Дисперсионный анализ статистика. В этом окне также можете выбрать способ построения модели: диалоговый режим или использовать мастер анализа

Дисперсионный анализ

Курсовая работа по дисциплине: «Системный анализ»

Исполнитель студент гр. 99 ИСЭ-2 Жбанов В.В.

Оренбургский государственный университет

Факультет информационных технологий

Кафедра прикладной информатики

г. Оренбург-2003

Введение

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации /1/.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ 2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.

Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы /2/.

1 Дисперсионный анализ

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

Перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

Иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ 2 . Она является мерой вариации частных средних по группам

вокруг общей средней и определяется по формуле: ,

где k - число групп;

n j - число единиц в j-ой группе;

- частная средняя по j-ой группе; - общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия σ j 2 .

.

Между общей дисперсией σ 0 2 , внутригрупповой дисперсией σ 2 и межгрупповой дисперсией

существует соотношение: + σ 2 .

Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе /2/.

1.2 Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

x ij = μ + F j + ε ij , (1)

где х ij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

F i – эффект, обусловленный влиянием i-го уровня фактора;

ε ij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

Математическое ожидание возмущения ε ij равно нулю для любых i, т.е.

M(ε ij) = 0; (2)

Возмущения ε ij взаимно независимы;

Дисперсия переменной x ij (или возмущения ε ij) постоянна для

любых i, j, т.е.

D(ε ij) = σ 2 ; (3)

Переменная x ij (или возмущение ε ij) имеет нормальный закон

распределения N(0;σ 2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Общие определения

Целью дисперсионного анализа (ANOVA – Analysis of Variation) является проверка значимости различия между средними в разных группах с помощью сравнения дисперсий этих групп. Разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью.

Проверяемая гипотеза состоит в том, что различия между группами нет. При истинности нулевой гипотезы, оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. При ложности - значимо отклоняться.

В целом дисперсионный анализ может быть разделён на несколько видов:

  • одномерный (одна зависимая переменная) и многомерный (несколько зависимых переменных);

  • однофакторный (одна группирующая переменная) и многофакторный (несколько группирующих переменных) с возможным взаимодействием между факторами;

  • с простыми измерениями (зависимая переменная измеряется лишь один раз) и с повторными (зависимая переменная измеряется несколько раз).

В STATISITICA реализованы все известные модели дисперсионного анализа.

В STATISITICA дисперсионный анализ можно провести с помощью модуля Дисперсионный анализ в блоке STATISITICA Base (Анализ -> Дисперсионный анализ(ДА)) . Для построения модели специального вида используется полная версия Дисперсионного анализа, представленная в модулях Общие линейные модели , Обобщённые линейные и нелинейные модели , Общие регрессионные модели , Общие модели частных наименьших квадратов из блока Углубленные методы анализа (STATISTICA Advanced Linear/Non-Linear Models ).

в начало

Пошаговый пример в STATISTICA

Мы будем иллюстрировать возможности дисперсионного анализа в STATISITICA , рассматривая пошаговый модельный пример.

Исходный файл данных описывает совокупность людей с разным уровнем дохода, образования, возраста и пола. Рассмотрим, как влияют уровень образования, возраст и пол на уровень дохода.

По возрасту все люди были разделены на четыре группы:

  • до 30 лет;

  • от 31 до 40 лет;

  • от 41 до 50 лет;

  • от 51 года.

По уровню образования произошло деление на 5 групп:

  • незаконченное среднее;

  • среднее;

  • среднее профессиональное;

  • незаконченное высшее;

  • высшее.

Так как данные модельные, то полученные результаты будут носить в основном качественный характер и иллюстрировать способ проведения анализа.

Шаг 1. Выбор анализа

Выберем дисперсионный анализ из меню: Анализ -> Углубленные методы анализа -> Общие линейные модели .

Рис. 1. Выбор дисперсионного анализа из выпадающего меню STATISTICA

Далее откроется окно, в котором представлены различные виды анализа. Выбираем Вид анализа Факторный Дисперсионный анализ .


Рис. 2. Выбор вида анализа

В этом окне также можете выбрать способ построения модели: диалоговый режим или использовать мастер анализа. Выберем диалоговый режим.

