Экономико-математические методы. Экономико-математические методы и моделирование

Современная экономическая теория включает в качестве необходимого инструмента математические модели и методы. Использование математики в экономике позволяет решить комплекс взаимосвязанных проблем.

Во-первых, выделить и формально описать наиболее важные, существенные связи экономических переменных и объектов. Это положение имеет принципиальный характер, поскольку изучение любого явления или процесса ввиду определенной степени сложности предполагает высокую степень абстракции.

Во-вторых, из сформулированных исходных данных и соотношений методами дедукции можно получать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки.

В-третьих, методы математики и статистики позволяют путем индукции получать новые знания об объекте, например, оценивать форму и параметры зависимостей его переменных в наибольшей степени соответствующие имеющимся наблюдениям.

В-четвертых, использование математической терминологии позволяет точно и компактно излагать положения экономической теории, формулировать ее понятия и выводы.

Развитие макроэкономического планирования в современных условиях связано с ростом уровня его формализации. Основу для этого процесса заложил прогресс в области прикладной математики, а именно: теории игр, математического программирования, математической статистики и других научных дисциплин. Большой вклад в математическое моделирование экономики бывшего СССР внесли известные советские ученые В.С. Немчинов, В.В. Новожилов, Л.В. Канторович, Н.П. Федоренко. С. С. Шаталин и др. Развитие экономико-математического направления было связано в основном с попытками формально описать так называемую «систему оптимального функционирования социалистической экономики» (СОФЭ), в соответствии с которой строились многоуровневые системы моделей народнохозяйственного планирования, оптимизационные модели отраслей и предприятий.

Экономико-математические методы имеют следующие направления:

Экономико-статистические методы , включают методы экономической и математической статистики. Экономическая статистика занимается статистическим изучением народного хозяйства в целом и отдельных его отраслей на основе периодической отчетности. Инструментарием математической статистики, используемым для экономических исследований, являются дисперсионный и факторный анализ корреляции и регрессии.

Моделирование экономических процессов заключается в построении экономико-математических моделей и алгоритмов, проведении расчетов по ним с целью получения новой информацию о моделируемом объекте. С помощью экономико-математического моделирования могут решаться задачи анализа экономических объектов и процессов, прогнозирования возможных путей их развития (проигрывание различных сценариев), подготовки информации для принятия решений специалистами.



При моделировании экономических процессов широкое распространение получили: производственные функции, модели экономического роста, межотраслевой баланс, методы имитационного моделирования и др.

Исследование операций – научное направление, связанное с разработкой методов анализа целенаправленных действий и количественного обоснования решений. Типовые задачи исследования операций включают: задачи массового обслуживания, управления запасами, ремонта и замены оборудования, календарного планирования, распределительные задачи и др. Для их решения используются методы математического программирования (линейного, дискретного, динамического и стохастического), методы теории массового обслуживания, теории игр, теории управления запасами, теории расписаний и др., а также программно-целевые методы и методы сетевого планирования и управления.

Экономическая кибернетика – научное направление, занимающееся исследованием и совершенствованием экономических систем на основе общей теории кибернетики. Основные ее направления: теория экономических систем, теория экономической информации, теория систем управления в экономике. Рассматривая управление народным хозяйством как информационный процесс, экономическая кибернетика служит научной основой разработки автоматизированных систем управления.

В основе экономико-математических методов лежит описание наблюдаемых экономических процессов и явлений посредством моделей.

Математическая модель экономического объекта - его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков, объединяющее группы отношений элементов изучаемого объекта в аналогичные отношения элементов модели. Модель – это условный образ экономического объекта, построенная для упрощения исследования последнего. Предполагается, что изучение модели имеет двоякий смысл: с одной стороны, оно дает новые знания об объекте, с другой - позволяет определить наилучшее решение применительно к различным ситуациям.

Математические модели, используемые в экономике, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария. Это модели макро- и микроэкономические, теоретические и прикладные, равновесные и оптимизационные, описательные, матричные, статические и динамические, детерминированные и стохастические, имитационные и др.

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Список использованных источников

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Одним из направлений совершенствования анализа хозяйственной деятельности является внедрение экономико-математических методов и современных ЭВМ. Их применение повышает эффективность экономического анализа за счет расширения изучаемых факторов, обоснования принимаемых управленческих решений, выбора оптимального варианта использования хозяйственных ресурсов, выявления и мобилизации резервов повышения эффективности производства.

Математические методы опираются на методологию экономико-математического моделирования и научно обоснованную классификацию задач анализа хозяйственной деятельности. В зависимости от целей экономического анализа различают следующие экономико-математические модели: в детерминированных моделях - логарифмирование, долевое участие, дифференцирование; в стохастических моделях - корреляционно-регрессивный метод, линейное программирование, теорию массового обслуживания, теорию графов и др.

Стохастический анализ - это метод решения широкого класса задач статистического оценивания. Он предполагает изучение массовых эмпирических данных путем построения моделей изменения показателей за счет факторов, не находящихся в прямых связях, в прямой взаимозависимости и взаимообусловленности. Стохастическая связь существует между случайными величинами и проявляется в том, что при изменении одной из них меняется закон распределения другой.

В экономическом анализе выделяются следующие наиболее типичные задачи стохастического анализа:

Изучение наличия и тесноты связи между функцией и факторами, а также между факторами;

Ранжирование и классификация факторов экономических явлений;

Выявление аналитической формы связи между изучаемыми явлениями;

Сглаживание динамики изменения уровня показателей;

Выявление параметров закономерных периодических колебаний уровня показателей;

Изучение размерности (сложности, многогранности) экономических явлений;

Количественное изменение информативных показателей;

Количественное изменение влияния факторов на изменение анализируемых показателей (экономическая интерпретация полученных уравнений).

Стохастическое моделирование и анализ связей между изученными показателями начинаются с корреляционного анализа. Корреляция состоит в том, что средняя величина одного из признаков изменяется в зависимости от значения другого. Признак, от которого зависит другой признак, принято называть факторным. Зависимый признак именуют результативным. В каждом конкретном случае для установления факторного и результативного признаков в неодинаковых совокупностях необходим анализ природы связи. Так, при анализе различных признаков в одной совокупности заработная плата рабочих в связи с их производственным стажем выступает как результативный признак, а в связи с показателями жизненного уровня или культурными потребностями - как факторный. Часто зависимости рассматривают не от одного факторного признака, а от нескольких. Для этого применяется совокупность методов и приемов выявления и количественной оценки взаимосвязей и взаимозависимостей между признаками.

При исследовании массовых общественно-экономических явлений между факторными признаками проявляется корреляционная связь, при которой на величину результативного признака влияет, помимо факторного, множество других признаков, действующих в разных направлениях одновременно или последовательно. Часто корреляционную связь называют неполной статистической или частичной в отличие от функциональной, которая выражается в том, что при определенном значении переменной (независимая переменная - аргумент) другая (зависимая переменная - функция) принимает строгое значение.

