Химические антидоты. Виды антидотов, их применение

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Применение антидота позволяет воспрепятствовать воздействию яда на организм, нормализовать основные функции организма или затормозить развивающиеся при отравлении функциональные или структурные нарушения.

Антидоты бывают прямого и непрямого действия.

Антидот прямого действия

Прямого действия - осуществляется непосредственное химическое или физико - химическое взаимодействие яда и противоядия.

Основные варианты - сорбентные препараты и химические реагенты.

Сорбентные препараты - защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат - снижение концентрации яда, взаимодействующего с биоструктурами, что приводит к ослаблению токсичного эффекта.

Сорбция происходит за счет неспецифических межмолекулярных взаимодействий - водородных и Ван - дер - Ваальсовых связей (не ковалентных!).

Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция), из крови (гемосорбция, плазмосорбция). Если яд уже проник в ткани, то применение сорбентов не эффективно.

Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn, ионообменные смолы.

1 грамм активного угля связывает несколько сотен мг стрихнина.

Химические противоядия - в результате реакции между ядом и противоядием образуется нетоскичное или малотоксичное соединение (за счет прочных ковалентных ионных или донорно-акцепторных связей). Могут действовать в любом месте - до проникновения яда в кровь, при циркуляции яда в крови и после фиксации в тканях.

Примеры химических противоядий:

для нейтрализации попавших в организм кислот используют соли и оксиды, дающие в водных растворах щелочную реакцию - K2CO3, NaHCO3, MgO.

при отравлении растворимыми солями серебра (например AgNO3) используют NaCl, который образует с солями серебра нерастворимый AgCl.

при отравлении ядами, содержащими мышьяк используют MgO, сульфат железа, которые химически связывают его

при отравлении марганцовокислым калием KMnO4 , который является сильным окислителем, используют восстановитель - перекись водорода H2O2

при отравлении щелочами используют слабые органические кислоты (лимонная, уксусная)

отравления солями плавиковой кислоты (фторидами) применяют сульфат кальция CaSO4, при реакции получается мало растворимый CaF2

при отравлении цианидами (солями синильной кислоты HCN) применяются глюкоза и тиосульфат натрия, которые связывают HCN. Ниже приведена реакция с глюкозой.

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (-SH) группами белков:

Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.

Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH- групп). Механизм их действия представлен на схеме.

Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты - комплексоны (комплексообразователи).

Они образуют прочные комплексные соединения с токсичными катионами Hg, Co, Cd, Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

Антидот непрямого действия

Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).

1) Защита рецепторов от токсичного воздействия.

Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы. Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. Если фермент блокирован, то создается избыток ацетилхолина.

Ацетилхолин соединяется с рецепторами, что подает сигнал к сокращению мышц. При избытке ацетилхолина происходит беспорядочное сокращение мышц - судороги, которые часто приводят к смерти.

Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина. В присутствии ацетилхолина мышцы не сокращюется, судорог не происходит.

2) Восстановление или замещение поврежденной ядом биоструктуры.

При отравлениях фторидами и HF, при отравлениях щавелевой кислотой H2C2O4 происходит связывание ионов Са2+ в организме. Противоядие - CaCl2.

3) Антиоксиданты.

Отравление четыреххлористым углеродом CCl4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты - вещества, связывающие свободные радикалы (антиоксиданты), например витамин Е.

4) Конкуренция с ядом за связывание с ферментом.

Отравление метанолом:

При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза.

Летальный синтез - превращение в организме в процессе метаболизма менее токсичных соединений в более токсичные.

Этиловый спирт C2H5OH лучше связывается с ферментом алкогольдегидрогеназой. Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH3OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

1. Оксид углерода (II ) - угарный газ (СО)

1.1 Антропогенные источники поступления

Бытовые источники (неполное сгорание газа в плитах и топлива в печах);

Пожары (опасность отравления СО; 50% гибели при пожарах - отравление СО);

Химическая промышленность (производство аммиака, соды, синтез метанола, производство

синтетических волокн, кокса);

Металлургическая промышленность (производство стали);

- автотранспорт (более половины антропогенного СО).

a. Механизм токсичного действия.

СО соединяется с гемоглобином, образуя карбоксигемоглобин нарушается способность крови к переносу кислорода (О2) недостаток кислорода в организме.

b. Острое отравление.

При вдыхании концентрации до 1000 мг/м 3 - тяжесть и ощущение сдавливания головы, сильная боль во лбу и висках, головокружение, шум в ушах, покраснение и жжение кожи лица, дрожь, чувство слабости и страха, жажда, учащение пульса, ощущение недостатка воздуха, тошнота, рвота. В дальнейшем при сохранении сознания - оцепенелость, слабость и безучастность, ощущение приятной истомы, затем нарастает сонливость и оцепенение, смутность сознания, человек теряет сознание. Далее - одышка и смерть от остановки дыхания.

При концентрации 5 000 мг/м 3 - за 20-30 минут - слабый пульс, замедление и остановка дыхания, смерть.

При концентрации 14 000 мг/м 3 - за 1-3 минуты - потеря сознания, рвота, смерть.

c. Хроническое отравление.

Головные боли, головокружение, слабость, тошнота, исхудание, отсутствие аппетита; при длительном контакте - нарушение сердечно-сосудистой системы, одышка, боли в области сердца.

d. Нормативы.

ПДК (мг/м 3):

ПДКр.з. (в течение рабочего дня) 20,0

60 минут 50,0

15 минут 200,0

ПДКм.р. 5,0

4-й класс опасности.

2. Циановодород - HCN - синильная кислота

2.1 Антропогенные источники поступления

Химическая и металлургическая промышленность; горение полимеров.

Синильная кислота и ее соли присутствуют в сточных водах рудообогатительных фабрик, рудников, приисков, гальванических цехов, металлургических заводов.

2.2 Токсичность солей синильной кислоты

Токсичность солей HCN - за счет образования HCN при их гидролизе. Циановодород вызывает быстрое ухудшение состояния из-за блокирования дыхательных ферментов в клетках (блокирование цитохромоксидазы в митохондриях). Клетки не могут потреблять кислород и поэтому гибнут.

2.3 Острое отравление

1 мг/м 3 - запах.

При высоких концентрациях (более 10 000 мг/м 3) - почти мгновенная потеря сознания, паралич дыхания и сердца.

При меньших концентрациях происходит несколько стадий отравления:

1) Начальная стадия: царапанье в горле, жгуче-горький вкус во рту, слюнотечение, онемение рта, мышечная слабость, головокружение, острая головная боль, тошнота, рвота.

2) Вторая стадия: постепенно усиливается общая слабость, боли и чувство стеснения в области сердца, замедление пульса, сильная одышка, тошнота, рвота (стадия одышки).

