Как можно узнать площадь треугольника. Как найти площадь треугольника

Чтобы определить площадь треугольника, можно пользоваться разными формулами. Из всех способов самый легкий и часто применяемый - это умножение высоты на длину основания с последующим делением полученного результата на два. Однако данный метод далеко не единственный. Ниже вы сможете прочесть, как найти площадь треугольника, используя разные формулы.

Отдельно мы рассмотрим способы вычисления площади специфических видов треугольника - прямоугольного, равнобедренного и равностороннего. Каждую формулу мы сопровождаем коротким пояснением, которое поможет вам понять ее суть.

Универсальные способы нахождения площади треугольника

В приведенных ниже формулах используются специальные обозначения. Мы расшифруем каждое из них:

  • a, b, c – длины трех сторон рассматриваемой нами фигуры;
  • r – радиус окружности, которая может быть вписана в наш треугольник;
  • R – радиус той окружности, которая может быть описана вокруг него;
  • α - величина угла, образованного сторонами b и с;
  • β - величина угла между a и c;
  • γ - величина угла, образованного сторонами а и b;
  • h – высота нашего треугольника, опущенная из угла α на сторону а;
  • p – половина суммы сторон a, b и с.

Логически понятно, почему можно находить площадь треугольника этим способом. Треугольник легко достраивается до параллелограмма, в котором одна сторона треугольника будет выполнять роль диагонали. Площадь параллелограмма находится умножением длины одной из его сторон на значение высоты, проведенной к ней. Диагональ разделяет этот условный параллелограмм на 2 одинаковых треугольника. Следовательно, совершенно очевидно, что площадь нашего исходного треугольника должна равняться половине площади этого вспомогательного параллелограмма.

S=½ a · b·sin γ

Согласно этой формуле, площадь треугольника находится умножением длин двух его сторон, то есть а и b, на синус образованного ими угла. Эта формула логически выводится из предыдущей. Если опустить высоту из угла β на сторону b, то, согласно свойствам прямоугольного треугольника, при умножении длины стороны a на синус угла γ получаем высоту треугольника, то есть h.

Площадь рассматриваемой фигуры находим путем умножения половины радиуса окружности, которую в него можно вписать, на его периметр. Иными словами, находим произведение полупериметра на радиус упомянутой окружности.

S= a · b · с/4R

Согласно данной формуле, необходимую нам величину можно найти путем деления произведения сторон фигуры на 4 радиуса окружности, вокруг нее описанной.

Эти формулы универсальны, так как дают возможность определить площадь любого треугольника (разностороннего, равнобедренного, равностороннего, прямоугольного). Можно это сделать и при помощи более сложных вычислений, на которых мы подробно останавливаться не станем.

Площади треугольников со специфическими свойствами

Как найти площадь прямоугольного треугольника? Особенностью этой фигуры является то, что две ее стороны одновременно являются ее высотами. Если а и b являются катетами, а с становится гипотенузой, то площадь находим так:

Как найти площадь равнобедренного треугольника? В нем две стороны с длиной а и одна сторона с длиной b. Следовательно, его площадь определить можно путем деления на 2 произведения квадрата стороны а на синус угла γ.

Как найти площадь равностороннего треугольника? В нем длина всех сторон равняется а, а величина всех углов - α. Его высота равна половине произведения длины стороны а на корень квадратный из 3. Чтобы найти площадь правильного треугольника, нужно квадрат стороны а умножить на корень квадратный из 3 и разделить на 4.

Понятие площади

Понятие площади любой геометрической фигуры, в частности треугольника, будем связывать с такой фигурой, как квадрат. За единицу площади любой геометрической фигуры будем принимать площадь квадрата, сторона которого равняется единице. Для полноты, вспомним два основных свойства для понятия площадей геометрических фигур.

Свойство 1: Если геометрические фигуры равны, то значения их площадей также равны.

Свойство 2: Любая фигура может быть разбита на несколько фигур. Причем площадь первоначальной фигуры равняется сумме значений площадей всех составляющих её фигур.

