Генеральная совокупность и выборка исследования. Генеральная и выборочная совокупности

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Генеральная совокупность - вся изучаемая выборочным методом статистическая совокупность объектов и/или явлений общественной жизни, имеющих общие качественные признаки или количественные переменные.

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и времени. Примеры генеральных совокупностей:
- Все жители Москвы (10,6 млн. человек по данным переписи 2002 года)
- Мужчины-Москвичи (4,9 млн. человек по данным переписи 2002 года)
- Юридические лица России (2,2 млн. на начало 2005 года)
- Розничные торговые точки, осуществляющие продажу продуктов питания (20 тысяч на начало 2008 года) и т.д.

Корректное определение Г.С. и ее характеристик чрезвычайно важно для выбора дизайна исследования - стратегии построения репрезентативной выборки (см. ). Важнейшими характеристиками Г.С. являются ее объем и доступность элементов для определения.

С точки зрения объема, принято выделять конечные и бесконечные Г.С. Это деление является чисто техническим, оно обусловлено особенностями процедур оценивания объема и ошибок репрезентативной вероятностной (случайной) выборки. Конечными считаются Г.С., численность которых сопоставима с объемом выборки. Если объем выборки превышает несколько процентов от численности Г.С., ошибку выборки необходимо оценивать с поправкой на объем Г.С.

Бесконечными называются Г.С., объем которых, по сравнению с объемом репрезентативной случайной выборки, несоизмеримо велик. Строго говоря, все Г.С. в социальных науках конечны (даже если их численность составляет несколько миллиардов), однако на практике Г.С. можно считать бесконечной, если объем выборки, обеспечивающий приемлемый уровень ошибки, не превышает 1-2 % от ее численности. Иногда понятие бесконечности связывают непосредственно с объемом Г.С., например, более ста тысяч объектов.

Г.С., принадлежность к которым очевидна или легко устанавливается, называются конкретными. Для конкретных Г.С. несложно определить объем и получить относительно полный список их элементов - основу выборки (см. Выборки основа ). Например, список совершеннолетних жителей города можно получить в адресном столе, а списки студентов крупного города - в университетах. Если конкретная Г.С. очень велика (например, население страны), списки могут быть получены для всех ее структурных частей. Построение репрезентативной выборки случайной (см. ) для конкретных Г.С. технически всегда возможно; проблемы могут возникнуть в связи с недостатком времени, квалифицированного персонала или материальных ресурсов.

Г.С., принадлежность к которой можно установить только в результате целенаправленных процедур или специальных исследований, называются гипотетическими. К таким Г.С. относятся, например, аудитории СМК (нельзя узнать, видел ли человек конкретный рекламный ролик, если не спросить его об этом), любители определенных видов аквариумных рыбок, эксперты по узкой проблеме и т.п. Для определения объема некоторых гипотетических Г.С. также необходимы специальные исследования. Возможность построения репрезентативной выборки случайной (см. ) для гипотетичных Г.С. большого объема во многих случаях представляется проблематичной.

ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ ПАРАМЕТР - статистический термин, применяемый для обозначений любой количественной характеристики генеральной совокупности (см. ). Математическое ожидание (см. ), дисперсия (см. ), вероятность (см. ) положительного ответа, коэффициент корреляции между двумя случайными величинами (см. ) являются Г.С.П. Аналогичные характеристики выборки (см. ) называются статистиками выборочными (см. ).

Выборка (Выборочная совокупность) - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Характеристики выборки:

Качественная характеристика выборки - кого именно мы выбираем и какие способы построения выборки мы для этого используем.

Количественная характеристика выборки - сколько случаев выбираем, другими словами объём выборки.

Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30—35.

Это наука, которая, основываясь на методах теории вероятностей, занимается систематизацией и обработкой статистических данных для получения научных и практических выводов.

Статистическими данными называются сведения о числе объектов, обладающих теми или иными признаками.

Группа объектов, объединенных по некоторому качественному или количественному признаку, называется статистической совокупностью . Объекты, входящие в совокупность, называются её элементами, а их общее число - ее объемом.