3) Стадия судорог: чувство тоски, усиливающаяся одышка, потеря сознания, сильные судороги.

4) Стадия паралича: полная потеря чувствительности и рефлексов, непроизвольное мочеиспускание и дефекация, остановка дыхания, смерть.

2.4 Хроническое отравление

Головная боль, слабость, быстрая утомляемость, повышение общего недомогания, нарушение координации движений, потливость, повышенная раздражительность, тошнота, боли в подложечной области, боли в сердце.

2.5 ПДК для HCN и его солей (в пересчете на циановодород)

ПДКр.з. 0,3 мг/м 3

ПДКс.с. 0,01 мг/м 3

ПДКв. (в воде водоисточников) 0,1 мг/л

1-й класс опасности.

3. Оксиды азота (NO и NO 2)

3.1 Антропогенные источники поступления

Сгорание ископаемого топлива;

Транспорт;

Производство азотной и серной кислот;

Бактериальное разложение силоса.

3.2 Токсическое действие

NO - кровяной яд, препятствует переносу кислорода гемоглобином.

NO2 - выраженное раздражающее и прижигающее действие на дыхательные пути, приводит к развитию отека легких; тиоловый яд, блокирует SH-группы белков.

3.3 Острое отравление

NO - общая слабость, головокружение, онемение ног. При более сильном отравлении - тошнота, рвота, усиление слабости и голокружения, снижение кровяного давления. При тяжелом отравлении - синюшность губ, слабый пульс, легкий озноб. Через несколько часов - улучшение состояния, через 1-3 дня - резкая слабость, сильная головная боль, онемение рук и ног, сонливость, головокружение.

При 8 мг/м3 - запах и небольшое раздражение.

При 14 мг/м3 - раздражение глаз и носа.

Вдыхание в течение 5 минут 510-760 мг/м 3 - пневмония.

950 мг/м3 - отек легких в течение 5 минут.

Для острого отравления характерны две фазы:

Сначала - отек, затем - бронхит и его последствия.

3.4 Хроническое отравление

NO: нарушение функций органов дыхания и кровообращения;

NO2: воспаление слизистой оболочки десен, хронический бронхит.

3.5 Нормативы

ПДКм.р. 0,4 мг/м 3 ПДКмр. 0,085 мг/м 3

ПДКс.с. 0,06 мг/м 3 ПДКс.с. 0,04 мг/м 3

3-й класс опасности 2-й класс опасности

4. Оксид серы (IV ) - сернистый газ SO 2

4.1 Антропогенные источники поступления

Сжигание угля и нефтепродуктов:

80% - в промышленности и быту;

19% - металлургия;

1% - транспорт.

Min S - природный газ, max S - уголь, нефть (зависит от сорта).

В металлургии - при выплавке меди, цинка, свинца, никеля; из сульфидных руд (колчеданов)

4.2 Механизм действия

Оказывает многостороннее общетоксическое действие. Нарушает углеводный и белковый обмен, ингибирует ферменты. Обладает раздражающим действием. Нарушает функцию печени, желудочно-кишечного тракта, сердечно-сосудистой системы, почек.

4.3 Острое отравление

В лекгих случаях (концентрация ~ 0,001 % по объему) - раздражение верхних дыхательных путей и глаз. Слезотечение, чихание, першение в горле, кашель, осиплость голоса. При поражение средней тяжести: общая слабость, сухой кашель, боль в носу и горле, тошнота, боли в подложечной области, носовые кровотечения. В тяжелых случаях - острое удушье, мучительный кашель, отек легких, смерть.

4.4 Хроническое отравление

Нарушение дыхательной, сердечно-сосудистой систем и желудочно-кишечного тракта. Одна из форм поражения - бронхиты: кашель, боли в груди, одышка, слабость, утомляемость, потливость. Поражение печени - токсический гепатит - тяжесть и боль в правой подреберной области, тошнота, горечь во рту. Поражение желудка - боль натощяк или после еды, изжога, тошнота, снижение аппетита, язва желудка и двенадцатиперстной кишки.

4.5 Нормативы

ПДКр.з. 10 мг/м 3

ПДКм.р. 0,5 мг/м 3

ПДКс.с. 0,05 мг/м 3

2-й класс опасности.

5 . Мышьяк (As )

5.1.Антропогенные источники загрязнения

Металлургия (мышьяк - примесь во многих рудах): производство Pb, Zn, Ni, Cu, Sn, Mo, W;

Производство серной кислоты и суперфосфата;

Сжигание каменного угля, нефти, торфа;

Производство мышьяка и As-содержащих ядохимикатов;

Кожевенные заводы.

Выбросы в воздух с дымом и со сточными водами.

5.2 Токсическое действие

Тиоловый яд широкий спектр действия:

Нарушение обмена веществ;

Повышение проницаемости стенок сосудов разрушение эритроцитов (гемолиз);

Разрушение тканей в месте их прямого контакта с мышьяком;

Канцерогенное действие;

Эмбриотоксический и тератогенный эффект.

5.3 Острое отравление

В легких случаях - общее недомогание, головная боль, тошнота; затем - боли в правом подреберье и пояснице, тошнота, рвота.

Тяжелые отравления:

При поступлении через рот - металлический привкус, жжение и сухость во рту, боли при глотании через несколько часов после отравления.

При поступлении через органы дыхания - раздражение верхних дыхательных путей и глаз - слезы, чихание, кашель, кровохарканье, боль в груди, отек лица и век.

Затем - сильная слабость, головокружение, головная боль, тошнота, рвота, боли в животе, онемение пальцев рук и ног. Затем - неукротимая рвота с кровью, судороги, носовые кровотечения, кровоизлияния в различных частях тела.

Через 8-15 дней - резкие боли в конечностях, резкая слабость, сонливость, сильные головные боли, судороги, паралич, смерть от паралича дыхания.

5.4 Хроническое отравление

Повышенная утомляемость, исхудание, тошнота, головокружение, боли в конечностях, желудке, кишечнике, груди, горле, кашель, отек лица и век. Выпадение волос и ногтей, кровоизлияние, потемнение кожи. Раздражительность, рвота, неустойчивый стул, отсутствие аппетита.

5.5 Нормативы

Мышьяк и его неорганические соединения (в пересчете на мышьяк):

ПДКс.с. 0,003 мг/м 3

ПДКв. (воды) 0,05 мг/л

2-й класс опасности.

6 . Ртуть (Hg )

6.1 Антропогенные источники поступления

Получение ртути и ртутьсодержащих веществ;

Сжигание органического топлива;

Цветная металлургия;

Коксование угля;

Производство хлора и соды;

Сжигание мусора.