Корреляционную связь можно выявить только в виде общей тенденции при массовом сопоставлении фактов. Каждому значению факторного признака будет соответствовать не одно значение результативного признака, а их совокупность. В этом случае для вскрытия связи необходимо найти среднее значение результативного признака для каждого значения факторного.

Если зависимость прямолинейная:

Значения коэффициентов а и b находится из системы уравнений, полученных по способу наименьших квадратов по формуле:

N - число наблюдений.

В случае прямолинейной формы связи между изучаемыми показателями коэффициент корреляции рассчитывается по формуле:

Если коэффициент корреляции возвести в квадрат, то получим коэффициент детерминации.

Дисконтирование - это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка, по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта). Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, то есть сумма денег, имеющаяся в наличии сегодня, обладает большей ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка, характеризующая относительные изменения за определенный период (обычно равный году).

Многие задачи, с которыми приходится сталкиваться экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.

В современных условиях даже незначительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяются в одну группу под общим названием "оптимизационные методы принятия решений в экономике". Чтобы решить экономическую задачу математическими методами, прежде всего, необходимо построить адекватную ей математическую модель, то есть формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.

В общем случае математическая модель оптимизационной задачи имеет вид:

max (min): Z = Z(x),

при ограничениях

f i (x) Rb i , i = ,

где R - отношения равенства, меньше или больше.

Если целевая функция и функции, входящие в систему ограничений, линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция или система ограничений не линейна, такая задача называется задачей нелинейного программирования.

В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач нелинейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых сегодня имеется хорошее математическое и программное обеспечение.

Метод динамического программирования представляет собой особый математический прием оптимизации нелинейных задач математического программирования, который специально приспособлен к многошаговым процессам. Многошаговым обычно считают процесс, развивающийся во времени и распадающийся на ряд "шагов", или "этапов". При этом метод динамического программирования используется и для решения задач, в которых время не фигурирует. Некоторые процессы распадаются на шаги естественным образом (например, процесс планирования хозяйственной деятельности предприятия на отрезок времени, состоящий из нескольких лет). Многие процессы можно расчленить на этапы искусственно.

Суть метода динамического программирования состоит в том, что вместо поиска оптимального решения сразу для всей сложной задачи предпочитают находить оптимальные решения для нескольких более простых задач аналогичного содержания, на которые расчленяется исходная задача.

Метод динамического программирования также характеризуется тем, что выбор оптимального решения на каждом шаге должен производиться с учетом последствий в будущем. Это означает, что, оптимизируя процесс на каждом отдельном шаге, ни в коем случае нельзя забывать обо всех последующих шагах. Таким образом, динамическое программирование - это дальновидное планирование с учетом перспективы.

Принцип выбора решения в динамическом программировании является определяющим и носит название принципа оптимальности Беллмана. Сформулируем его следующим образом: оптимальная стратегия обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение, принятое в начальный момент, последующие решения должны вести к улучшению ситуации относительно состояния, являющегося результатом первоначального решения.

Таким образом, при решении оптимизационной задачи методом динамического программирования необходимо на каждом шаге учитывать последствия, к которым приведет в будущем решение, принимаемое в данный момент. Исключением является последний шаг, которым заканчивается процесс. Здесь можно принимать такое решение, чтобы обеспечить максимальный эффект. Спланировав оптимальным образом последний шаг, можно "пристраивать" к нему предпоследний так, чтобы результат этих двух шагов был оптимальным, и т.д. Именно таким образом - от конца к началу - можно развернуть процедуру принятия решений. Оптимальное решение, найденное при условии, что предыдущий шаг закончился определенным образом, называют условно-оптимальным решением.

Статистическая теория игр является составной частью общей теории игр, которая представляет собой раздел современной прикладной математики, изучающий методы обоснования оптимальных решений в конфликтных ситуациях. В теории статистических игр различают такие понятия, как исходная стратегическая игра и собственно статистическая игра. В этой теории первого игрока называют "природой", под которой понимают совокупность обстоятельств, в условиях которой приходится принимать решения второму игроку - "статистику". В стратегической игре оба игрока действуют активно, предполагая, что противник - "разумный" игрок. Для стратегической игры характерна полная неопределенность в выборе стратегии каждым игроком, то есть игроки ничего не знают о стратегиях друг друга. В стратегической игре оба игрока действуют на основе детерминированной информации, определенной матрицей потерь.

В собственно статистической игре природа не является активно действующим игроком в том смысле, что она "не разумна" и не пытается противодействовать максимальному выигрышу второго игрока. Статистик (второй игрок) в статистической игре стремится выиграть игру у воображаемого противника - природы. Если в стратегической игре игроки действуют в условиях полной неопределенности, то для статистической игры характерна частичная неопределенность. Дело в том, что природа развивается и "действует" в соответствии со своими объективно существующими законами. У статистика есть возможность постепенно изучать эти законы, например, на основе статистического эксперимента.

Теория массового обслуживания - прикладная область теории случайных процессов. Предметом ее исследования являются вероятностные модели реальных систем обслуживания, где в случайные (или не в случайные) моменты времени возникают заявки на обслуживание и имеются устройства (каналы) выполнения заявок. Теория массового обслуживания исследует математические методы количественной оценки процессов массового обслуживания, качества функционирования систем, где случайными могут быть как моменты появления требований (заявок), так и затраты времени на их исполнение.

Система массового обслуживания находит применение в решении следующих задач: например, тогда, когда в массовом порядке поступают заявки (требования) на обслуживание с последующим их удовлетворением. На практике это могут быть поступление сырья, материалов, полуфабрикатов, изделий на склад и их выдача со склада; обработка широкой номенклатуры деталей на одном и том же технологическом оборудовании; организация наладки и ремонта оборудования; транспортные операции; планирование резервных и страховых запасов ресурсов; определение оптимальной численности отделов и служб предприятия; обработка плановой и отчетной документации и др.

Балансовая модель - это система уравнений, характеризующих наличие ресурсов (продуктов) в натуральном или денежном выражении и направления их использования. При этом наличие ресурсов (продуктов) и потребность в них количественно совпадают. В основу решения таких моделей положены методы линейной векторно-матричной алгебры. Поэтому балансовые методы и модели называют матричными методами анализа. Наглядность изображений различных экономических процессов в матричных моделях и элементарные способы разрешения систем уравнений позволяют применять их в различных производственно-хозяйственных ситуациях.

Математическая теория нечетких множеств, разработанная в 60-е годы XX столетия, сегодня все шире применяется в финансовом анализе деятельности предприятия, включающем анализ и прогноз финансового положения предприятия, анализ изменений оборотного фонда, потоков свободных денежных средств, экономического риска, оценки влияния затрат на прибыль, расчета стоимости капитала. В основе данной теории лежат понятия "нечеткое множество" и "функции принадлежности".

