение небольших молекул. В частности, через пассивный транспорт происходит передача мононуклеотидов, минеральных компонентов, продуктов метаболического обмена. Процесс называется пассивным, так как протекает путем диффузии. Скорость прохождения через ядерную пору зависит от размера вещества. Чем оно меньше, тем выше скорость транспортировки.
  2. Активная. Предусматривает перенос через каналы внутри ядерной оболочки крупных молекул или их соединений. При этом, соединения не распадаются на мелкие частицы, что позволило бы увеличить скорость транспортировки. Данный процесс обеспечивает поступление в цитоплазму синтезируемых в ядре рибонуклеиновых молекул. Из внешнего цитоплазматического пространства за счет активного транспорта происходит перенос белков, необходимых для метаболических процессов.

Выделяют пассивный и активный транспорт белков, отличающийся механизмом действия.

Импорт и экспорт белков

Рассматривая функции ядерной оболочки, необходимо напомнить о том, что транспортировка веществ осуществляется в двух направлениях - из цитоплазмы в ядро и наоборот.

Импорт белковых соединений через мембраны к ядру осуществляется за счет наличия особых рецепторов, называемых транспортинами. Эти компоненты содержат запрограммированный сигнал, за счет которого происходит движение в необходимом направлении. и соединения, не обладающие таким сигналом, способны присоединятся к веществам, у которых он есть, и таким образом беспрепятственно перемещаться.

Важно отметить, что сигналы ядерного импорта обеспечивают избирательность поступления веществ в ядро. Многие образования, в числе которых полимеразы ДНК и РНК, а также белки, участвующие в процессах регуляции, не достигают ядра. Таким образом, ядерные поры представляют собой не только механизм транспортировки веществ, но и их своеобразной сортировки.

Сигнальные белки отличаются друг от друга. Ввиду этого, существует разница между скоростью перемещения через поры. Также они выполняют функцию источника энергии, так как для перемещения крупных молекул, транспортировка которых не возможна диффузным путем, необходимы дополнительные энергетические затраты.

Первый этап импорта белков заключается в присоединении к импортину (транспортину, обеспечивающему перенос через канал к ядру). Полученное в результате слияния сложное образование проходит через ядерную пору. После этого, с ним связывается другое вещество, за счет которого транспортируемый белок освобождается, а импортин возвращается обратно в цитоплазму. Таким образом, импорт в ядро представляет собой цикличный замкнутый процесс.

Транспорт веществ из ядра через оболочку в цитоплазматическое пространство осуществляется аналогичным образом. Исключением является то, что за перенос вещества-груза отвечают уже сигнальные белки, называемые экспортинами.

На первой стадии процесса белок (в большинстве случаев это молекулы РНК) связываются с экспортином и веществом, отвечающим за высвобождение транспортируемого субстрата. После перехода сквозь оболочку нуклеотид расщепляется, за счет чего переносимый белок высвобождается.

В целом, перенос веществ между ядром и цитоплазмой представляет собой цикличный процесс, осуществляемый за счет белков-транспортинов и веществ, отвечающих за высвобождение груза.

Ядерная оболочка при делении

Большинство клеток-эукариотов размножаются путем непрямого деления, которое называется митозом. Данный процесс предусматривает разделение ядра и других клеточных структур с сохранением одинакового количества хромосом. За счет этого сохраняется генетическая идентичность, полученная в результате деления клеток.

В процессе деления нуклеолемма выполняет еще одну важную функцию. После того как происходит разрушение ядра, внутренняя мембрана не позволяет хромосомам расходится на большие расстояния друг от друга. Хромосомы фиксируются на поверхности мембраны до момента полноценного деления ядер и формирования новой нуклеолеммы.

Ядерная оболочка, несомненно, принимает активное участие в клеточном делении. Процесс состоит из двух последовательных этапов - разрушения и перестройки.

Распад ядерной оболочки происходит в прометафазе. Разрушение мембран происходит стремительно. После распада хромосомы характеризуются хаотичным расположением в области ранее существовавшего ядра. В дальнейшем образуется веретено деления - биполярная структура, между полюсами которой формируются микротрубочки. Веретено обеспечивает деление хромосом и их распределение между двумя дочерними клетками.

Перераспределение хромосом и формирование новых ядерных мембран происходит в период телофазы. Точный механизм восстановления оболочек не известен. Распространенной является теория о том, что слияние частиц разрушенной оболочки происходит под действием везикул - мелких клеточных органелл, функция которых заключается в сборе и хранении питательных веществ.