Поступление: в виде паров, водорастворимость солей и органических соединений.

6.2. Токсическое действие

Тиоловый яд широкий спектр действия.

Проявление токсического эффекта зависит от формы, в которой ртуть поступила в организм.

Особенность паров ртути - нейтротоксичноть, действие на высшую нервную деятельность.

6.3. Острое отравление

Пары ртути:

Симптомы появляются через 8-24 часа после отравления.

Общая слабость, головная боль, боль при глотании, повышение температуры, кровоточивость, воспаление в полости рта, боли в животе, поражение желудка (тошнота, рвота, жидкий стул), поражение почек.

6.4 Хроническое отравление

В основном - действие на центральную нервную систему.

Снижение работоспособности, быстрая утомляемость, повышенная возбудимость. Ослабление памяти, беспокойство, неуверенность в себе, раздражительность, головные боли.

Далее - слабость, сонливость, апатия, эмоциональная неустойчивость, дрожание рук, языка, век (в тяжелых случаях всего тела). Повышенная психическая возбудимость, пугливость, общая подавленность, упрямость и раздражительность, ослабление памяти, невралгия.

6.5. Нормативы

Металлическая ртуть (пары):

ПДКр.з. 0,01 мг/м 3

ПДКс.с. 0,0003 мг/м 3

1-й класс опасности.

7 . Свинец (Pb )

7.1 Антропогенные источники поступления

Свинцовые и свинцово-цинковые заводы (цветная металлургия);

Выхлопные газы автомобилей (тетраэтил свинец добавляют для повышения октанового числа);

Сточные воды следующих производств: металлообрабатывающего, машиностроительного,

нефтехимического, спичечного, фотоматериалов;

Сжигание каменного угля и бытового мусора.

7.2 Токсическое действие

Тиоловый яд, но менее токсичен, чем ртуть и мышьяк.

Поражает ЦНС, периферическую нервную систему, костный мозг, кровь, сосуды, генетический аппарат, клетки.

7.3 Острое отравление

Острые (отравление солями свинца): схваткообразные боли в животе, запор, общая слабость, головокружение, боли в конечностях и пояснице.

7.4 Хроническое отравление

Внешне: свинцовая (черная) кайма по краю десен, землисто-серая окраска кожи.

Изменение нервной системы.: головная боль, головокружение, утомляемость, раздражительность, нарушение сна, ухудшение памяти, эпилептические припадки.

Двигательные расстройства: параличи отдельных мышц, дрожания рук, век и языка; боли в конечностях, изменения системы крови - свинцовая анемия, обменные и эндокринные нарушения, нарушения желудочно-кишечного тракта, сердечно-сосудистой системы.

7.5 Нормативы

Pb металл. ПДКр.з. 0,01 мг/м 3 , соли Pb ПДКс.с. 0,0003 мг/м 3 ,

ПДКс.с. 0,003мг/м 3 .

2-й класс опасности.

8 . Хром (Cr )

8.1 Антропогенные источники поступления

Выбросы предприятий, где добывают, получают, перерабатывают и применяют хром (в том числе гальванические и кожевенные производства).

8.2 Токсическое действие

Токсичность зависит от валентности:

Cr (VI) > Cr (III) > Cr (II)

Поражает почки, печень, поджелудочную железу, обладает канцерогенным эффектом. Раздражающее действие, Cr (VI) - аллерген.

8.3 Острое отравление

Аэрозольные соединения Cr (VI), хроматы, бихроматы - насморк, чихание, носовые кровотечения, раздражение верхних дыхательных путей; в тяжелых случаях - острая почечная недостаточность.

8.4 Хроническое отравление

Поражение верхних дыхательных путей и развитие бронхитов и бронхиальной астмы; поражение печени (нарушение функций, развитие цирроза), аллергические заболевания кожи - дерматиты, язвы, «хромовые экземы».

Хроматы - главная причина производственных контактных дерматитов на кистях рук, предплечьях, лице, веках.

При длительном контакте с соединениями хрома возрастает вероятность раковых заболеваний.

8.5 Нормативы

Cr+6 в пересчете на CrO3 (хроматы, бихроматы):

ПДКм.р. 0,0015 мг/м 3

ПДКс.с. 0,0015 мг/м 3

1-й класс опасности.

9 . Медь (Cu )

9.1 Антропогенные источники поступления

Предприятия цветной металлургии;

Гальванические производства;

Сжигание угля и нефти.

9.2 Токсическое действие

Тиоловый яд

9.3 Острое отравление

При попадании в желудок - тошнота, рвота с кровью, боль в животе, понос, нарушение координации движений, смерть от почечной недостаточности.

При вдыхании аэрозоля - приступы кашля, боли в животе, носовое кровотечение. Повышение температуры.

9.4 Хроническое отравление

Расстройства нервной системы, печени почек, разрушение носовой перегородки.

9.5 Нормативы

CuSO4 ПДКр.з. 0,5 мг/м 3

ПДКм.р. 0,003 мг/м 3

ПДКс.с. 0,001 мг/м 3

2-й класс опасности.

Подобные документы

    Общие сведения о летучих ядах, их характеристика, методы определения и механизмы действия. Помощь при отравлении оксидом углерода (угарным газом). Симптомы отравления, диагностика. Осложнения интоксикации СО. Лечение больных с миоренальным синдромом.

    курсовая работа , добавлен 27.01.2010

    Общие принципы оказания медицинской помощи при поражениях синильной кислотой в очаге и на этапах медицинской эвакуации. Физико-химические свойства цианидов, механизмы их токсического действия. Токсикологическая характеристика мышьяковистого водорода.

    лекция , добавлен 08.10.2013

    Физико-химические свойства ртути, пути ее поступления в организм. Характеристика симптомов и клинической картины острого отравления ртутью и марганцем. Диагностика отравления, лечение хронических интоксикаций. Проведение профилактических мероприятий.

    презентация , добавлен 21.02.2016

    Главные источники поступления тяжелых металлов, их высокая биологическая активность, опасность для организма. Токсичность тяжелых металлов, способность вызывать нарушения физиологических функций организма. Применение препаратов из цинка и меди в медицине.

    презентация , добавлен 10.11.2014

    Характеристика летучих ядов, методы их определения. Колориметрический и фотоколориметрический методы, газожидкостная хроматография. Использование газоанализатора и индикаторной трубки. Помощь при отравлении оксидом углерода. Анализ окиси углерода.

    курсовая работа , добавлен 08.04.2010

    Общие сведения о грибах. Отравления и причины, повлекшие их. Первая помощь при отравлении, синдромы при отравлении и лечение. Вопросы, которые должны обязательно задаваться при отравлении грибами. Диагностические элементы. Синдромы.