В общем случае решение задач такого типа довольно громоздко, так как имеет место большой объем информации. Практическое использование теории нечетких множеств позволяет развивать традиционные методы финансово-хозяйственной деятельности, адаптировать их к новым потребностям учета неопределенности в будущем основных показателей деятельности предприятий.

Задача 1

По приведенным данным о численности персонала промышленного предприятия рассчитать коэффициент оборота по приему и выбытию рабочих и коэффициент текучести. Сделать выводы.

Решение:

Определим:

1) коэффициент по приему (К пр):

Прошлый год: Кпр = 610 / (2490 + 3500) = 0,102

Отчетный год: Кпр. = 650 / (2539 + 4200) = 0,096

В отчетном году коэффициент внешнего оборота по принятию уменьшился на 0,006 (0,096 - 0,102).

2) коэффициент по увольнению (выбытию) работников (К ув):

Прошлый год: Квыб. = 690 / (2490 + 3500) = 0,115

Отчетный год: Квыб. = 725 / (2539 + 4200) = 0,108

В отчетном году коэффициент внешнего оборота по выбытию также снизился на 0,007 (0,108 - 0,115).

3) коэффициент текучести кадров (К тек):

Прошлый год: Ктек. = (110 + 30) / (2490 + 3500) = 0,023

Отчетный год: Ктек. = (192 + 25) / (2539 + 4200) = 0,032

В отчетном году коэффициент текучести кадров также вырос на 0,009 (0,032 - 0,023), что является отрицательной тенденцией в движении кадров.

4) коэффициент общего оборота рабочей силы (К об):

Прошлый год: Коб = (610 + 690) / (2490 + 3500) = 0,217

Отчетный год: Коб. = (650 + 725) / (2539 + 4200) = 0,204

Коэффициент общего оборота рабочей силы снизился на 0,013 (0,204 - 0,217).

Задача 2

Составить исходную модель объема продукции. Определить тип факторной модели. Рассчитать влияние факторов на изменение объема продукции всеми известными приемами.

Решение:

Результативный показатель - фондоотдача.

Исходная математическая модель:

ФО = ВП / ОФ.

Тип модели - кратный. Общее количество используемых для расчета результативных показателей - 3, т. к. рассчитывается влияние 2-х факторов (2 + 1 = 3). Количество условных результативных показателей - 1, т. к. оно равно количеству факторов минус 1.

Для данной модели применимы следующие приемы: цепной подстановки, индексный и интегральный.

1. Рассчитаем уровень влияния факторов изменения результативного показателя способом цепной подстановки.

Алгоритм решения:

ФО пл = ВП пл /ОФ пл = 20433 / 2593 = 7,88 руб.

ФО усл1 = ВП ф /ОФ пл =20193 / 2593 = 7,786 руб.

ФО ф = ВП ф /ОФ ф =20193 / 2577 = 7,836 руб.

Расчет факторов, повлиявших на изменение фондоотдачи, оформим в таблице.

№ фак-торов

Название факторов

Расчет уровня влияния факторов

Уровень влияния факторов изменения общей суммы прибыли

Измените фондоотдачи за счет изменения объема продукции

7,786-7,88 =-0,094

Измените фондоотдачи за счет изменения основных фондов

7,836-7,786 = 0,05

ИТОГО (балансовая увязка)

2. Рассчитаем уровень влияния факторов изменения результативного показателя интегральным способом.

ВП = ВП ф - ВП пл = 20193 - 20433 = -240;

ОФ = ОФ ф - ОФ пл = 2577 - 2593 = -16.

ФО пл = 20433 / 2593 = 7,88 руб.

ФО ф = 20193 / 2577 = 7,836 руб.

ФО вп = = 15 ln|0,99| = -0,09284

ФО оф = ?ФО общ - ?ФО вп = (7,836-7,88) - (-0,09284) = 0,04884

3. Рассчитаем уровень влияния факторов изменения результативного показателя индексным способом.

I ФО = I ВП I ОФ.

I ФО = (ВП ф / ОФ ф) : (ВП пл / ОФ пл) = 7,836/7,88 = 0,99

I ВП = (ВП ф / ОФ пл) : (ВП пл / ОФ пл) = 7,786 /7,88 = 0,988

I ОФ = (ВП ф / ОФ ф) : (ВП ф / ОФ пл) = 7,836/7,786 = 1,006

I ФО = I ВП I ОФ = 0,988 1,006 = 0,99.

Если из числителя вышеприведенных формул вычесть знаменатель, то получим абсолютные приросты фондоотдачи в целом и за счет каждого фактора в отдельности, т. е. те же результаты, что и способом цепной подстановки.

Задача 3

Определить каким будет средний уровень урожайности, если количество внесенных удобрений составит 20 ц. Определить тесноту связи между показателем "у" и фактором "х".

Дано: Уравнение регрессии

где у - среднее изменение урожайности, ц /га

х - количество внесенных удобрений, ц.

Коэффициент детерминации - 0,92.

Решение:

Средний уровень урожайности равен 62 ц /га.

Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.

Коэффициент корреляции вычисляется по формуле:

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (-1 < R x, y <1). Коэффициент корреляции в квадрате () называется коэффициентом детерминации. Коэффициент корреляции R для данной выборки равен 0,9592 (). Чем он ближе к единице, тем теснее связь между признаками. В данном случае связь очень тесная, почти абсолютная корреляция. Коэффициент детерминации R 2 равен 0,92. Это означает, что уравнение регрессии определяется на 92 % дисперсией результативного признака, а на долю сторонних факторов приходится 8 %.

Коэффициент детерминации показывает долю разброса, учитываемого регрессией, в общем разбросе результативного признака. Этот показатель, равный отношению факторной вариации к полной вариации признака, позволяет судить о том, насколько "удачно" выбран вид функции. Чем больше R 2 , тем больше изменение факторного признака объясняет изменение результативного признака и тем, следовательно, лучше уравнение регрессии, лучше выбор функции.

Список использованных источников

Анализ хозяйственной деятельности предприятия: Учеб. пособие/ Под общ. ред. Л. Л. Ермолович. - Мн.: Интерпрессервис; Экоперспектива, 2001. - 576 с.

Савицкая Г. В. Анализ хозяйственной деятельности предприятия, 7-е изд., испр. - Мн.: Новое знание, 2002. - 704 с.

Савицкая Г. В. Теория анализа хозяйственной деятельности. - М.: Инфра-М, 2007.

Савицкая Г. В. Экономический анализ: Учеб. - 10-е изд., испр. - М.: Новое знание, 2004. - 640 с.

Скамай Л. Г., Трубочкина М. И. Экономический анализ деятельности предприятия. - М.: Инфра-М, 2007.