Рассмотрим пример.

Пример 1

Очевидно, что одна из сторон треугольника является диагональю прямоугольника , у которого одна сторона имеет длину $5$ (так как $5$ клеток), а вторая $6$ (так как $6$ клеток). Следовательно, площадь этого треугольника будет равняться половине такого прямоугольника. Площадь прямоугольника равняется

Тогда площадь треугольника равняется

Ответ: $15$.

Далее рассмотрим несколько методов для нахождения площадей треугольников, а именно с помощью высоты и основания, с помощью формулы Герона и площадь равностороннего треугольника.

Как найти площадь треугольника через высоту и основание

Теорема 1

Площадь треугольника можно найти как половину произведения длины стороны, на высоту, проведенную к этой стороне.

Математически это выглядит следующим образом

$S=\frac{1}{2}αh$

где $a$ - длина стороны, $h$ - высота, проведенная к ней.

Доказательство.

Рассмотрим треугольник $ABC$, в котором $AC=α$. К этой стороне проведена высота $BH$, которая равняется $h$. Достроим его до квадрата $AXYC$ как на рисунке 2.

Площадь прямоугольника $AXBH$ равняется $h\cdot AH$, а прямоугольника $HBYC$ равняется $h\cdot HC$. Тогда

$S_ABH=\frac{1}{2}h\cdot AH$, $S_CBH=\frac{1}{2}h\cdot HC$

Следовательно, искомая площадь треугольника, по свойству 2, равняется

$S=S_ABH+S_CBH=\frac{1}{2}h\cdot AH+\frac{1}{2}h\cdot HC=\frac{1}{2}h\cdot (AH+HC)=\frac{1}{2}αh$

Теорема доказана.

Пример 2

Найти площадь треугольника на рисунке ниже, если клетка имеет площадь, равную единице

Основание этого треугольника равняется $9$ (так как $9$ составляет $9$ клеток). Высота также равняется $9$. Тогда, по теореме 1, получим

$S=\frac{1}{2}\cdot 9\cdot 9=40,5$

Ответ: $40,5$.

Формула Герона

Теорема 2

Если нам даны три стороны треугольника $α$, $β$ и $γ$, то его площадь можно найти следующим образом

$S=\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

здесь $ρ$ означает полупериметр этого треугольника.

Доказательство.

Рассмотрим следующий рисунок:

По теореме Пифагора из треугольника $ABH$ получим

Из треугольника $CBH$, по теореме Пифагора, имеем

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

Из этих двух соотношений получаем равенство

$γ^2-x^2=α^2-β^2+2βx-x^2$

$x=\frac{γ^2-α^2+β^2}{2β}$

$h^2=γ^2-(\frac{γ^2-α^2+β^2}{2β})^2$

$h^2=\frac{(α^2-(γ-β)^2)((γ+β)^2-α^2)}{4β^2}$

$h^2=\frac{(α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α)}{4β^2}$

Так как $ρ=\frac{α+β+γ}{2}$, то $α+β+γ=2ρ$, значит

$h^2=\frac{2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α)}{4β^2}$

$h^2=\frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2 }$

$h=\sqrt{\frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2}}$

$h=\frac{2}{β}\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

По теореме 1, получим

$S=\frac{1}{2} βh=\frac{β}{2}\cdot \frac{2}{β} \sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}=\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

Как вы можете помнить из школьной программы по геометрии, треугольник – это фигура, образованная из трех отрезков, соединяющихся тремя точками, не лежащими на одной прямой. Треугольник образует три угла, отсюда и название фигуры. Определение может быть и иным. Треугольник можно так же назвать многоугольником с тремя углами, ответ будет так же верным. Треугольники делятся по числу равных сторон и по величине углов в фигурах. Так выделяют такие треугольники, как равнобедренный, равносторонний и разносторонний, а так же прямоугольный, остроугольный и тупоугольный, соответственно.