    реферат , добавлен 08.07.2005

    Понятие антисептики как комплекса мероприятий, направленных на борьбу с инфекцией, попавшей в рану. Средства прямого действия биологической антисептики, антибактериальные препараты. Источники и пути инфицирования операционной раны. Методы стерилизации.

    статья , добавлен 24.09.2014

    Промышленные яды: определение, классификация, пути поступления, факторы, определяющие токсичность. Определение, причины проявления, профилактика авитаминозов. Общие закономерности действия пыли на организм. Профилактика внутрибольничных инфекций.

    контрольная работа , добавлен 13.09.2009

    Физико-химические свойства ртути, пути ее поступления и выделения. Опасность ртутных отравлений, изменения со стороны центральной нервной системы. Лечение отравления неорганическими соединениями марганца, проведение профилактических мероприятий.

    презентация , добавлен 13.04.2014

    Понятие и классификация отхаркивающих средств. Рассмотрение механизма действия, показаний и противопоказаний к отхаркивающим средствам рефлекторного, прямого (резорбтивного) и смешанного действия. Нежелательные побочные реакции на данные препараты.

Антидот — это особое лекарственное средство, позволяющее обезвредить яд в организме человека. Терапия эффективна в том случае, если противоядие используется при первых признаках патологического процесса.

Не менее важно вовремя диагностировать отравление, т. к. нередко применение антидота провоцирует появление острого психоза. В случае развития токсичного действия лекарственного препарата на организм пациента, необходимо провести реанимационные мероприятия.

С осторожностью вводят антидот больным, страдающим сердечной недостаточностью, т. к. высок риск развития сосудистых осложнений. У многих пациентов симптомы острого отравления быстро исчезают при адекватной терапии противоядиями.

Распределение веществ по группам

При острых интоксикациях применяют следующие антидоты:

  • сорбенты;
  • лекарства, обезвреживающие токсины;
  • соединения, похожие на яды (амилнитрит, метиловый спирт);
  • конкуренты токсических веществ экзогенной природы;
  • средства, нарушающие метаболизм яда;
  • иммунологические препараты (сыворотки).

Классификация антидотов облегчает их применение при тяжелых отравлениях и позволяет дополнительно использовать весь арсенал препаратов для проведения симптоматической терапии.

Противоядие предотвращает развитие осложнений при отравлении лекарствами, средствами бытовой химии, пестицидами, ядами растений и животных. Наиболее часто встречаются интоксикации снотворными веществами и транквилизаторами, анальгетиками, дезинфицирующими средствами. Антидот позволяет полностью обезвредить токсическое вещество или препятствует его дальнейшему всасыванию.

Противоядия применяются для лечения интоксикации в строго определенных дозах, вводятся в организм больного посредством внутримышечных и внутривенных инъекций или вдыхаемого аэрозоля.

Мощные сорбенты

Антидоты проявляют химический антагонизм по отношению к ядам. Для оказания экстренной помощи используют следующие вещества:

  • окись цинка;
  • белую глину (каолин);
  • крахмальный клейстер;
  • активированный уголь.

Для лечения интоксикации после приема пилокарпина гидрохлорида (ацеклидина) используют 0,1% раствор перманганата калия. Затем проводят адсорбцию активированным углем. Невсосавшуюся часть яда выводят из организма с помощью каолина при отравлении солями тяжелых металлов или лекарствами.

Препараты Энтеродез или Энтеросорб используют при пищевых отравлениях и принимают их несколько раз в сутки в дозе, предписанной врачом. Если развилась острая интоксикация наркотическим веществом, больному назначают активированный уголь и адсорбент Полифепан.

Полисорб быстро выводит токсины из организма. Смекта — алюмосиликат природного происхождения, предотвращает потерю воды и электролитов при остром отравлении. Карболен адсорбирует алкалоиды, газы, соли тяжелых металлов. При острой интоксикации этиловым спиртом наибольшим антитоксическим эффектом обладает препарат Карбактин. Он используется как средство оказания первой помощи при хроническом алкоголизме.

Терапия острых и хронических отравлений

При длительной интоксикации организма, появившейся на фоне отравления, применяют препарат Унитол, оказывающий антиаритмическое действие. Он эффективен в период резорбтивного действия яда после передозировки сердечными гликозидами. Антидот используют для терапии острого отравления угарным газом. В организме пациента, страдающего алкоголизмом, Унитол образует с этиловым спиртом нетоксичное вещество. Препарат назначают для лечения отравления мышьяком.

Не используется лекарственное средство у гериатрических больных, страдающих аллергией, гипертонической болезнью II-III стадии, беременных женщин. Антидоты — мощное оружие в борьбе с ядами, но в некоторых случаях Унитол вызывает появление следующих побочных реакций:

  • тошноты;
  • рвоты;
  • головной боли;
  • учащенного сердцебиения.

У пациентов, страдающих хроническим алкоголизмом, препарат улучшает работу центральной нервной системы и предотвращает развитие зрительных и слуховых галлюцинаций. Следует помнить о том, что Унитол не используют для терапии острого отравления этиловым спиртом. В любом случае его применяют только по назначению врача.

Противоядие при отравлении цианидами

Антидоты зарекомендовали себя как незаменимые лечебные средства, предупреждающие смертельное отравление и летальный исход. Амилнитрит — препарат, расслабляющий гладкие мышцы коронарных и мозговых сосудов. При остром отравлении цианидами он уменьшает потребность сердечной мышцы в кислороде, но влияет на частоту сокращений миокарда, вызывает появление ускоренного сердцебиения. Антидот с успехом используется в медицинской практике, высокоэффективен при отравлении солями синильной кислоты.

Препарат предотвращает развитие сексуальных нарушений у больного после операции на предстательной железе. Необходимо соблюдать осторожность при использовании противоядия. Нельзя назначать препарат пациентам, страдающим малокровием, тиреотоксикозом. Применение антидота у больного, перенесшего острый инфаркт миокарда или черепно-мозговую травму, может вызвать развитие побочных реакций.

Ни в коем случае нельзя использовать Амилнитрит для ингаляции у беременной женщины, а также следует учитывать вероятность снижения артериального давления вплоть до коллапса при одновременном приеме антидота с этанолом.

Как нейтрализовать действие ядов и наркотиков

Отравляющие вещества поражают головной мозг и вызывают развитие тяжелых психических расстройств. К судорожным ядам относятся:

  • цикутотоксин;
  • тетраэтилсвинец;
  • кураре;
  • кониин;
  • атропин;
  • стрихнин.