Рассмотрим ряд основных понятий, связанных с системным анализом и
моделированием социально-экономических систем, чтобы с их помощью более
полно раскрыть суть такого ключевого понятия, как
экономико-математические методы. Термин экономико-математические методы
понимается в свою очередь как обобщающее название комплекса
экономических и математических научных дисциплин, объединенных для
изучения социально-экономических систем и процессов.

Под социально-экономической системой будем понимать сложную
вероятностную динамическую систему, охватывающую процессы производства,
обмена, распределения и потребления материальных и других благ. Она
относится к классу кибернетических систем, т. е. систем управляемых.
Рассмотрим прежде всего понятия, связанные с такими системами и методами
их исследования.

Центральным понятием кибернетики является понятие «система». Единого
определения этого понятия нет; возможна такая формулировка: системой
называется комплекс взаимосвязанных элементов вместе с отношениями между
элементами и между их атрибутами. Исследуемое множество элементов можно
рассматривать как систему, если выявлены следующие четыре признака:

Целостность системы, т. е. принципиальная несводимость свойств системы
к сумме свойств составляющих ее элементов;

Наличие цели и критерия исследования данного множества элементов,

Наличие более крупной, внешней по отношению к данной, системы,
называемой «средой»;

Возможность выделения в данной системе взаимосвязанных частей
(подсистем).

Основным методом исследования систем является метод моделирования, т. е.
способ теоретического анализа и практического действия, направленный на
разработку и использование моделей. При этом под моделью будем понимать
образ реального объекта (процесса) в материальной или идеальной форме
(т. е. описанный знаковыми средствами на каком-либо языке), отражающий
существенные свойства моделируемого объекта (процесса) и замещающий его
в ходе исследования и управления. Метод моделирования основывается на
принципе аналогии, т. е. возможности изучения реального объекта не
непосредственно, а через рассмотрение подобного ему и более доступного
объекта, его модели. В дальнейшем мы будем говорить только об
экономико-математическом моделировании, т. е. об описании знаковыми
математическими средствами социально-экономических систем.

Практическими задачами экономико-математического моделирования являются:

Анализ экономических объектов и процессов;

Экономическое прогнозирование, предвидение развития экономических
процессов;

Выработка управленческих решений на всех уровнях

Хозяйственной иерархии.

Следует, однако, иметь в виду, что далеко не во всех случаях данные,
полученные в результате экономико-математического моделирования, могут
использоваться непосредственно как готовые управленческие решения. Они
скорее могут быть рассмотрены как «консультирующие» средства. Принятие
управленческих решений остается за человеком. Таким образом,
экономико-математическое моделирование является лишь одним из
компонентов (пусть очень важным) в человеко-машинных системах
планирования и управления экономическими системами.

Важнейшим понятием при экономико-математическом моделировании, как и при
всяком моделировании, является понятие адекватности модели, т. е.
соответствия модели моделируемому объекту или процессу. Адекватность
модели - в какой-то мере условное понятие, так как полного соответствия
модели реальному объекту быть не может, что характерно и для
экономико-математического моделирования. При моделировании имеется в
виду не просто адекватность, но соответствие по тем свойствам, которые
считаются существенными для исследования. Проверка адекватности
экономико-математических моделей является весьма серьезной проблемой,
тем более, что ее осложняет трудность измерения экономических величин.
Однако без такой проверки применение результатов моделирования в
управленческих решениях может не только оказаться мало полезным, но и
принести существенный вред.

Социально-экономические системы относятся, как правило, к так называемым
сложным системам. Сложные системы в экономике обладают рядом свойств,
которые необходимо учитывать при их моделировании, иначе невозможно
говорить об адекватности построенной экономической модели. Важнейшие из
этих свойств:

Эмерджентность как проявление в наиболее яркой форме свойства
целостности системы, т.е. наличие у экономической системы таких свойств,
которые не присущи ни одному из составляющих систему элементов, взятому
в отдельности. вне системы. Эмерджентность есть результат возникновения
между элементами системы так называемых синергических связей, которые
обеспечивают увеличение общего эффекта до величины, большей, чем сумма
эффектов элементов системы, действующих независимо. Поэтому
социально-экономические системы необходимо исследовать и моделировать в
целом;

Массовый характер экономических явлений и процессов. Закономерности
экономических процессов не обнаруживаются на основании небольшого числа
наблюдений. Поэтому моделирование в экономике должно опираться на
массовые наблюдения;

Динамичность экономических процессов, заключающаяся в изменении
параметров и структуры экономических систем под влиянием среды (внешних
факторов);

Случайность и неопределенность в развитии экономических явлений.
Поэтому экономические явления и процессы носят в основном вероятностный
характер, и для их изучения необходимо применение
экономико-математических моделей на базе теории вероятностей и
математической статистики;

Невозможность изолировать протекающие в экономических системах явления
и процессы от окружающей среды, чтобы наблюдать и исследовать их в
чистом виде;

Активная реакция на появляющиеся новые факторы, способность
социально-экономических систем к активным, не всегда предсказуемым
действиям в зависимости от отношения системы к этим факторам, способам и
методам их воздействия.

Выделенные свойства социально-экономических систем. естественно,
осложняют процесс их моделирования, однако эти свойства следует
постоянно иметь в виду при рассмотрении различных аспектов
экономико-математического моделирования, начиная с выбора типа модели и
кончая вопросами практического использования результатов моделирования.

1.2. Этапы экономико-математического моделирования

Процесс моделирования, в том числе и экономико-математического, включает
в себя три структурных элемента: объект исследования; субъект
(исследователь); модель, опосредующую отношения между познающим
субъектом и познаваемым объектом. Рассмотрим общую схему процесса
моделирования, состоящую из четырех этапов.

Пусть имеется некоторый объект, который мы хотим исследовать методом
моделирования. На первом э т а п е мы конструируем (или находим в
реальном мире) другой объект - модель исходного объекта-оригинала. Этап
построения модели предполагает наличие определенных сведений об
объекте-оригинале. Познавательные возможности модели определяются тем,
что модель отображает лишь некоторые существенные черты исходного
объекта, поэтому любая модель замещает оригинал в строго ограниченном
смысле. Из этого следует, что для одного объекта может быть построено
несколько моделей, отражающих определенные стороны исследуемого объекта
или характеризующих его с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как
самостоятельный объект исследования. Например, одну из форм такого
исследования составляет проведение модельных экспериментов, при которых
целенаправленно изменяются условия функционирования модели и
систематизируются данные о ее "поведении". Конечным результатом этого
этапа является совокупность знаний о модели в отношении существенных
сторон объекта-оригинала, которые отражены в данной модели.

Третий этап заключается в переносе знаний с модели на оригинал, в
результате чего мы формируем множество знаний об исходном объекте и при
этом переходим с языка модели на язык оригинала. С достаточным
основанием переносить какой-либо результат с модели на оригинал можно
лишь в том случае, если этот результат соответствует признакам сходства
оригинала и модели (другими словами, признакам адекватности).