Генеральной совокупностью называется множество всех мыслимо возможных наблюдений, которые могли бы быть сделаны при данном реальном комплексе условий или более строго: генеральной совокупностью называется случайная величина x и связанное с ней вероятностное пространство {W,Á,Р}.

Распределение случайной величины x называют распределением генеральной совокупности (говорят, например, о нормально распределенной или просто нормальной генеральной совокупности).

Например, если производится ряд независимых измерений случайной величины x, то генеральная совокупность теоретически бесконечна (т.е. генеральная совокупность - абстрактное, условно - математическое понятие); если же проверяется число дефектных изделий в партии из N изделий, то эту партию рассматривают как конечную генеральную совокупность объема N.

В случае социально-экономических исследований генеральной совокупностью объема N может быть население какого-то города, региона или страны, а измеряемыми признаками - доходы, расходы или объем сбережений отдельно взятого человека. Если какой-то признак имеет качественный характер (например, пол, национальность, социальное положение, род деятельности и т.п.), но принадлежит к конечному множеству вариантов, то он может быть также закодирован числом (как это часто делают в анкетах).

Если число объектов N достаточно велико, то провести сплошное обследование затруднительно, а иногда физически невозможно (например, проверить качество всех патронов). Тогда случайным образом отбирают из всей генеральной совокупности ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью или просто выборкой объема n называется последовательность х 1 , х 2 , …, х n независимых одинаково распределенных случайных величин, распределение каждой из которых совпадает с распределением случайной величины x.

Например, результаты n первых измерений случайной величины x принято рассматривать как выборку объема n из бесконечной генеральной совокупности. Полученные данные называют наблюдениями случайной величины x, а также говорят, что случайная величина x "принимает значения" х 1 , х 2 , …, х n .


Основная задача математической статистики - сделать научно обоснованные выводы о распределении одной или более неизвестных случайных величин или их взаимосвязи между собой. Метод, состоящий в том, что на основании свойств и характеристик выборки делаются заключения о числовых характеристиках и законе распределения случайной величины (генеральной совокупности) называется выборочным методом.

Для того, чтобы характеристики случайной величины, полученные выборочным методом, были объективны, необходимо, чтобы выборка была репрезентативной, т.е. достаточно хорошо представляла исследуемую величину. В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществить случайно, т.е. все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку. Для этого существуют различные виды отбора выборки.

1. Простым случайным отбором называется отбор, при котором объекты извлекаются по одному из всей генеральной совокупности.

2. Стратифицированный (расслоенный ) отбор заключается в том, что исходная генеральная совокупность объема N подразделяется на подмножества (страты) N 1 , N 2 ,…,N k , так что N 1 + N 2 +…+ N k = N. Когда страты определены, из каждого из них извлекается простая случайная выборка объема n 1 , n 2 , …, n k . Частным случаем стратифицированного отбора является типический отбор, при котором объекты отбирают не из всей генеральной совокупности, а из каждой типической ее части.

Комбинированный отбор сочетает в себе сразу несколько видов отбора, образующих различные фазы выборочного обследования. Существуют и другие методы организации выборки.

Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. Для конечной генеральной совокупности случайный отбор без возвращения приводит на каждом шаге к зависимости отдельных наблюдений, случайный равновозможный выбор с возвращением - к независимости наблюдений. На практике обычно имеют дело с бесповторными выборками. Тем не менее, когда объем генеральной совокупности N во много раз больше, чем объем выборки n (например, в сотни или тысячи раз), зависимостью наблюдений можно пренебречь.

Таким образом, случайная выборка х 1 , х 2 , …, х n - это результат последовательных и независимых наблюдений над случайной величиной ξ, представляющую генеральную совокупность, и все элементы выборки имеют тоже распределении, что исходная случайная величина x.

Функцию распределения F x (х) и другие числовые характеристики случайной величины x будем называть теоретическими, в отличие от выборочных характеристик , которые определяются по результатам наблюдений.