Передозировка наркотика ЛСД приводит к развитию токсического шока. Противоядием служит препарат Аминазин, устраняющий галлюцинации. В некоторых случаях для ликвидации острых симптомов отравления используют транквилизатор Диазепам и противосудорожное лекарство Фенобарбитал.

Антидотом опиоидного препарата Морфин и наркотических анальгетиков Омнопона, Промедола, Фентанила является их антагонист Налоксон, который вводят внутримышечно или внутривенно по мере необходимости. При отравлении транквилизаторами для лечения применяют раствор Флумазенила, ликвидирующий последствия интоксикации — одышку, потерю памяти. С осторожностью препарат назначают лицам пожилого и старческого возраста и вводят внутривенно только под контролем врача.

В некоторых случаях после применения противоядий возникают тяжелые побочные реакции:

  • аритмия;
  • повышение артериального давления;
  • отек легких;
  • угнетение дыхания.

Сыворотки в борьбе за жизнь

После укуса кобры у больного развивается паралич дыхательной мускулатуры. Пациенту вводят специфический антидот — противозмеиную сыворотку. В некоторых случаях противоядие сочетают с другими растворами для инфузии.

Антидот против яда скорпиона применяют в условиях стационара, а при укусе каракурта используют активный химический реагент, разрушающий токсин, безвредный для организма пострадавшего.

Препарат Анаскорп (Anascorp) содержит сахарозу, натрия хлорид, глицин, пепсин, крезол и применяется для курсовой терапии. Противокаракуртная сыворотка — самое эффективное средство от укуса паука. Однако у ослабленного пациента введение антидота вызывает появление аллергической реакции вплоть до анафилактического шока.

Не существует специфического противоядия от укола лучами кораллового полипа Р. toxica и кожной слизи лягушки-древолаза. Много людей погибло от укуса австралийской змеи до появления антидота — антитоксической тайпановой сыворотки.

Детоксикация при интоксикации атропином

Препарат Нивалин содержит алкалоид галантамин, оказывающий влияние на мембрану поврежденной клетки. Лекарство вводят внутривенно в первые часы после отравления холинолитиками. Состояние больного улучшается через несколько часов.

У пациента стабилизируется работа сердца, снижается артериальное давление и температура тела. Антидоты при остром отравлении холинолитиками применяют после промывания желудка через зонд.

Для нейтрализации токсина используют лекарство Прозерин. Атропин является противоядием для физостигмина — алкалоида семян ядовитого растения, произрастающего на западе Африки. 0,1% раствор применяют как антидот при отравлениях Клофелином, Аконитином, сердечными гликозидами. При появлении подергивания мышц, чрезмерной возбудимости, возникших у больного после случайного употребления средства для уничтожения вредных насекомых, в качестве антидота используют атропин.

Диагноз отравление — не редкость. Противоядие обезвреживает токсины и возвращает здоровье.

Мероприятия неотложной помощи при острых отравлениях строятся на общих принципах:

1. Прекращение дальнейшего поступления «яда» в организм.

2. Применение антидотов.

3. Восстановление и поддержание нарушенных жизненно важных функций (дыхания, кровообращения).

4. Детоксикация.

5. Купирование ведущих синдромов интоксикации.

Характеризуя мероприятия, направленные на прекращение поступления токсиканта в организм при ЧС, безусловно, следует иметь в виду использование технических средств защиты (противогазов, защитных костюмов) и проведение специальной (санитарной) обработки. Скорейшая эвакуация пораженных из очага - также преследует цель прекращения дальнейшего воз-действия токсиканта.

Кроме этого следует помнить, что токсичное вещество может достаточно длительно находиться в желудочно-кишечном тракте. Поэтому к ме-роприятиям, направленным на прекращение дальнейшего поступления ток-сичного вещества в кровь, следует отнести и методы удаления не всосавше-гося токсиканта из желудочно-кишечного тракта. К числу таких лечебных мероприятий относятся зондовое промывание желудка с введением сорбента, высокая сифонная клизма, кишечный лаваж.

Антидот (от anti dotum - "даваемое против") - (1) применяемое при лечении острого отравления лекарственное средство, способное (2.1) обезвреживать токсичное вещество, (2.2) предупреждать или (2.3) устра­нять вызываемый им токсический эффект.

Условия, для отнесения лекарства к антидотам.

1) терапевтическая эффектив­ность лекарственного средства при лечении острого отравления за счет

2) механизмов антидотного действия, основными из которых являются

2.1) способность «нейтрализовать» токсичное вещество непосредственно во внутренних средах организма;

2.2) способность антидота защищать структуру-мишень от действия токсиканта;

2.3) способность купировать (устранять) либо снижать тяжесть последствий от повреждения структуры-мишени, что проявляется более легким течением интоксикации.

Условно можно выделить следующиемеханизмы действия антидо­тов (по С.А. Куценко, 2004):

1) химический,

2) биохимический,

3) физиоло­гический,

4) модификация процессов метаболизма токсичного вещества (ксе­нобиотика).

Химический механизм действия антидотов основан на способности антидота «нейтрализовать» токсикант в биосредах. Антидоты непосредст­венно связываясь с токсикантом, образуют нетоксичные или малотоксичные соединения, которые достаточно быстро выводятся из организма. Антидоты связываются не только со «свободно» расположенным в биосредах токсикан­том (например, циркулирующим в крови) или находящемся в депо, но могут вытеснять токсикант из его связи со структурой-мишенью. К числу таких ан­тидотов относятся, например, комплексообразователи, используемые при от­равлениях солями тяжелых металлов, с которыми они образуют водораство­римые малотоксичные комплексы. Антидотный эффект унитиола при отрав­лении люизитом также основан на химическом механизме.



Биохимический механизм антидотного действия можно условно раз­делить на следующие виды:

I) вытеснение токсиканта из его связи с биомо­лекулами-мишенями, что приводит к восстановлению поврежденных биохи­мических процессов (например, реактиваторы холинэстеразы, используемы при острых отравлениях фосфорорганическими соединениями);

2) поставка ложной мишени (субстрата) для токсиканта (например, использование метгемоглобинобразователей для создания больших количеств Fe при остром отравлении цианидами);

3) компенсация нарушенного токсикантом количе­ства и качества биосубстрата.

Физиологический механизм подразумевает способность антидота нор­мализовать функциональное состояние организма. Эти препараты не вступа­ют с ядом в химическое взаимодействие и не вытесняют его из связи с фер­ментами. Основными видами физиологического действия антидотов являют­ся:

1) стимуляция противоположной (уравновешивающей) функции (напри­мер, применение холиномимтетиков при отравлений холинолитиками и на­оборот);

2) «протезирование» утраченной функции (например, при отравле­нии угарным газом проведение оксигенобарогерапии для восстановления доставки кислорода тканям за счет резкого увеличения кислорода, раство­ренного в плазме.