На четвертом этапе осуществляются практическая проверка полученных с
помощью модели знаний и их использование как для построения обобщающей
теории реального объекта, так и для его целенаправленного преобразования
или управления им. В итоге мы снова возвращаемся к проблематике
объекта-оригинала.

Моделирование представляет собой циклический процесс, т. е. за первым
четырехэтапным циклом может последовать второй, третий и т. д. При этом
знания об исследуемом объекте расширяются и уточняются, а первоначально
построенная модель постепенно совершенствуется. Таким образом, в
методологии моделирования заложены большие возможности
самосовершенствования.

Перейдем теперь непосредственно к процессу экономико-математического
моделирования, т. е. описания экономических и социальных систем и
процессов в виде экономико-математических моделей. Эта разновидность
моделирования обладает рядом существенных особенностей, связанных как с
объектом моделирования, так и с применяемыми аппаратом и средствами
моделирования. Поэтому целесообразно более детально проанализировать
последовательность и содержание этапов экономико-математического
моделирования, выделив следующие шесть этапов: постановка экономической
проблемы, ее качественный анализ; построение математической модели;
математический анализ модели; подготовка исходной информации; численное
решение; анализ численных результатов и их применение. Рассмотрим каждый
из этапов более подробно.

1. Постановка экономической проблемы и ее качественный анализ. На этом
этапе требуется сформулировать сущность проблемы, принимаемые
предпосылки и допущения. Необходимо выделить важнейшие черты и свойства
моделируемого объекта, изучить его структуру и

Взаимосвязь его элементов, хотя бы предварительно сформулировать
гипотезы, объясняющие поведение и развитие объекта.

2. Построение математической модели. Это этап формализации экономической
проблемы, т. е. выражения ее в виде конкретных математических
зависимостей (функций, уравнений, неравенств и др.). Построение модели
подразделяется в свою очередь на несколько стадий. Сначала определяется
тип экономико-математической модели, изучаются возможности ее применения
в данной задаче, уточняются конкретный перечень переменных и параметров
и форма связей. Для некоторых сложных объектов целесообразно строить
несколько разноаспект-ных моделей; при этом каждая модель выделяет лишь
некоторые стороны объекта, а другие стороны учитываются агрегированно и
приближенно. Оправдано стремление построить модель, относящуюся к хорошо
изученному классу математических задач, что может потребовать некоторого
упрощения исходных предпосылок модели, не искажающего основных черт
моделируемого объекта. Однако возможна и такая ситуация, когда
формализация проблемы приводит к неизвестной ранее математической
структуре.

3. Математический анализ модели. На этом этапе чисто математическими
приемами исследования выявляются общие свойства модели и ее решений. В
частности, важным моментом является доказательство существования решения
сформулированной задачи. При аналитическом исследовании выясняется,
единственно ли решение, какие переменные могут входить в решение, в
каких пределах они изменяются, каковы тенденции их изменения и т. д.
Однако модели сложных экономических объектов с большим трудом поддаются
аналитическому исследованию; в таких случаях переходят к численным
методам исследования.

4. Подготовка исходной информации. В экономических задачах это, как
правило, наиболее трудоемкий этап моделирования, так как дело не
сводится к пассивному сбору данных. Математическое моделирование
предъявляет жесткие требования к системе информации; при этом надо
принимать во внимание не только принципиальную возможность подготовки
информации требуемого качества, но и затраты на подготовку
информационных массивов. В процессе подготовки информации используются
методы теории вероятностей, теоретической и математической статистики
для организации выборочных обследований, оценки достоверности данных и
т.д. При системном экономико-математическом моделировании результаты
функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Этот этап включает разработку алгоритмов
численного решения задачи, подготовку программ на ЭВМ и непосредственное
проведение расчетов;

При этом значительные трудности вызываются большой размерностью
экономических задач. Обычно расчеты на основе экономико-математической
модели носят многовариантный характер. Многочисленные модельные
эксперименты, изучение поведения модели при различных условиях возможно
проводить благодаря высокому быстродействию современных ЭВМ. Численное
решение существенно дополняет результаты аналитического исследования, а
для многих моделей является единственно возможным.

6. Анализ численных результатов и их применение. На этом этапе прежде
всего решается важнейший вопрос о правильности и полноте результатов
моделирования и применимости их как в практической деятельности, так и в
целях усовершенствования модели. Поэтому в первую очередь должна быть
проведена проверка адекватности модели по тем свойствам, которые выбраны
в качестве существенных (другими словами, должны быть произведены
верификация и валидация модели). Применение численных результатов
моделирования в экономике направлено на решение практических задач
(анализ экономических объектов, экономическое прогнозирование развития
хозяйственных и социальных процессов, выработка управленческих решений
на всех уровнях хозяйственной иерархии).

Перечисленные этапы экономико-математического моделирования находятся в
тесной взаимосвязи, в частности, могут иметь место возвратные связи
этапов. Так, на этапе построения модели может выясниться, что постановка
задачи или противоречива, или приводит к слишком сложной математической
модели; в этом случае исходная постановка задачи должна быть
скорректирована. Наиболее часто необходимость возврата к предшествующим
этапам моделирования возникает на этапе подготовки исходной информации.
Если необходимая информация отсутствует или затраты на ее подготовку
слишком велики, приходится возвращаться к этапам постановки задачи и ее
формализации, чтобы приспособиться к доступной исследователю информации.

Выше уже сказано о циклическом характере процесса моделирования.
Недостатки, которые не удается исправить на тех или иных этапах
моделирования, устраняются в последующих циклах. Однако результаты
каждого цикла имеют и вполне самостоятельное значение. Начав
исследование с построения простой модели, можно получить полезные
результаты, а затем перейти к созданию более сложной и более совершенной
модели, включающей в себя новые условия и более точные математические
зависимости.

1.3. Классификация экономико-математических методов и моделей

Суть экономико-математического моделирования заключается в описании
социально-экономических систем и процессов в виде
экономико-математических моделей. В § 1.1 кратко рассмотрен смысл
понятий «метод моделирования» и «модель». Исходя из этого
экономико-математические методы следует понимать как инструмент, а
экономико-математические модели - как продукт процесса
экономико-математического моделирования.