Пусть выборка х 1 , х 2 , …, х к есть результат независимых наблюдений случайной величины x, причем х 1 наблюдалось n 1 раз, х 2 - n 2 раза, …, х к - n к раз, так что n i = n - объем выборки. Число n i , показывающее, сколько раз появилось значение х i в n наблюдениях, называется частотой данного значения, а отношение n i /n = w i - относительной частотой . Очевидно, что числа w i рациональны и .

Статистическая совокупность, расположенная в порядке возрастания признака, называется вариационным рядом . Его члены обозначают x (1) , x (2), … x (n) и называют вариантами . Вариационный ряд называется дискретным , если его члены принимают конкретные изолированные значения. Статистическим распределением выборки дискретной случайной величины x называется перечень вариант и соответствующих им относительных частот w i . Полученная таблица называется статистическим рядом.

X (1) x (2) ... x k(k)
ω 1 ω 2 ... ω k

Наибольшее и наименьшее значения вариационного ряда обозначают x min и x max и называют крайними членами вариационного ряда.

Если изучается непрерывная случайная величина, то группировка заключается в разбиении интервала наблюдаемых значений на k частичных интервалов равной длины h, и подсчете числа попаданий наблюдений в эти интервалы. Полученные числа принимают за частоты n i (для некоторой новой, уже дискретной случайной величины). В качестве новых значений вариант x i обычно берутся середины интервалов (либо в таблице указываются сами интервалы). Согласно формуле Стерждеса рекомендуемое число интервалов разбиения k » 1 + log 2 n , а длины частичных интервалов равны h = (x max - x min)/k. Предполагается, что весь интервал имеет вид .

Графически статистические ряды могут быть представлены в виде полигона, гистограммы или графика накопленных частот.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки (x 1 , n 1), (x 2 , n 2), …, (x k , n k). Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x 1 , w 1), (x 2 , w 2), …, (x k , w k). Полигоны обычно служат для изображения выборки в случае дискретных случайных величин (рис. 7.1.1).

Рис. 7.1

.1.

Гистограммой относительных частот называется ступенчатая фигура, состоящая из прямоугольников, основанием которых служат частичные интервалы длиною h , а высоты

равны w i /h.

Гистограмма обычно служит для изображения выборки в случае непрерывных случайных величин. Площадь гистограммы равна единице (рис. 7.1.2). Если на гистограмме относительных частот соединить середины верхних сторон прямоугольников, то полученная ломанная образует полигон относительных частот. Поэтому гистограмму можно рассматривать как график эмпирической (выборочной) плотности распределения f n (x). Если у теоретического распределения существует конечная плотность, то эмпирическая плотность является некоторым приближением теоретической.

Графиком накопленных частот называется фигура, строящаяся аналогично гистограмме с той разницей, что для расчета высот прямоугольников берутся не простые, а накопленные относительные частоты , т.е. величины . Эти величины не убывают, и график накопленных частот имеет вид ступенчатой "лестницы" (от 0 до 1).

График накопленных частот на практике используются для приближения теоретической функции распределения.

Задача. Анализируется выборка из 100 малых предприятий региона. Цель обследования - измерение коэффициента соотношения заемных и собственных средств (х i) на каждом i-ом предприятии. Результаты представлены в таблице 7.1.1.

Таблица Коэффициенты соотношений заемных и собственных средств предприятий.

5,56 5,45 5,48 5,45 5,39 5,37 5,46 5,59 5,61 5,31
5,46 5,61 5,11 5,41 5.31 5,57 5,33 5,11 5,54 5,43
5,34 5,53 5,46 5,41 5,48 5,39 5,11 5,42 5,48 5,49
5,36 5,40 5,45 5,49 5,68 5,51 5,50 5,68 5,21 5,38
5,58 5,47 5,46 5,19 5,60 5,63 5,48 5,27 5,22 5,37
5,33 5,49 5,50 5,54 5,40 5.58 5,42 5,29 5,05 5,79
5,79 5,65 5,70 5,71 5,85 5,44 5,47 5,48 5,47 5,55
5,67 5,71 5,73 5,05 5,35 5,72 5,49 5,61 5,57 5,69
5,54 5,39 5,32 5,21 5,73 5,59 5,38 5,25 5,26 5,81
5,27 5,64 5,20 5,23 5,33 5,37 5,24 5,55 5,60 5,51

Построить гистограмму и график накопленных частот.