Модификаторы метаболизма либо

1) препятствуют процессу токсификации ксенобиотика - превращению в организме индифферентного ксено-биотика в высокотоксичное соединение («летальный синтез»); либо наоборот –



2) резко ускоряют биодетоксикацию вещества. Так, с целью блокирования процесса токсификации используется этанол при остром отравлении метанолом. Примером антидота, способного ускорять процессы детоксикации, может выступать тиосульфат натрия при отравлении цианидами.

Антидоты представляют собой лекарственные средства или особые составы, применение которых в профилактике и лечении отравлений обусловлено их специфическим антитоксическим действием.

Применение антидотов лежит в основе профилактических или терапевтических мер по нейтрализации токсических эффектов химических веществ. Поскольку многие химические вещества обладают множественными механизмами токсического действия, в некоторых случаях приходится одновременно вводить различные антидоты и вместе с тем применять терапевтические средства, устраняющие не причины, а только отдельные симптомы отравления. Более того, поскольку глубинные механизмы действия большинства химических соединений изучены недостаточно, лечение отравлений часто ограничивается симптоматической терапией. Опыт, накопленный в клинической токсикологии, показывает, что некоторые препараты, в частности витамины и гормоны, можно отнести к универсальным антидотам благодаря положительному профилактическому и терапевтическому действию, которое они оказывают при различных отравлениях. Объясняется это тем, что в основе отравлений лежат общие патогенетические механизмы. Общепризнанной классификации антидотов до сих пор не существует. Наиболее рациональная система классификации основывается на сведении антидотов в основные группы в зависимости от механизма их антитоксического действия – физического, химического, биохимического или физиологического. Исходя из условий, при которых антидоты вступают в реакцию с ядом, проводят разграничение между антидотами местного действия, реагирующими с ядом до его всасывания тканями организма, и антидотами резорбтивного действия, реагирующими с ядом после его поступления в ткани и физиологические жидкости.

Следует отметить, что антидоты физического действия применяются исключительно для профилактики интоксикации, а антидоты резорбтивного действия служат как для профилактики, так и для лечения отравлений.

^

2.6.1. Антидоты физического действия

Эти антидоты оказывают защитное действие главным образом за счет адсорбции яда. Благодаря своей высокой поверхностной активности адсорбенты связывают молекулы твердого вещества и препятствуют его поглощению окружающей тканью. Однако молекулы адсорбированного яда могут позже отделиться от адсорбента и вновь попасть на ткани желудка. Это явление отделения называется десорбцией. Поэтому при применении антидотов физического действия исключительно важно сочетать их с мерами, направленными на последующее выведение адсорбента из организма. Этого можно добиться промыванием желудка или применением слабительных, если адсорбент уже попал в кишечник. Предпочтение здесь следует отдавать солевым слабительным (например, сульфату натрия), являющимся гипертоническими растворами, стимулирующими поступление жидкости в кишечник, что практически исключает поглощение твердого вещества тканями. Жировые слабительные (например, касторовое масло) могут способствовать адсорбции жирорастворимых химических веществ, в результате чего возрастает количество яда, поглощенного организмом. В тех случаях, когда характер химического вещества точно неизвестен, рекомендуется применять солевые слабительные. Наиболее типичными антидотами этой группы являются активированный уголь и каолин. Они дают большой эффект при остром отравлении алкалоидами (органические вещества растительного происхождения, например, атропин) или солями тяжелых металлов.

^

2.6.2. Антидоты химического действия

В составе механизма их действия лежит непосредственная реакция между ядом и антидотом. Химические антидоты могут быть как местного, так и резорбтивного действия.

Местное действие. Если физические антидоты оказывают малоспецифический антидотный эффект, то химические обладают довольно высокой специфичностью, что связано с самим характером химической реакции. Местное действие химических антидотов обеспечивается в результате реакций нейтрализации, образования нерастворимых соединений, окисления, восстановления, конкурентного замещения и образования комплексов. Первые три механизма действия имеют особую важность и изучены лучше других.

Хорошим примером нейтрализации ядов служит использование щелочей для противодействия случайно проглоченным или попавшим на кожу сильным кислотам. Нейтрализующие антидоты применяются и для осуществления реакций, в результате которых образуются соединения, имеющие низкую биологическую активность. Например, в случае попадания в организм сильных кислот рекомендуется провести промывание желудка теплой водой, в которую добавлен оксид магния (20 г/л). В случае отравления плавиковой или лимонной кислотой больному дают проглотить кашицеобразную смесь хлорида кальция и оксида магния. При попадании едких щелочей следует провести промывание желудка 1 % раствором лимонной или уксусной кислоты. Во всех случаях попадания в организм едких щелочей и концентрированных кислот следует иметь в виду, что рвотные средства противопоказаны. При рвоте происходят резкие сокращения желудочных мышц, а поскольку эти агрессивные жидкости могут поразить желудочную ткань, возникает опасность прободения.

Антидоты, образующие нерастворимые соединения, которые не могут проникнуть через слизистые оболочки или кожу, обладают избирательным действием, т. е. эффективны только в случае отравления определенными химическими веществами. Классическим примером антидотов такого типа могут служить 2,3–димеркаптопропанол, образующий нерастворимые, химически инертные сульфиды металлов. Он дает положительный эффект при отравлении цинком, медью, кадмием, ртутью, сурьмой, мышьяком.

Таннин (дубильная кислота) образует нерастворимые соединения с солями алкалоидов и тяжелых металлов. Токсиколог должен помнить, что соединения таннина с морфином, кокаином, атропином или никотином обладают различной степенью стабильности.

После приема любых антидотов этой группы необходимо производить промывание желудка для выведения образовавшихся химических комплексов.

Большой интерес представляют антидоты комбинированного действия, в частности состав, в который входят 50 г таннина, 50 г активированного угля и 25 г оксида магния. В этом составе сочетаются антидоты как физического, так и химического действия.

В последние годы привлекает к себе внимание местное применение тиосульфата натрия. Он используется в случаях отравления мышьяком, ртутью, свинцом, цианистым водородом, солями брома и йода.

Тиосульфат натрия применяется внутрь в виде 10 %-го раствора (2–3 столовые ложки).

Местное применение антидотов при указанных выше отравлениях следует сочетать с подкожными, внутримышечными или внутривенными инъекциями.