Рассмотрим вопросы классификации экономико-математических методов. Эти
методы, как отмечено выше, представляют собой комплекс
экономико-математических дисциплин, являющихся сплавом экономики,
математики и кибернетики. Поэтому классификация экономико-математических
методов сводится к классификации научных дисциплин, входящих в их
состав. Хотя общепринятая классификация этих дисциплин пока не
выработана, с известной степенью приближения в составе
экономико-математических методов можно выделить следующие разделы:

Экономическая кибернетика: системный анализ экономики, теория
экономической информации и теория управляющих систем;

Математическая статистика: экономические приложения данной дисциплины
- выборочный метод, дисперсионный анализ, корреляционный анализ,
регрессионный анализ, многомерный статистический анализ, факторный
анализ, теория индексов и др.;

Математическая экономия и изучающая те же вопросы с количественной
стороны эконометрия: теория экономического роста, теория
производственных функций, межотраслевые балансы, национальные счета,
анализ спроса и потребления, региональный и пространственный анализ,
глобальное моделирование и др.;

Методы принятия оптимальных решений, в том числе исследование операций
в экономике. Это наиболее объемный раздел, включающий в себя следующие
дисциплины и методы: оптимальное (математическое) программирование, в
том числе методы ветвей и границ, сетевые методы планирования и
управления, программно-целевые методы планирования и управления, теорию
и методы управления запасами, теорию массового обслуживания, теорию игр.
теорию и методы принятия решений. теорию расписаний. В оптимальное
(математическое) программирование входят в свою очередь линейное
программирование, нелинейное программирование, динамическое
программирование, дискретное (целочисленное) программирование,
дробно-линейное программирование, параметрическое программирование,
сепарабельное программирование, стохастическое программирование,
геометрическое программирование;

Методы и дисциплины, специфичные отдельно как для централизованно
планируемой экономики, так и для. рыночной (конкурентной) экономики. К
первым можно отнести теорию оптимального функционирования экономики,
оптимальное планирование, теорию оптимального ценообразования, модели
материально-технического снабжения и др. Ко вторым - методы, позволяющие
разработать модели свободной конкуренции, модели капиталистического
цикла, модели монополии, модели индикативного планирования, модели
теории фирмы и т. д. Многие из методов, разработанных для
централизованно планируемой экономики, могут оказаться полезными и при
экономико-математическом моделировании в условиях рыночной экономики;

Методы экспериментального изучения экономических явлений. К ним
относят, как правило, математические методы анализа и планирования
экономических экспериментов, методы машинной имитации (имитационное
моделирование), деловые игры. Сюда можно отвести также и методы
экспертных оценок, разработанные для оценки явлений, не поддающихся
непосредственному измерению. Перейдем теперь к вопросам классификации
экономико-математических моделей, другими словами, математических
моделей социально-экономических систем и процессов. Единой системы
классификации таких моделей в настоящее время также не существует,
однако обычно выделяют более десяти основных признаков их классификации,
или классификационных рубрик. Рассмотрим некоторые из этих рубрик.

По общему целевому назначению экономико-математические модели делятся на
теоретико-аналитические, используемые при изучении общих свойств и
закономерностей экономических процессов, и прикладные, применяемые в
решении конкретных экономических задач анализа, прогнозирования и
управления. Различные типы прикладных экономико-математических моделей
как раз и рассматриваются в данном учебном пособии.

По степени агрегирования объектов моделирования модели разделяются на
макроэкономические и микроэкономические. Хотя между ними и нет четкого
разграничения, к первым из них относят модели, отражающие
функционирование экономики как единого целого, в то время как
микроэкономические модели связаны, как правило, с такими звеньями
экономики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения,
выделяют балансовые модели, выражающие требование соответствия наличия
ресурсов и их использования; трендовые модели, в которых развитие
моделируемой экономической системы отражается через тренд (длительную
тенденцию) ее основных показателей; оптимизационные модели,
предназначенные для выбора наилучшего варианта из определенного числа
вариантов производства, распределения или потребления; имитационные
модели, предназначенные для использования в процессе машинной имитации
изучаемых систем или процессов и др.

По типу информации, используемой в модели экономико-математические
модели делятся на аналитические, построенные на априорной информации, и
идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых
все зависимости отнесены к одному моменту времени, и динамические,
описывающие экономические системы в развитии.

По учету фактора неопределенности модели распадаются на
детерминированные, если в них результаты на выходе однозначно
определяются управляющими воздействиями, и стохастические
(вероятностные), если при задании на входе модели определенной
совокупности значений на ее выходе могут получаться различные результаты
в зависимости от действия случайного фактора.

Экономико-математические модели могут классифицироваться также по
характеристике математических объектов, включенных в модель, другими
словами. по типу математического аппарата, используемого в модели. По
этому признаку могут быть выделены матричные модели, модели линейного и
нелинейного программирования, корреляционно-регрессионные модели, модели
теории массового обслуживания, модели сетевого планирования и
управления, модели теории игр и т.д.

Наконец, по типу подхода к изучаемым социально-экономическим системам
выделяют дескриптивные и нормативные модели. При дескриптивном
(описательном) подходе получаются модели, предназначенные для описания и
объяснения фактически наблюдаемых явлений или для прогноза этих явлений;
в качестве примера дескриптивных моделей можно привести названные ранее
балансовые и трендовые модели. При нормативном подходе интересуются не
тем, каким образом устроена и развивается экономическая система, а как
она должна быть устроена и как должна действовать в смысле определенных
критериев. В частности, все оптимизационные модели относятся к типу
нормативных; другим примером могут служить нормативные модели уровня
жизни.

Рассмотрим в качестве примера экономико-математическую модель
межотраслевого баланса (ЭММ МОБ). С учетом приведенных выше
классификационных рубрик это прикладная, макроэкономическая,
аналитическая, дескриптивная, детерминированная, балансовая, матричная
модель; при этом существуют как статические, так и динамические ЭММ МОБ.

Экономико-математические методы основаны на использовании корреляционного и регрессионного анализа, позволяющего устанавливать тесноту связи и вид зависимости среднего значения какой-либо величины от некоторой другой или от нескольких величин. В нашем случае - это установление зависимости развития спроса от влияния наиболее главных факторов. в практике прогнозирования товарно-групповой структуры спроса чаще всего применяются трендовые и регрессионные модели:

Трендовые модели прогнозирования спроса представляют собой уравнения, формализующие устойчивые процессы его развития. Они применяются для прогнозирования наиболее стабильных закономерностей по крупным товарным подотраслям (например, соотношение спроса на продовольственные и непродовольственные товары). Основной параметр трендовых моделей -время, то есть по существу речь также идет об экстраполяции на прогнозируемый период тенденций и закономерностей базисного периода.

Регрессионные (факторные) модели отражают количественную связь одного показателя с другим или с группой других (множественная регрессия). В качестве переменных выступают факторы, определяющие динамику спроса. Математическую основу построения моделей составляют важнейшие положения теории вероятности, математической статистики и высшей математики. Процесс построения подобных моделей состоит из нескольких последовательных этапов.

Первым и важнейшим этапом моделирования развития товарно-групповой структуры спроса населения является отбор факторов. Они должны отражать объективные процессы изучаемого явления, быть количественно измеримыми и независимыми друг от друга.

На втором этапе рассчитывается сила влияния или теснота связи между факторами и спросом в базисном периоде. Она определяется с помощью коэффициентов корреляции и критериев согласия.