Решение . Построим группированный ряд наблюдений:

1. Определим в выборке х min = 5,05 и x max = 5,85;

2. Разобьем весь диапазон на k равных интервалов: k » 1 + log 2 100 = 7,62; k = 8, отсюда длина интервала

Таблица 7.1.2. Сгруппированный ряд наблюдений

Номер Интервала Интервалы Середины интервалов х i w i f n (x)
5,05-5,15 5,1 0,05 0,05 0,5
5,15-5,25 5,2 0,08 0,13 0,8
5,25-5,35 5,3 0,12 0,25 1,2
5,35-5,45 5,4 0,20 0,45 2,0
5,45-5,55 5,5 0,26 0,71 2,6
5,55-5,65 5,6 0,15 0,86 1,5
5,65-5,75 5,7 0,10 0,96 1,0
5,75-5,85 5,8 0,04 1,00 0,4

На рис. 7.1.3 и 7.1.4, построенных по данным таблицы 7.1.2, представлены гистограмма и график накопленных частот. Кривые соответствуют плотности и функции нормального распределения, "подобранного" к данным.

Таким образом, распределение выборки является некоторым приближением распределения генеральной совокупности.

Итак, закономерности, которым подчиняется исследуемая случайная величина, физически полностью обусловливаются реальным комплексом условий ее наблюдения (или эксперимента), а математически задаются соответствующим вероятностным пространством или, что то же, соответствующим законом распределения вероятностей. Однако при проведении статистических исследований несколько более удобной оказывается другая терминология, связанная с понятием генеральной совокупности.

Генеральной совокупностью называют совокупность всех мыслимых наблюдений (или всех мысленно возможных объектов интересующего нас типа, с которых «снимаются» наблюдения), которые могли бы быть произведены при данном реальном комплексе условий. Поскольку в определении речь идет о всех мысленно возможных наблюдениях (или объектах), то понятие генеральной совокупности есть понятие условно-математическое, абстрактное и его не следует смешивать с реальными совокупностями, подлежащими статистическому исследованию. Так, обследовав даже все предприятия подотрасли с точки зрения регистрации значений характеризующих их технико-экономических показателей, мы можем рассматривать обследованную совокупность лишь как представителя гипотетически возможной более широкой совокупности предприятий, которые могли бы функционировать в рамках того же самого реального комплекса условий

В практической работе удобнее выбор связывать с объектами наблюдения, чем с характеристиками этих объектов. Мы отбираем для изучения машины, геологические пробы, людей, но не значения характеристик машин, проб, людей. С другой стороны, в математической теории объекты и совокупность их характеристик не различаются и двойственность введенного определения исчезает.

Как видим, математическое понятие «генеральная совокупность» физически полностью обусловливается, так же как и понятия «вероятностное пространство», «случайная величина» и «закон распределения вероятностей», соответствующим реальным комплексом условий, а потому все эти четыре математических понятия можно считать в определенном смысле синонимами. Генеральная совокупность называется конечной или бесконечной в зависимости от того, конечна или бесконечна совокупность всех мыслимых наблюдений.

Из определения следует, что непрерывные генеральные совокупности (состоящие из наблюдений признаков непрерывной природы) всегда бесконечны. Дискретные же генеральные совокупности могут быть как бесконечными, так и конечными. Скажем, если анализируется партия из N изделий на сортность (см. пример в п. 4.1.3), когда каждое изделие может быть отнесено к одному из четырех сортов, исследуемой случайной величиной является номер сорта случайно извлеченного из партии изделия, а множество возможных значений случайной величины состоит соответственно из четырех точек (1, 2, 3 и 4) то, очевидно, генеральная совокупность будет конечной (всего N мыслимых наблюдений).