В случаях попадания в организм опия, морфина, аконита или фосфора широко применяется окисление твердого вещества. Наиболее распространенным антидотом для этих случаев является перманганат калия, который применяется для промывания желудка в виде 0,02–0,1 %-го раствора. Этот препарат не дает эффекта при отравлении кокаином, атропином и барбитуратами.

Резорбтивное действие. Резорбтивные антидоты химического действия можно подразделить на две основные подгруппы:


  1. антидоты, вступающие во взаимодействие с некоторыми промежуточными продуктами, образующимися в результате реакции между ядом и субстратом;
б) антидоты, непосредственно вмешивающиеся в реакцию между ядом и определенными биологическими системами или структурами. В этом случае химический механизм часто бывает связан с биохимическим механизмом антидотного действия.

Антидоты первой подгруппы применяются в случае отравления цианидами. До настоящего времени не существует антидота, который подавлял бы взаимодействие между цианидом и подверженной его влиянию ферментной системой. После всасывания в кровь цианид переносится кровотоком к тканям, где взаимодействует с трехвалентным железом окисленной цитохром-оксидазы одного из ферментов, необходимых для тканевого дыхания. В результате кислород, поступающий в организм, прекращает реагировать с ферментной системой, что вызывает острое кислородное голодание. Однако комплекс, образуемый цианидом с железом цитохромоксидазы, нестабилен и легко диссоциирует.

Следовательно, лечение антидотами протекает в трех основных направлениях:

1) нейтрализация яда в кровотоке немедленно после его поступления в организм;

2) фиксация яда в кровотоке с целью ограничения количества яда, поступающего в ткани;

3) нейтрализация яда, поступающего в кровь, после диссоциации цианометгемоглобина и комплекса цианида и субстрата.

Прямую нейтрализацию цианидов можно обеспечить путем введения глюкозы, реагирующей с синильной кислотой, в результате чего образуется слаботоксичный циангидрид. Более активным антидотом является ß-оксиэтил-метилендиамин. Оба антидота следует вводить внутривенно в течение нескольких минут или секунд после попадания яда в организм.

Более распространенным является метод, при котором ставится задача фиксации яда, циркулирующего в кровотоке. Цианиды не взаимодействуют с гемоглобином, но активно сочетаются с метгемоглобином, образуя цианометгемоглобин. Хотя он не отличается высокой стабильностью, но некоторое время может сохраниться. Поэтому в данном случае необходимо вводить антидоты, способствующие образованию метгемоглобина. Осуществляется это путем вдыхания паров амилнитрита или внутривенного введения раствора нитрита натрия. В результате свободный цианид, присутствующий в плазме крови, связывается в комплекс с метгемоглобином, теряя в значительной степени свою токсичность.

Необходимо иметь в виду, что антидоты, образующие метгемоглобин, могут влиять на артериальное давление: если амилнитрит вызывает выраженное, кратковременное падение давления, то нитрит натрия оказывает продолжительное гипотоническое действие. При введении веществ, образующих метгемоглобин, следует учитывать, что он не только принимает участие в переносе кислорода, но и сам может стать причиной кислородного голодания. Поэтому применение антидотов, образующих метгемоглобин, должно подчиняться определенным правилам.

Третий метод лечения антидотами заключается в нейтрализации цианидов, высвобожденных из комплексов с метгемоглобином и цитохром-оксидазой. С этой целью производится внутривенное взбрызгивание тиосульфата натрия, преобразующего цианиды в нетоксические тиоцианаты.

Специфичность химических антидотов ограничена, поскольку они не влияют на прямое взаимодействие между ядом и субстратом. Однако воздействие, которое такие антидоты оказывают на определенные звенья механизма токсического действия, имеет несомненное терапевтическое значение, хотя применение этих антидотов требует высокой врачебной квалификации и предельной осторожности.

Химические антидоты, непосредственно взаимодействующие с токсичным веществом, отличаются высокой специфичностью, позволяющей им связывать токсические соединения и выводить их из организма.

Комплексообразующие антидоты образуют стабильные соединения с двух- и трехвалентными металлами, которые затем легко выводятся с мочой.

В случаях отравления свинцом, кобальтом, медью, ванадием большой эффект дает двунатриевокальциевая соль этилендиаминтетрауксусной кислоты (ЭДТА). Кальций, содержащийся в молекуле антидота, реагирует только с металлами, образующими более стабильный комплекс. Эта соль не реагирует с ионами бария, стронция и некоторых других металлов с более низкой константой устойчивости. Имеется несколько металлов, с которыми этот антидот образует токсичные комплексы, поэтому его следует применять с большой осторожностью; в случае отравления кадмием, ртутью и селеном применение этого антидота противопоказано.

При острых и хронических отравлениях плутонием и радиоактивными йодом, цезием, цинком, ураном и свинцом применяется пентамил. Данный препарат применяется также в случаях отравления кадмием и железом. Его применение противопоказано лицам, страдающим нефритом и сердечно-сосудистыми заболеваниями. Комплексообразующие соединения в целом включают также антидоты, молекулы которых содержат свободные меркаптогруппы – SH. Большой интерес в этом плане представляют димеркаптопром (БАЛ) и 2,3-димер­каптопропансульфат (унитиол). Молекулярная структура этих антидотов сравнительна проста:

H 2 C – SH H 2 C – SH | |

HC – SH HC – SH

H 2 C – OH H 2 C – SO 3 Na

БАЛ Унитиол

В обоих этих антидотах имеются две SH-группы, близкие друг к другу. Значение данной структуры раскрывается в приводимом ниже примере, где антидоты, содержащие SH-группы, реагируют с металлами и неметаллами. Реакцию димеркаптосоединений с металлами можно описать следующим образом:

Фермент + Me → фермент Ме

HSCH 2 S – CH 2

HSCH + фермент Me → фермент + Me– S – CH

HOCH 2 OH–CH 2

Здесь можно выделить следующие фазы:

А) реакция ферментных SH-групп и образование малоустойчивого комплекса;

Б) реакция антидота с комплексом;

В) высвобождение активного фермента благодаря образованию комплекса металл-антидот, выводящегося с мочой. Унитиол менее токсичен, чем БАЛ. Оба препарата применяются при лечении острых и хронических отравлений мышьяком, хромом, висмутом, ртутью и некоторыми другими металлами, но не свинцом. Не рекомендуется при отравлении селеном.

Для лечения отравлений никелем, молибденом и некоторыми другими металлами эффективных антидотов не существует.