Формул вычисления площади треугольника очень много. Выбирать, как найти площадь треугольника, т.е. какой формулой воспользоваться, только вам. Но стоит отметить лишь некоторые обозначения, которые используются во многих формулах вычисления площади треугольника. Итак, запоминайте:

S – это площадь треугольника,

a, b, c – это стороны треугольника,

h – это высота треугольника,

R – это радиус описанной окружности,

p – это полупериметр.

Вот основные обозначения, которые могут вам пригодиться, если вы совершенно забыли курс геометрии. Ниже будут приведены наиболее понятные и не сложные варианты вычисления неизвестной и загадочной площади треугольника. Это не сложно и пригодится как вам в домашних нуждах, так и для помощи своим детям . Давайте вспомним, как вычислить площадь треугольника проще простого:

В нашем случае площадь треугольника равна: S = ½ * 2,2 см. * 2,5 см. = 2,75 кв.см. Помните, что площадь измеряется в квадратных сантиметрах (кв.см.).

Прямоугольный треугольник и его площадь.

Прямоугольный треугольник – это треугольник, у которого один угол равен 90 градусам (потому называется прямым). Прямой угол образуют две перпендикулярные линии (в случае с треугольником – два перпендикулярных отрезка). В прямоугольном треугольнике прямой угол может быть только один, т.к. сумма всех углов одного любого треугольника равна 180 градусам. Получается, что 2 других угла должны делить между собой оставшиеся 90 градусов, например 70 и 20, 45 и 45 и т.д. Итак, основное вы вспомнили, осталось узнать, как найти площадь прямоугольного треугольника. Представим, что перед нами вот такой прямоугольный треугольник, и нам необходимо найти его площадь S.

1. Самый простой способ определения площади прямоугольного треугольника высчитывается по следующей формуле:

В нашем случае, площадь прямоугольного треугольника равна: S = 2,5 см. * 3 см. / 2 = 3,75 кв.см.

В принципе, больше нет необходимости выверения площади треугольника иными способами, т.к. в быту пригодится и поможет только этот. Но существуют и варианты измерения площади треугольника через острые углы.

2. Для других способов вычисления необходимо иметь таблицу косинусов, синусов и тангенсов. Посудите сами, вот какие варианты вычисления площадей прямоугольного треугольника еще можно использовать:

Мы решили воспользоваться первой формулой и с небольшими помарками (чертили в блокноте и использовали старую линейку и транспортир), но у нас вышел верный расчет:

S = (2,5*2,5)/(2*0,9)=(3*3)/(2*1,2). У нас вышли такие результаты 3,6=3,7, но с учетом сдвига клеток, этот нюанс нам можно простить.

Равнобедренный треугольник и его площадь.

Если перед вами стоит задача вычислить формулу равнобедренного треугольника, то проще всего воспользоваться главной и как считается классической формулой площади треугольника.

Но для начала, перед тем, как найти площадь равнобедренного треугольника, узнаем, что это за фигура такая. Равнобедренным треугольником называется треугольник, у которого две стороны имеют одинаковую длину. Эти две стороны называются боковыми, третья сторона называется основанием. Не путайте равнобедренный треугольник с равносторонним, т.е. правильным треугольником, у которого все три стороны равны. В таком треугольнике нет особых тенденций к углам, точнее к их величине. Однако углы у основания в равнобедренном треугольнике равны, но отличаются от угла между равными сторонами. Итак, первую и главную формулу вы уже знаете, осталось узнать, какие еще формулы определения площади равнобедренного треугольника известны:

Треугольник — хорошо знакомая всем фигура. И это, несмотря на богатое разнообразие его форм. Прямоугольный, равносторонний, остроугольный, равнобедренный, тупоугольный. Каждый из них чем-то отличается. Но для любого требуется узнавать площадь треугольника.

Общие для всех треугольников формулы, в которых используются длины сторон или высот

Обозначения, принятые в них: стороны — а, в, с; высоты на соответствующие стороны н а, н в, н с.

1. Площадь треугольника вычисляется, как произведение ½, стороны и высоты, опущенной на нее. S = ½ * а * н а. Аналогично следует записать формулы для двух остальных сторон.