Шаг 2. Задание переменных

Из открытого файла данных выберем переменные для анализа, щелкните кнопку Переменные , выберете:

Доход – зависимая переменная,

Уровень образования , Пол и Возраст – категориальные факторы (предикторы).

Заметим, что Коды факторов в этом простом примере можно не задавать. При нажатии на кнопку OK , STATISTICA задаст их автоматически.


Рис. 3. Задание переменных

Шаг 3. Изменение опций

Обратимся к вкладке Опции в окне GLM Факторный ДА .


Рис. 4. Вкладка Опции

В этом диалоговом окне вы можете:

  • выбрать случайные факторы;

  • задать тип параметризации модели;

  • указать тип сумм квадратов (SS), имеется 6 различных сумм квадратов (SS);

  • включить проведение кросс-проверки.

Оставим все установки по умолчанию (этого достаточно в большинстве случаев) и нажмём кнопку ОК .

Шаг 4. Анализ результатов – просмотр всех эффектов

Результаты анализа можно посмотреть в окне Результаты с помощью вкладок и группы кнопок. Рассмотрим, например, вкладку Итоги .


Рис. 5. Окно анализа результатов: вкладка Итоги

С этой вкладки можно получить доступ ко всем основным результатам. Воспользуйтесь остальными вкладками для получения дополнительных результатов. Кнопка Меньше позволяет изменить диалоговое окно результатов, удалив вкладки, которые, как правило, не используются.

При нажатии кнопки Проверить все эффекты получаем следующую таблицу.


Рис. 6. Таблица всех эффектов

Эта таблица выводит основные результаты анализа: суммы квадратов, степени свободы, значения F-критерия, уровни значимости.

Для удобства исследования значимые эффекты (p<.05) выделены красным цветом. Два главных эффекта (Уровень образования и Возраст ) и некоторые взаимодействия в данном примере являются значимыми (p<.05).

Шаг 5. Анализ результатов – просмотр заданных эффектов

Чтобы посмотреть, каким образом средний уровень дохода различается по категориям, удобнее всего воспользоваться графическими средствами. При нажатии на кнопку Все эффекты/графики появится следующее диалоговое окно.


Рис. 7. Окно Таблица всех эффектов

В окне перечислены все рассматриваемые эффекты. Статистически значимые эффекты помечены *.

Например, выберем эффект Возраст , в группе Отображать укажем Таблицу и нажмём ОК . Появится таблица, в которой для каждого уровня эффекта приведено среднее значение зависимой переменной (Доход) , величина стандартной ошибки и границы доверительных пределов.


Рис. 8. Таблица с описательными статистиками по уровням переменной Возраст

Эту таблицу удобно представить в графическом виде. Для этого выберем График в группе Отображать диалогового окна Таблица всех эффектов и нажмём ОК . Появится соответствующий график.


Рис. 9. График зависимости среднего дохода от возраста

Из графика ясно видно, что между группами людей разного возраста есть разница в уровне дохода. Чем выше возраст, тем больше доход.

Аналогичные операции проведём для взаимодействия нескольких факторов. В диалоговом окне выберем Пол *Возраст и нажмём ОК .


Рис. 10. График зависимости среднего дохода от пола и возраста

Получен неожиданный результат: для опрошенных людей в возрасте до 50 лет уровень дохода растёт с возрастом и не зависит от пола; для опрошенных людей старше 50 лет женщины имеют значимо больший доход, чем мужчины.

Стоит построить полученный график в разрезе уровня образования. Возможно, такая закономерность нарушается в некоторых категориях или, наоборот, носит универсальный характер. Для этого выберем Уровень образования * Пол * Возраст и нажмём ОК .


Рис. 11. График зависимости среднего дохода от пола, возраста, уровня образования

Видим, что полученная зависимость не характерна для среднего и среднего профессионального образования. В остальных случаях она справедлива.

Шаг 6. Анализ результатов – оценка качества модели

Выше в основном использовались графические средства дисперсионного анализа. Рассмотрим некоторые другие полезные результаты, которые можно получить.

Во-первых, интересно посмотреть, какую долю изменчивости объясняют рассматриваемые факторы и их взаимодействия. Для этого во вкладке Итоги нажмём на кнопку Общая R модели . Появится следующая таблица.