Также образование новых ядерных мембран связывают с переформировкой эндоплазматического ретикулума. Из разрушенного ЭПР высвобождаются белковые соединения, которые постепенно обволакивают пространство вокруг нового ядра, в результате чего в дальнейшем образуется целостная мембранная поверхность.

Таким образом, нуклеолемма принимает непосредственное участие в процессе деления клетки путем митоза.

Ядерная оболочка - сложный структурный компонент клетки, выполняющий барьерные, защитные, транспортные функции. Полноценное функционирование нуклеолеммы обеспечивается , взаимодействием с другими клеточными компонентами и биохимическими процессами, протекающими в них.

Ядро окружено оболочкой, состоящей из двух мембран

Наружная ядерная мембрана является продолжением мембран ЭПР, а перинуклеарное пространство (просвет) переходит в просвет ЭПР

В ядерной оболочке присутствуют многочисленные ЯПК, которые представляют собой единственные каналы обмена молекулами и макромолекулами между ядром и цитоплазмой

Ядро окружено оболочкой, состоящей из двух концентрически расположенных наружной и внутренней ядерных мембран. Каждая мембрана содержит определенный набор белков и сплошной двойной слой фосфолипидов. За исключением некоторых одноклеточных эукариот, внутренняя ядерная мембрана поддерживается сетью филаментов, закрепленных в сетчатой структуре. Эта сеть филаментов называется ядерная ламина.

Наружная ядерная мембрана переходит в мембраны ЭПР и, так же как большая часть его мембран, покрыта рибосомами, принимающими участие в синтезе белка. На рисунке ниже показана связь наружной мембраны с ЭПР.

Пространство между наружной и внутренней ядерными мембранами представляет собой перинуклеарное пространство (ПП). Так же как наружная мембрана связана с мембраной , ПП ядерной оболочки контактирует с внутренним пространством ЭПР. Толщина каждой из двух мембран составляет 7-8 нм (нм), а ширина ПП ядерной оболочки - 20-40 нм.

При исследовании препаратов ядерной оболочки в электронном микроскопе , наиболее заметной особенностью структуры являются ЯПК (ядерные поровые комплексы), которые служат каналами транспортировки большинства молекул между ядром и цитоплазмой. Оболочка ядер большинства клеток содержит около 10-20 ЯПК на квадратный микрон поверхности. Так, клетки дрожжей содержат 150-250 ЯПК, а соматические клетки млекопитающих 2000-4000.

Однако некоторые клетки обладают гораздо большей плотностью пор, вероятно, потому, что для них характерна высокая интенсивность процессов транскрипции и трансляции, что предполагает транспорт большого количества макромолекул в ядро и из него. Например, поверхность ядра ооцитов амфибий почти полностью покрыта ЯПК.

Каким образом могла возникнуть двойная ядерная мембрана ? В эукариотической клетке, митохондрии и хлоропласта также имеют двойную мембрану. Согласно гипотезе эндосимбиоза, эти органеллы образовались в ходе эволюции, когда одни клетки захватили других в процессе эндоцитоза. Затем поглощенные клетки оказались окруженными двумя мембранами: своей и мембраной клетки-хозяина. Оказалось, что некоторые из поглощенных клеток проявляют метаболическую активность, например, в отличие от клеток хозяина, способны осуществлять фотосинтез.

Наиболее убедительное доказательство в пользу эндосимбиотического происхождения митохондрий и хлоропластов заключается в том, что рибосомы обеих органелл больше напоминают рибосомы современных прокариот, и в меньшей степени эти же микроструктуры цитоплазмы эукариотической клетки. Гораздо менее ясным представляется происхождение ядра. Однако существование двойной ядерной мембраны, подобно мембране митохондрий и хлоропластов, позволяет предполагать, что захваченная прокариотическая клетка превратилась в ядро, содержащее всю клеточную ДНК.

Ядерная оболочка соединена с эндоплазматическим ретикулумом (ЭПР). Поверхность ядерной мембраны ооцита Xenopus laevis покрыта комплексами ядерных пор.
Ядро могло образоваться в результате эндосимбиоза, процесса,
при котором одна прокариотическая клетка захватывает другую клетку; затем захваченная клетка становится примитивным ядром.
Похожие публикации