2. Формула Герона, в которой фигурирует полупериметр (его принято обозначать маленькой буквой р, в отличии от полного периметра). Полупериметр необходимо сосчитать так: сложить все стороны и разделить их на 2. Формула полупериметра: р = (а+в+с) / 2. Тогда равенство для площади фигуры выглядит так: S = √ (р * (р - а) * (р - в) * (р - с)).

3. Если не хочется использовать полупериметр, то пригодится такая формула, в которой присутствуют только длины сторон: S = ¼ * √ ((а + в + с) * (в + с - а) * (а + с - в) * (а + в - с)). Она несколько длиннее предыдущей, но выручит, если забылось, как находить полупериметр.

Общие формулы, в которых фигурируют углы треугольника

Обозначения, которые требуются для прочтения формул: α, β, γ — углы. Они лежат напротив сторон а, в, с, соответственно.

1. По ней половина произведения двух сторон и синуса угла между ними равна площади треугольника. То есть: S = ½ а * в * sin γ. Подобным образом следует записать формулы для двух других случаев.

2. Площадь треугольника можно вычислить по одной стороне и трем известным углам. S = (а 2 * sin β * sin γ) / (2 sin α).

3. Существует еще формула с одной известной стороной и двумя прилежащими к ней углами. Она выглядит таким образом: S = с 2 / (2 (ctg α + ctg β)).

Две последние формулы являются не самыми простыми. Запомнить их довольно сложно.

Общие формулы для ситуации, когда известны радиусы вписанных или описанных окружностей

Дополнительные обозначения: r, R — радиусы. Первый используется для радиуса вписанной окружности. Второй — для описанной.

1. Первая формула, по которой вычисляется площадь треугольника, связана с полупериметром. S = р * r. По-другому ее можно записать так: S = ½ r * (а + в + с).

2. Во втором случае потребуется перемножить все стороны треугольника и разделить их на учетверенный радиус описанной окружности. В буквенном выражении это выглядит так: S = (а * в * с) / (4R).

3. Третья ситуация позволяет обойтись без знания сторон, но потребуются значения всех трех углов. S = 2 R 2 * sin α * sin β * sin γ.

Частный случай: прямоугольный треугольник

Это самая простая ситуация, поскольку требуется знание только длины обоих катетов. Они обозначаются латинскими буквами а и в. Площадь прямоугольного треугольника равна половине площади достроенного к нему прямоугольника.

Математически это выглядит так: S = ½ а * в. Она запоминается проще всего. Потому что выглядит, как формула для площади прямоугольника, только появляется еще дробь, обозначающая половину.

Частный случай: равнобедренный треугольник

Поскольку у него две стороны равные, то некоторые формулы для его площади выглядят несколько упрощенными. Например, формула Герона, по которой вычисляется площадь равнобедренного треугольника, принимает следующий вид:

S = ½ в √((a + ½ в)*(a - ½ в)).

Если ее преобразовать, то она станет короче. В таком случае формула Герона для равнобедренного треугольника записывается так:

S = ¼ в √(4 * a 2 - b 2).

Несколько проще, чем для произвольного треугольника, выглядит формула площади, если известны боковые стороны и угол между ними. S = ½ a 2 * sin β.

Частный случай: равносторонний треугольник

Обычно в задачах про него известна сторона или ее можно как-либо узнать. Тогда формула, по которой находится площадь такого треугольника, выглядит следующим образом:

S = (а 2 √3) / 4.

Задачи на нахождение площади, если треугольник изображен на клетчатой бумаге

Самой простой является ситуация, когда прямоугольный треугольник начерчен так, что его катеты совпадают с линиями бумаги. Тогда требуется просто посчитать число клеточек, укладывающихся в катеты. Потом перемножить их и разделить на два.