На третьем этапе выявляется математическая форма связи или вид зависимости спроса от факторов, подбираются функции, наиболее точно описывается процесс развития спроса.

Четвертый этап: расчет параметров уравнения. Параметры уравнений выражают степень и направление воздействия каждого фактора на спрос и рассчитываются методом наименьших квадратов.

Пятый этап: оценка прогностической ценности модели на основе ретроспективных расчетов.

Экономико-математические методы эффективно используется при краткосрочном прогнозировании. Так как объективная реальность нашей экономики состоит в том, что довольно трудно выявить и определить количественно более менее стабильные факторы, влияющие на прогнозируемый процесс. Поэтому составление среднесрочных и, тем более, долгосрочных прогнозов представляется довольно затруднительным в современных условиях. И как правило, преобладает прогнозирование на краткосрочные периоды. Экономико-математическое моделирование является основой экономической прогностики. Оно позволяет на строго количественной основе выявить характер связей между отдельными элементами рынка и теми факторами, которые влияют на его развитие. Что особенно важно - математические модели дают возможность наблюдать, как станут развиваться события при тех или иных начальных допущениях


При экономико-математическом моделировании спроса может также использоваться группа методов - экспоненциальное сглаживание и прогнозирование, основанные на использовании уже сделанных прогнозов тенденций развития спроса и самых последних данных о продаже товаров.

Математические методы помогают вскрыть количественные явления и взаимосвязи. Но они лишь продолжение экономического анализа, конечный результат в первую очередь зависит от выбора базисного периода, отбора факторов, от того, правильно ли определена степень устойчивости явления.

Графические методы связаны геометрическим изображением функциональной зависимости при помощи линий на плоскости. С помощью координатной сетки строятся графики зависимости, например, уровня издержек от объема произведенной и реализованной продукции, а также графики, на которых можно изображать корреляционные связи между показателями (диаграммы сравнения, кривые распределения, диаграммы временных рядов, статистические картограммы).

Пример: построение сетевого графика при строительстве и монтаже предприятий. Составляется таблица работ и ресурсов, где в технологической последовательности указываются их характеристика, объем, исполнитель, сменность, потребность в материалах. Продолжительность выполнения задания и другая информация. Исходя из данных показателей, подготавливают сетевой график. Оптимизация графика осуществляется посредством сокращения критического пути, т.е. минимизации сроков выполнения работ при заданных уровнях ресурсов, минимизации уровня потребления ресурсов при фиксированных сроках выполнения работ.

Метод корреляционно-регрессивного анализа используют для определения тесноты связи между показателями, не находящимися в функциональной зависимости. Теснота связи измеряется корреляционным отношением (для криволинейной зависимости). Для прямолинейной зависимости исчисляется коэффициент корреляции. Метод применяют при решении задач на «запуск-выпуск».

Пример: определить зависимость выпуска изделий в среднем от их запуска, составив соответствующее управление регрессии.

Метод линейного программирования сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин. Основано на решение системы линейных уравнений, когда зависимость между явлениями строго функциональна.

Пример: задачи рациональности использования времени работы производственного оборудования.

Методы динамического программирования применяют при решении оптимизационных задач, в которых целевая функция и ограничения характеризуют нелинейными зависимостями.

Пример: заполнить транспортное средство грузоподъемностью Х грузом, состоящим из определенных предметов так, чтобы стоимость всего груза оказалась максимальной.

Математическая теория игр исследует оптимальные стратегии в ситуациях игрового характера. Решение требует определенности в формулировке условий: установления количества игроков, возможных выигрышей, определения стратегии.

Пример: максимизировать среднюю величину дохода от реализации выпущенной продукции, учитывая капризы погоды.

Математическая теория массового обслуживания.

Пример: обеспечение рабочих необходимым инструментом.

Матричный метод основан на линейной и векторно-матричной алгебре, применяется для изучения сложных и высокоразмерных структур на отраслевом уровне, ан уровне предприятий.

Пример: выявить распределение между цехами продукции, идущей на внутреннее потребление, и общие объемы выпускаемой продукции, если заданы параметры прямых затрат и конечного продукта.

Рассмотрим особенности методики экономического анализа применительно к изучению спроса на товар.

Прогнозирование спроса может осуществляться различными методами, в частности можно выделить три основные группы: методы экономико-математического моделирования (экстрополяционные методы), нормативные методы, методы экспертных оценок.

Методы простой (формальной) экстраполяции заключаются в перенесении на будущий период прошлых и настоящих тенденций в развитии товарно-групповой структуры спроса на базе анализа динамического ряда.

Для экстраполяции информацию о динамике рынка представляют в той или иной форме - графической, статистической, математической, логической. В любом случае считают, что экономическим процессам присуща «инерция» или обязательное продолжение направления их течения в ближайшем будущем. Экстраполяции требуют от исследователя рынка крайней осмотрительности. Мало изучить прошлые тенденции рынка - необходимо принять в расчет новые условия и факторы, которые не были характерны для прошлого, но возможно появятся в будущем. Одновременно необходимо избавляться от учета факторов и обстоятельств, которые потеряли свою актуальность и уже не оказывают влияния на ход развития событий на данном рынке.

Данный метод достаточно прост и доступен, однако использование его целесообразно только на такой период, в котором маловероятно изменение тенденций, то есть на краткосрочный, и для укрупненных товарных групп.

К методам простой экстраполяции относятся и расчеты эластичности спроса в зависимости от изменения какого-либо фактора.

2.Экономико-математические методы и модели.

Все существующие модели могут быть условно разделены на два класса - модели материальные, т.е. объективно существующие (которые можно "потрогать руками"), и модели абстрактные, существующие в сознании человека. Одним из подклассов абстрактных моделей являются модели математические.

Предметом данного изучения будут математические модели, применяемые для анализа различных явления и процессов, имеющих экономическую природу.

Применение математических методов существенно расширяет возможности экономического анализа, позволяет сформулировать новые постановки экономических задач, повышает качество принимаемых управленческих решений.

Математические модели экономики, отражая с помощью математических соотношений основные свойства экономических процессов и явлений, представляют собой эффективный инструмент исследования сложных экономических проблем.

В современной научно-технической деятельности математические модели являются важнейшей формой моделирования, а в экономических исследованиях и практике планирования и управления – доминирующей формой.

Математические модели экономических процессов и явлений называют экономико-математическими моделями (ЭММ).

На базе использования ЭММ реализуются прикладные программы, предназначенные для решения задач экономического анализа, планирования и управления.

Математические модели являются важнейшим компонентом (наряду с базами данных, техническими средствами, человеко-машинным интерфейсом) так называемых систем поддержки решений.

Система поддержки решений (CПР) - это человеко-машинная система, позволяющая использовать данные, знания, объективные и субъективные модели для анализа и решения слабоструктурированных и неструктурированных проблем.