Понятие бесконечной генеральной совокупности есть математическая абстракция, как и представление о том, что измерение случайной величины можно повторить бесконечное число раз. Приближенно бесконечную генеральную совокупность можно истолковывать как предельный случай конечной, когда число объектов, порождаемых данным реальным комплексом условий, неограниченно возрастает. Так, если в только что приведенном примере вместо партий изделий рассматривать непрерывное массовое производство тех же изделий, то мы и придем к понятию бесконечной генеральной совокупности. Практически же такое видоизменение равносильно требованию

Выборка из данной генеральной совокупности - это результаты ограниченного ряда наблюдений случайной величины . Выборку можно рассматривать как некий эмпирический аналог генеральной совокупности, то, с чем мы чаще всего на практике имеем дело, поскольку обследование всей генеральной совокупности бывает либо слишком трудоемко (в случае больших N), либо принципиально невозможно (в случае бесконечных генеральных совокупностей).

Число наблюдений, образующих выборку, называют объемом выборки.

Если объем выборки велик и при этом мы имеем дело с одномерной непрерывной величиной (или с одномерной дискретной, число возможных значений которой достаточно велико, скажем больше 10), то часто удобнее, с точки зрения упрощения дальнейшей статистической обработки результатов наблюдений, перейти к так называемым «группированным» выборочным данным. Этот переход осуществляется обычно следующим образом:

а) отмечаются наименьшее и наибольшее значения в выборке;

б) весь обследованный диапазон разбивается на определенное число 5 равных интервалов группирования; при этом количество интервалов s не должно быть меньше 8-10 и больше 20-25: выбор количества интервалов существенно зависит от объема выборки для примерной ориентации в выборе 5 можно пользоваться приближенной формулой

которую следует воспринимать скорее как оценку снизу для s (особенно при больших

в) отмечаются крайние точки каждого из интервалов в порядке возрастания, а также их середины

г) подсчитываются числа выборочных данных, попавших в каждый из интервалов: (очевидно, ); выборочные данные, попавшие на границы интервалов, либо равномерно распределяются по двум соседним интервалам, либо условливаются относить их только к какому-либо одному из них, например к левому.

В зависимости от конкретного содержания задачи в данную схему группирования могут быть внесены некоторые видоизменения (например, в некоторых случаях целесообразно отказаться от требования равной длины интервалов группирования).

Во всех дальнейших рассуждениях, использующих выборочные данные, будем исходить из только что описанной системы обозначений.

Напомним, что сущность статистических методов состоит в том, чтобы по некоторой части генеральной совокупности (т.е. по выборке) выносить суждения о ее свойствах в целом.

Один из важнейших вопросов, от успешного решения которого зависит достоверность получаемых в результате статистической обработки данных выводов, является вопрос репрезентативности выборки, т.е. вопрос полноты и адекватности представления ею интересующих нас свойств анализируемой генеральной совокупности. В практической работе одна и та же группа объектов, взятых для изучения, может рассматриваться как выборка из разных генеральных совокупностей. Так, группу семей, наудачу отобранных из кооперативных домов одной из жилищноэксплуатационных контор (ЖЭК) одного из районов города для подробного социологического обследования, можно рассматривать и как выборку из генеральной совокупности семей (с кооперативной формой жилья) данной ЖЭК, и как выборку из генеральной совокупности семей данного района, и как выборку из генеральной совокупности всех семей города, и, наконец, как выборку из генеральной совокупности всех семей города, проживающих в кооперативных домах. Содержательная интерпретация результатов апробации существенно зависит от того, представителем какой генеральной совокупности мы рассматриваем отобранную группу семей, для какой генеральной совокупности эту выборку можно считать представительной (репрезентативной). Ответ на этот вопрос зависит от многих факторов. В приведенном выше примере, в частности, от наличия или отсутствия специального (быть может, скрытого) фактора, определяющего принадлежность семьи к данной ЖЭК или району в целом (таким фактором может быть, например, среднедушевой доход семьи, географическое расположение района в городе, «возраст» района и т. п.).

http://www.hi-edu.ru/e-books/xbook096/01/index.html?part-011.htm – очень полезный сайт!