Когда треугольник остроугольный или тупоугольный, его нужно дорисовать до прямоугольника. Тогда в получившейся фигуре будет 3 треугольника. Один — тот что дан в задаче. А два других — вспомогательные и прямоугольные. Определить площади двух последних нужно по описанному выше способу. Потом сосчитать площадь прямоугольника и вычесть из него те, что вычислены для вспомогательных. Площадь треугольника определена.

Гораздо сложнее оказывается ситуация, в которой ни одна из сторон треугольника не совпадает с линиями бумаги. Тогда его нужно вписать в прямоугольник так, чтобы вершины исходной фигуры лежали на его сторонах. В этом случае вспомогательных прямоугольных треугольников будет три.

Пример задачи на формулу Герона

Условие. У некоторого треугольника известны стороны. Они равны 3, 5 и 6 см. Необходимо узнать его площадь.

Теперь можно вычислять площадь треугольника по указанной выше формуле. Под квадратным корнем оказывается произведение четырех чисел: 7, 4, 2 и 1. То есть площадь равна √(4 * 14) = 2 √(14).

Если не требуется большая точность, то можно извлечь квадратный корень из 14. Он равен 3,74. Тогда площадь будет равна 7,48.

Ответ. S = 2 √14 см 2 или 7,48 см 2 .

Пример задачи с прямоугольным треугольником

Условие. Один катет прямоугольного треугольника больше, чем второй на 31 см. Требуется узнать их длины, если площадь треугольника равна 180 см 2 .
Решение. Придется решить систему из двух уравнений. Первое связано с площадью. Второе — с отношением катетов, которое дано в задаче.
180 = ½ а * в;

а = в + 31.
Сначала значение «а» нужно подставить в первое уравнение. Получится: 180 = ½ (в + 31) * в. В нем только одна неизвестная величина, поэтому его легко решить. После раскрытия скобок получается квадратное уравнение: в 2 + 31 в - 360 = 0. Оно дает два значения для «в»: 9 и - 40. второе число не подходит в качестве ответа, так как длина стороны треугольника не может быть отрицательной величиной.

Осталось вычислить второй катет: прибавить к полученному числу 31. Получается 40. Это искомые в задаче величины.

Ответ. Катеты треугольника равны 9 и 40 см.

Задача на нахождение стороны через площадь, сторону и угол треугольника

Условие. Площадь некоторого треугольника 60 см 2 . Необходимо вычислить одну из его сторон, если вторая сторона равна 15 см, а угол между ними равен 30º.

Решение. Исходя из принятых обозначений, искомая сторона «а», известная «в», заданный угол “γ”. Тогда формула площади можно переписать так:

60 = ½ а * 15 * sin 30º. Здесь синус 30 градусов равен 0,5.

После преобразований «а» оказывается равным 60 / (0,5 * 0,5 * 15). То есть 16.

Ответ. Искомая сторона равна 16 см.

Задача о квадрате, вписанном в прямоугольный треугольник

Условие. Вершина квадрата со стороной 24 см совпадает с прямым углом треугольника. Две другие лежат на катетах. Третья принадлежит гипотенузе. Длина одного из катетов равна 42 см. Чему равна площадь прямоугольного треугольника?

Решение. Рассмотрим два прямоугольных треугольника. Первый — заданный в задаче. Второй — опирается на известный катет исходного треугольника. Они подобны, так как имеют общий угол и образованы параллельными прямыми.

Тогда отношения их катетов равны. Катеты меньшего треугольника равны 24 см (сторона квадрата) и 18 см (заданный катет 42 см вычесть сторону квадрата 24 см). Соответствующие катеты большого треугольника — 42 см и х см. Именно этот «х» нужен для того, чтобы вычислить площадь треугольника.

18/42 = 24/х, то есть х = 24 * 42 / 18 = 56 (см).

Тогда площадь равна произведению 56 и 42, разделенному на два, то есть 1176 см 2 .

Ответ. Искомая площадь равна 1176 см 2 .