Классифицировать экономико-математические модели можно по различным основаниям:

    По целевому назначению модели можно разделить на:

    1. теоретико-аналитические, применяемые для исследования наиболее

      общих свойств и закономерностей развития экономических процессов;

      прикладные, используемые для решения конкретных задач.

    По уровням исследуемых экономических процессов:

    1. производственно-технологические;

      социально-экономические.

    По характеру отражения причинно-следственных связей:

    1. детерминированные;

      недетерминированные (вероятностные, стохастические), учитывающие фактор неопределённости.

    По способу отражения фактора времени:

    1. статические. Здесь все зависимости относятся к одному моменту или периоду времени;

      динамические, характеризующие изменения процессов во времени.

    По форме математических зависимостей:

    1. линейные. Наиболее удобны для анализа и вычислений, вследствие чего получили большое распространение;

      нелинейные.

    По степени детализации (степени огрубления структуры):

    1. агрегированные ("макромодели");

      детализированные ("микромодели").

Для понимания структуры важное значение имеет схема, представленная на рисунке 1.3. В правой части рисунка показаны основные классы экономико-математических методов (классификация по используемому математическому аппарату), а в левой части - важнейшие направления применения методов.

Следует помнить также, что каждый из методов может быть применен для решения различных по специфике задач. И наоборот, одна и та же задача может решаться различными методами.

расход рынок программирование математический

Рисунок 1.3 - Важнейшие области применения основных классов ЭММ

На схеме экономико-математические методы представлены в виде некоторых укрупненных группировок. В двух словах опишем их.

    Линейное программирование - линейное преобразование переменных в системах линейных уравнений. Сюда можно отнести: симплекс-метод, распределительный метод, статический матричный метод решения материальных балансов.

    Дискретное программирование представлено двумя классами методов: локализационные и комбинаторные методы. К локализационным относятся методы линейного целочисленного программирования. К комбинаторным, например, метод ветвей и границ.

    Математическая статистика используется для корреляционного, регрессионного и дисперсионного анализа экономических процессов и явлений. Корреляционный анализ применяется для установления тесноты связи между двумя или более стохастически независимыми процессами или явлениями. Регрессионный анализ устанавливает зависимость случайной величины от неслучайного аргумента. Дисперсионный анализ - установление зависимости результатов наблюдений от одного или нескольких факторов в целях выявления важнейших.

    Динамическое программирование используется для планирования и анализа экономических процессов во времени. Динамическое программирование представляется в виде многошагового вычислительного процесса с последовательной оптимизацией целевой функции. Некоторые авторы относят сюда же имитационное моделирование.

    Теория игр представляется совокупностью методов, используемых для определения стратегии поведения конфликтующих сторон.

    Теория массового обслуживания - большой класс методов, где на основе теории вероятностей оцениваются различные параметры систем, характеризуемых как системы массового обслуживания.

    Теория управления запасами объединяет в себе методы решения задач, в общей формулировке сводящихся к определению рационального размера запаса какой-либо продукции при неопределенном спросе на нее.

    Стохастическое программирование. Здесь исследуемые параметры являются случайными величинами.

    Нелинейное программирование относится к наименее изученному, применительно к экономическим явлениям и процессам, математическому направлению.

    Теория графов - направление математики, где на основе определенной символики представляется формальное описание взаимосвязанности и взаимообусловленности множества элементов (работ, ресурсов, затрат и т.п.). До настоящего времени наибольшее практическое применение получили так называемые сетевые графики.

Принципы построения экономико-математических моделей

Итак, рассмотрим основные принципы построения ЭММ:

    Принцип достаточности исходной информации. В каждой модели должна использоваться только та информация, которая известна с точностью, требуемой для получения результатов моделирования.

    Принцип инвариантности (однозначности) информации требует, чтобы входная информация, используемая в модели, была независима от тех параметров моделируемой системы, которые еще неизвестны на данной стадии исследования.

    Принцип преемственности. Сводится к тому, что каждая последующая модель не должна нарушать свойств объекта, установленных или отраженных в предыдущих моделях.

    Принцип эффективной реализуемости. Необходимо, чтобы модель могла быть реализована при помощи современных вычислительных средств.

Основные этапы процесса моделирования были рассмотрены выше (рисунок 1.2). В различных отраслях знаний они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования (рисунок 1.4).

Рисунок 1.4 - Этапы экономико-математического моделирования

1. Постановка проблемы и её качественный анализ. Главное на этом этапе - чётко сформулировать сущность проблемы, определить принимаемые допущения, а также определить те вопросы, на которые требуется получить ответ.

Этап включает выделение важнейших черт и свойств моделируемого объекта, основных зависимостей, связывающих его элементы. Здесь же происходит формулирование гипотез, хотя бы предварительно объясняющих поведение объекта.

2. Построение математической модели. Это этап формализации задачи, т.е. выражения ее в виде математических зависимостей и отношений (функций, уравнений, неравенств, схем). Как правило, сначала определяется тип математической модели, а затем уточняются детали.

Неправильно полагать, что, чем больше факторов учитывает модель, тем лучше она работает и дает лучшие результаты. Излишняя сложность модели затрудняет процесс исследования. При этом нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

3. Математический анализ модели. Цель - выявление общих свойств и характеристик модели. Применяются чисто математические приёмы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удастся доказать, что задача не имеет решения, то необходимость в последующей работе по данному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации.

Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда не удается выяснить общих свойств модели аналитическими методами, а упрощение модели приводит к недопустимым результатам, прибегают к численным методам исследования.

4. Подготовка исходной информации. Численное моделирование предъявляет жесткие требования к исходной информации. В то же время реальные возможности получения информации существенно ограничивают выбор используемых моделей. При этом принимается во внимание не только возможность подготовки информации (за определенный срок), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффекта от использования данной информации.

5. Численное решение. Это составление алгоритмов, разработка программ и непосредственное проведение расчётов на ЭВМ.

6. Анализ результатов и их применение. На заключительной стадии проверяются правильность, полнота и степень практической применимости полученных результатов.

Естественно, что после каждой из перечисленных стадий возможен возврат к одной из предыдущих в случае необходимости уточнения информации, пересмотра результатов выполнения отдельных этапов. Например, если на этапе 2 формализовать задачу не удается, то необходимо вернуться к постановке проблемы (этап 1). Соответствующие связи на рисунке 1.4 не показаны, чтобы не загромождать схему. Таким образом, выясним, как соотносятся между собой общая схема процесса моделирования (рисунок 1.2) и этапы экономико-математического моделирования (рисунок 1.4). Первые пять стадий более дифференцированно характеризуют процесс экономико-математического исследования, чем общая схема: стадии 1 и 2 соответствуют этапу I общей схемы, стадии 3, 4 и 5 - этапу II. Напротив, стадия 6 включает этапы III и IV общей схемы.

Похожие публикации