^

2.6.3. Антидоты биохимического действия

Эти препараты отличаются высокоспецифичным антидотным эффектом. Для этого класса типичны антидоты, применяемые при лечении отравлений фосфорорганическими соединениями, являющимися основными компонентами инсектицидов. Даже очень небольшие дозы фосфорорганических соединений подавляют функцию холинэстеразы в результате ее фосфорилирования, что приводит к накоплению ацетилхолина в тканях. Поскольку ацетилхолин имеет огромное значение для передачи импульсов как в центральной, так и в периферической нервной системе, его чрезмерное количество ведет к нарушению нервных функций, и, следовательно, к серьезным патологическим изменениям.

Антидоты, восстанавливающие функцию холинэстеразы, принадлежат к производным гидроксамовых кислот и содержат оксимную группу R – CH = NOH. Практическое значение имеют оксимные антидоты 2–ПАМ (пралидоксим), дипироксим (ТМБ – 4) и изонитрозин. При благоприятных условиях эти вещества могут восстановить функцию фермента холинэстеразы, ослабляя или ликвидируя клинические признаки отравления, предотвращая отдаленные последствия и способствуя успешному выздоровлению.

Практика, однако, показала, что наилучшие результаты достигаются в тех случаях, когда биохимические антидоты применяются в сочетании с антидотами физиологического действия.

^

2.6.4. Антидоты физиологического действия

п ример отравления фосфорорганическими соединениями показывает, что подавление функции холинэстеразы приводит, прежде всего, к накоплению ацетилхолина в синапсах. Существует две возможности нейтрализации токсического действия яда:

А) восстановление функции холинэстеразы;

Б) защита физиологических систем, чувствительных к ацетилхолину, от чрезмерного действия этого медиатора нервных импульсов, которое приво-

Дит первоначально к острому возбуждению, а затем к функциональному параличу.

Примером препарата, подавляющего чувствительность к ацетилхолину, является атропин. Класс физиологических антидотов включает множество лекарственных средств. В случае острого возбуждения ЦНС, наблюдающегося при многих отравлениях, рекомендуется вводить наркотики или противосудорожные средства. В то же время при остром подавлении дыхательного центра в качестве антидотов применяются стимуляторы ЦНС. В первом приближении можно утверждать, что к антидотам физиологического (или функционального) действия относятся все лекарственные средства, вызывающие физиологические реакции, противодействующие яду.

Поэтому трудно провести четкое разграничение между антидотами и лекарственными средствами, применяемыми в симптоматической терапии.

Контрольные вопросы


  1. Как классифицируются токсичные вещества по цели применения?

  2. Какие виды отравлений Вы знаете?

  3. Перечислите экспериментальные параметры токсикометрии.

  4. Назовите производные параметры токсикометрии.

  5. В чем суть теории рецепторов токсичности?

  6. Какими путями поступают вредные вещества в организм?

  7. Что такое биотрансформация токсичных веществ?

  8. Пути выведения чужеродных веществ из организма.

  9. Каковы особенности острых и хронических отравлений?

  10. Перечислите основные и дополнительные факторы, определяющие развитие отравлений.

  11. Назовите виды комбинированного действия ядов.

  12. Что такое антидоты?
^ ЧАСТЬ 3. ПРОФПРИГОДНОСТЬ И ПРОФЕССИОНАЛЬНЫЕ

Применение антидота позволяет воспрепятствовать воздействию яда на организм, нормализовать основные функции организма или затормозить развивающиеся при отравлении функциональные или структурные нарушения.

Антидоты бывают прямого и непрямого действия.

Антидот прямого действия.

Прямого действия – осуществляется непосредственное химическое или физико – химическое взаимодействие яда и противоядия.

Основные варианты – сорбентные препараты и химические реагенты.

Сорбентные препараты – защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат – снижение концентрации яда, взаимодействующего с биоструктурами , что приводит к ослаблению токсичного эффекта.

Сорбция происходит за счет неспецифических межмолекулярных взаимодействий – водородных и Ван – дер – Ваальсовых связей (не ковалентных!).

Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция ), из крови (гемосорбция , плазмосорбция ). Если яд уже проник в ткани, то применение сорбентов не эффективно.

Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn , ионообменные смолы.

1 грамм активного угля связывает несколько сотен мг стрихнина.

Химические противоядия – в результате реакции между ядом и противоядием образуется нетоскичное или малотоксичное соединение (за счет прочных ковалентных ионных или донорно-акцепторных связей). Могут действовать в любом месте - до проникновения яда в кровь, при циркуляции яда в крови и после фиксации в тканях.

Примеры химических противоядий:

для нейтрализации попавших в организм кислот используют соли и оксиды, дающие в водных растворах щелочную реакцию - K 2 CO 3, NaHCO3, MgO .

при отравлении растворимыми солямисеребра(например AgNO 3) используют NaCl , который образует с солями серебра нерастворимый AgCl .

при отравлении ядами, содержащими мышьяк используют MgO , сульфат железа, которые химически связывают его

при отравлении марганцовокислым калием KMnO 4 , который является сильным окислителем, используют восстановитель - перекись водорода H 2 O 2

при отравлении щелочами используют слабые органические кислоты (лимонная, уксусная)

отравления солями плавиковой кислоты (фторидами) применяют сульфат кальция CaSO 4, при реакции получается мало растворимый CaF 2

при отравлении цианидами (солями синильной кислоты HCN ) применяются глюкоза и тиосульфат натрия, которые связывают HCN . Ниже приведена реакция с глюкозой.

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (- SH ) группами белков:


Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.

Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH -групп). Механизм их действия представлен на схеме.


Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты – комплексоны (комплексообразователи).

Они образуют прочные комплексные соединения с токсичными катионами Hg , Co , Cd , Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

Антидот непрямого действия.

Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).

1) Защита рецепторов от токсичного воздействия.

Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы . Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. Если фермент блокирован, то создается избыток ацетилхолина.

Ацетилхолин соединяется с рецепторами, что подает сигнал к сокращению мышц . При избытке ацетилхолина происходит беспорядочное сокращение мышц – судороги, которые часто приводят к смерти.

Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина. В присутствии ацетилхолина мышцы не сокращюется , судорог не происходит.

2) Восстановление или замещение поврежденной ядом биоструктуры .

При отравлениях фторидами и HF , при отравлениях щавелевой кислотой H 2 C 2 O 4 происходит связывание ионов Са2 + в организме. Противоядие – CaCl 2.

3) Антиоксиданты.

Отравление четыреххлористым углеродом CCl 4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты – вещества, связывающие свободные радикалы (антиоксиданты), например витамин Е.

4) Конкуренция с ядом за связывание с ферментом.

Отравление метанолом:


При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза.

Летальный синтез – превращение в организме в процессе метаболизма менее токсичных соединений в более токсичные .

Этиловый спирт C 2 H 5 OH лучше связывается с ферментом алкогольдегидрогеназой . Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH 3 OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

Похожие публикации