Треугольник – это такая геометрическая фигура, которая состоит из трех прямых, соединяющихся в точках, не лежащих на одной прямой. Точки соединения прямых – это вершины треугольника, которые обозначаются латинскими буквами (например, A, B,C). Соединяющиеся прямые треугольника называются отрезками, которые также принято обозначать латинскими буквами. Различают следующие типы треугольников:

  • Прямоугольный.
  • Тупоугольный.
  • Остроугольный.
  • Разносторонний.
  • Равносторонний.
  • Равнобедренный.

Общие формулы для вычисления площади треугольника

Формула площади треугольника по длине и высоте

S= a*h/2,
где а – это длина стороны треугольника, площадь которого нужно найти, h-длина проведенной к основанию высоты.

Формула Герона

S=√р*(р-а)*(р-b)*(p-c),
где √-это квадратный корень, p-полупериметр треугольника, a,b,c-это длина каждой стороны треугольника. Полупериметр треугольника можно вычислить по формуле p=(a+b+c)/2.


Формула площади треугольника по величине угла и длине отрезка

S = (a*b*sin(α))/2,
где b,c -это длина сторон треугольника, sin(α)- синус угла между двумя сторонами.


Формула площади треугольника по радиусу вписанной окружности и трем сторонам

S=p*r,
где p-это полупериметр треугольника, площадь которого нужно найти, r-радиус вписанной в этот треугольник окружности.


Формула площади треугольника по трем сторонам и радиусу описанной вокруг него окружности

S= (a*b*c)/4*R,
где a,b,c-это величина длины каждой стороны треугольника, R- радиус описанной вокруг треугольника окружности.


Формула площади треугольника по декартовым координатам точек

Декартовы координаты точек – это координаты в системе xOy, где x- это абсцисса, y- ордината. Декартовой системой координат xOy на плоскости называют взаимно перпендикулярные числовых оси Oх и Oy с общим началом отсчета в точке О. Если заданы координаты точек на этой плоскости в виде A(x1, y1), B(x2, y2) и C(x3, y3), то можно вычислить площадь треугольника по следующей формуле, которая получена из векторного произведения двух векторов.
S = |(x1 – x3) (y2 – y3) – (x2 – x3) (y1 – y3)|/2,
где || обозначает модуль.


Как найти площадь прямоугольного треугольника

Прямоугольный треугольник – это такой треугольник, у которого один угол составляет 90 градусов. Такой угол у треугольника может быть лишь один.

Формула площади прямоугольного треугольника по двум катетам

S= a*b/2,
где a,b – это длина катетов. Катетами называются стороны, прилежащие к прямому углу.


Формула площади прямоугольного треугольника по гипотенузе и острому углу

S = a*b*sin(α)/ 2,
где a, b – это катеты треугольника, а sin(α)- это синус угла, в котором пересекаются прямые a, b.


Формула площади прямоугольного треугольника по катету и противолежащему углу

S = a*b/2*tg(β),
где a, b – это катеты треугольника, tg(β) – это тангенс угла, в котором соединяются катеты a, b.


Как вычислить площадь равнобедренного треугольника

Равнобедренным называется такой треугольник, который имеет две равные стороны. Эти стороны называются боковыми, а другая сторона является основой. Для вычисления площади равнобедренного треугольника можно использовать одну из следующих формул.

Основная формула для вычисления площади равнобедренного треугольника

S=h*c/2,
где с – это основание треугольника, h-это высота треугольника, опущенного к основанию.


Формула равнобедренного треугольника по боковой стороне и основанию

S=(c/2)* √(a*a – c*c/4),
где с – основание треугольника, a- величина одной из боковых сторон равнобедренного треугольника.


Как найти площадь равностороннего треугольника

Равносторонний треугольник – это такой треугольник, у которого все стороны равны. Для вычисления площади равностороннего треугольника можно использовать следующую формулу:
S = (√3*a*a)/4,
где a-это длина стороны равностороннего треугольника.



Вышеприведенные формулы позволят вычислить искомую площадь треугольника. Важно помнить, что для вычисления пощади треугольников нужно учитывать тип треугольника и доступные данные, которые можно использовать для вычисления.

Похожие публикации