Рис. 12. Таблица SS модели и SS остатков

Число в столбце Множеств. R2 – квадрат множественного коэффициента корреляции; оно показывает, какую долю изменчивости объясняет построенная модель. В нашем случае R2 = 0.195, что говорит о невысоком качестве модели. В самом деле, на уровень дохода влияют не только факторы, внесённые в модель.

Шаг 7. Анализ результатов – анализ контрастов

Часто требуется не только установить различие в среднем значении зависимой переменной для разных категорий, но и установить величину различия для заданных категорий. Для этого следует исследовать контрасты.

Выше было показано, что уровень дохода для мужчин и женщин значимо отличается для возраста от 51, в остальных случаях различие не значимо. Выведем разницу в уровне дохода для мужчин и женщин в возрасте выше 51 года и между 40 и 50 годами.

Для этого перейдём во вкладку Контрасты и выставим все значения следующим образом.


Рис. 13. Вкладка Контрасты

При нажатии кнопки Вычислить появится несколько таблиц. Нас интересует таблица с оценками контрастов.


Рис. 14. Таблица Оценки контрастов

Можно сделать следующие выводы:

  • для мужчин и женщин старше 51 года разница в уровне дохода составляет 48,7 тыс. долл. Разница значима;

  • для мужчин и женщин в возрасте от 41 до 50 лет разница в уровне дохода составляет 1,73 тыс. долл. Разница не значима.

Аналогично можно задать более сложные контрасты или воспользоваться одним из заранее заданных наборов.

Шаг 8. Дополнительные результаты

Используя остальные вкладки окна результатов можно получить следующие результаты:

  • средние значения зависимой переменной для выбранного эффекта – вкладка Средние ;

  • проверка апостериорных критериев (post hoc) – вкладка Апостериорные ;

  • проверка сделанных для проведения дисперсионного анализа предположений – вкладка Предположения ;

  • построение профилей отклика/желательности – вкладка Профили ;

  • анализ остатков – вкладка Остатки ;

  • вывод матриц, используемых в анализе – вкладка Матрицы ;

  • 5.1. Что такое дисперсионный анализ?

    Дисперсионный анализ разработан в 20-х годах XX века английским математиком и генетиком Рональдом Фишером. По данным опроса среди ученых, где выяснялось, кто сильнее всего повлиял на биологию XX века, первенство получил именно сэр Фишер (за свои заслуги он был награжден рыцарским званием - одним из высших отличий в Великобритании); в этом отношении Фишер сравним с Чарльзом Дарвином, оказавшим наибольшее влияние на биологию XIX века.

    Дисперсионный анализ (Analis of variance) является сейчас отдельной отраслью статистики. Он основан на открытом Фишером факте, что меру изменчивости изучаемой величины можно разложить на части, соответствующие влияющим на эту величину факторам и случайным отклонениям.

    Чтобы понять суть дисперсионного анализа, мы выполним однотипные расчеты дважды: «вручную» (с калькулятором) и с помощью программы Statistica. Для упрощения нашей задачи мы будем работать не с результатами действительного описания разнообразия зеленых лягушек, а с вымышленным примером, который касается сравнения женщин и мужчин у людей. Рассмотрим разнообразие роста 12 взрослых человек: 7 женщин и 5 мужчин.

    Таблица 5.1.1. Пример для однофакторного дисперсионного анализа: данные о поле и росте 12 людей

    Проведем однофакторный дисперсионный анализ: сравним, статистически значимо или нет отличаются ли мужчины и женщины в охарактеризованной группе по росту.

    5.2. Тест на нормальность распределения

    Дальнейшие рассуждения основываются на том, что распределение в рассматриваемой выборке нормальное или близкое к нормальному. Если распределение далеко от нормального, дисперсия (варианса) не является адекватной мерой его его изменчивости. Впрочем, дисперсионный анализ относительно устойчив к отклонениям распределения от нормальности.

    Тест этих данных на нормальность можно провести двумя разными способами. Первый: Statistics / Basic Statistics/Tables / Descriptive statistics / Вкладка Normality. Во вкладке Normality можно выбрать используемые тесты нормальности распределения. При нажатии на кнопку Frequency tables появится частотная таблица, а кнопки Histograms - гистограмма. На таблице и гистограмме будут приведены результаты различных тестов.