Выборочный метод исследования является основным статистическим методом. Это естественно, так как объем изучаемых объектов как правило бесконечен (и даже, если конечен, то весьма затруднительно перебрать все объекты, приходится довольствоваться лишь их частью, выборкой).

Генеральная и выборочная совокупности

Генеральной совокупностью называется совокупность всех исследуемых в данном эксперименте элементов.

Выборочной совокупностью (или выборкой) называется конечная совокупность объектов, случайно отобранных из генеральной совокупности.

Объемом совокупности (выборочной или генеральной) называется число объектов этой совокупности.

Пример генеральной и выборочной совокупностей

Допустим, исследуется психологическая предрасположенность человека к делению данного отрезка в отношении золотого сечения. Так как происхождение самого понятия золотого сечения продиктовано антропометрией человеческого тела, то понятно, что в данном случае генеральной совокупностью является любое антропогенное существо достигшее физической зрелости и приобретшее окончательные пропорции, то есть - вся взрослая часть человечества. Объем этой совокупности практически бесконечен.

Если же эта предрасположенность исследуется исключительно в художественной среде, то генеральная совокупность - это люди, имеющие непосредственное отношение к дизайну: художники, архитекторы, дизайнеры. Таких людей тоже очень много, и можно считать, что объем генеральной совокупности в данном случае тоже бесконечен.

И в том, и в другом случае для исследования мы вынуждены ограничиться разумными объемами выборок, выбирая в качестве представителей той и другой совокупностей студентов технических специальностей (как людей, далеких от художественного мира) или студентов специальности дизайн (как людей, имеющих непосредственное отношение к миру художественных образов).

Репрезентативность

Основной проблемой выборочного метода является вопрос о том, насколько точно объекты, отобранные из генеральной совокупности для исследования, представляют изучаемые характеристики генеральной совокупности, то есть - вопрос о репрезентативности выборки.

Итак, выборка называется репрезентативной (представительной), если она достаточно точно представляет количественные соотношения генеральной совокупности.

Разумеется, трудно сказать, что именно скрывается за расплывчатой формулировкой достаточно точно . Вопросы репрезентативности вообще являются наиболее спорными в любом экспериментальном исследовании. Имеется масса ставших уже классическими примеров, когда недостаточная представительность выборки приводила экспериментаторов к абсурдным результатам.

Как правило, вопросы репрезентативности решаются при помощи экспертной оценки, когда научное сообщество принимает точку зрения группы авторитетных специалистов по поводу корректности проведенного исследования.

Пример репрезентативности

Вернемся к примеру с делением отрезка. Вопросы репрезентативности выборок лежат здесь в самой основе исследования: мы ни в коем случае не должны смешивать группы испытуемых по признаку принадлежности их к художественной среде.

Статистическое распределение наблюдаемого признака

Частота наблюдаемого значения

Пусть в результате испытания в выборке объема наблюдаемый признакпринял значения,, …, причем значениенаблюдалосьраз, значение-раз, и т. д., значениенаблюдалосьраз. Тогда частотой наблюдаемого значенияназывается число, значения- числои т. д.

Относительная частота наблюдаемого значения

Относительной частотой наблюдаемого значенияпризнаканазывается отношение частотык объемувыборки:

Понятно, что сумма частот наблюдаемого признака должна давать объем выборки

а сумма относительных частот должна давать единицу:

Эти соображения можно использовать для контроля при составлении статистических таблиц. Если равенства не соблюдаются, то при протоколировании результатов эксперимента была допущена ошибка.

Статистическое распределение наблюдаемого значения

Статистическим распределением наблюдаемого признака называется соответствие между наблюдаемыми значениями признака и отвечающими им частотами (или относительными частотами).

Как правило, статистическое распределение записывается в виде двухстрочной таблицы, в которой в первой строке указываются наблюдаемые значения признака, а во второй - соответствующие им частоты (или относительные частоты):

Статистическая совокупность - множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 9.2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 9.2 Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 9.3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 9.3 Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 9.4 Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 9.5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 9.5 Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.

Похожие публикации