    Второй способ связан с использованием соответствующих возможнойтсей при построении гистограмм. В диалоге построения гистограмм (Grafs / Histograms...) следует выбрать вкладку Advanced. В ее нижней части есть блок Statistics. Отметим на ней Shapiro-Wilk test и Kolmogorov-Smirnov test, как это показано на рисунке.

    Рис. 5.2.1. Статистические тесты на нормальность распределения в диалоге построения гистограмм

    Как видно по гистограмме, распределение роста в нашей выборке отличается от нормального (в середине - «провал»).


    Рис. 5.2.2. Гистограмма, построенная с параметрами, указанными на предыдущем рисунке

    Третья строка в заголовке графика указывает параметры нормального распределения, к которому оказалось ближе всего наблюдаемое распределение. Генеральное среднее составляет 173, генеральное стандартное отклонение - 10,4. Внизу во врезке на графике указаны результаты тестов на нормальность. D - это критерий Колмогорова-Смирнова, а SW-W - Шапиро-Вилка. Как видно, для всех использованных тестов отличия распределения по росту от нормального распределения оказались статистически незначимыми (p во всех случаях больше, чем 0,05).

    Итак, формально говоря, тесты на соответствие распределения нормальному не «запретили» нам использовать параметрический метод, основанный на предположении о нормальном распределении. Как уже сказано, дисперсионный анализ относительно устойчив к отклонениям от нормальности, поэтому мы им все-таки воспользуемся.

    5.3. Однофакторный дисперсионный анализ: вычисления «вручную»

    Для характеристики изменчивости роста людей в приведенном примере вычислим сумму квадратов отклонений (в английском обозначается как SS , Sum of Squares или ) отдельных значений от среднего: . Среднее значение для роста в приведенном примере составляет 173 сантиметра. Исходя из этого,

    SS = (186–173) 2 + (169–173) 2 + (166–173) 2 + (188–173) 2 + (172–173) 2 + (179–173) 2 + (165–173) 2 + (174–173) 2 + (163–173) 2 + (162–173) 2 + (162–173) 2 + (190–173) 2 ;

    SS = 132 + 42 + 72 + 152 + 12 + 62 + 82 + 12 + 102 + 112 + 112 + 172;

    SS = 169 + 16 + 49 + 225 + 1 + 36 + 64 + 1 + 100 + 121 + 121 + 289 = 1192.

    Полученная величина (1192) - мера изменчивости всей совокупности данных. Однако они состоят из двух групп, для каждой из которых можно выделить свою среднюю. В приведенных данных средний рост женщин - 168 см, а мужчин - 180 см.

    Вычислим сумму квадратов отклонений для женщин:

    SS f = (169–168) 2 + (166–168) 2 + (172–168) 2 + (179–168) 2 + (163–168) 2 + (162–168) 2 ;

    SS f = 12 + 22 + 42 + 112 + 32 + 52 + 62 = 1 + 4 + 16 + 121 + 9 + 25 + 36 = 212.

    Также вычислим сумму квадратов отклонений для мужчин:

    SS m = (186–180) 2 + (188–180) 2 + (174–180) 2 + (162–180) 2 + (190–180) 2 ;

    SS m = 62 + 82 + 62 + 182 + 102 = 36 + 64 + 36 + 324 + 100 = 560.

    От чего зависит исследуемая величина в соответствии с логикой дисперсионного анализа?

    Две вычисленные величины, SS f и SS m , характеризуют внутригрупповую вариансу, которую в дисперсионном анализе принято называть «ошибкой». Происхождение этого названия связано со следующей логикой.

    От чего зависит рост человека в рассматриваемом примере? Прежде всего, от среднего роста людей вообще, вне зависимости от их пола. Во вторую очередь - от пола. Если люди одного пола (мужского) выше, чем другого (женского), это можно представить в виде сложения с «общечеловеческой» средней какой-то величины, эффекта пола. Наконец, люди одного пола отличаются по росту в силу индивидуальных отличий. В рамках модели, описывающей рост как сумму общечеловеческой средней и поправки на пол, индивидуальные отличия необъяснимы, и их можно рассматривать как «ошибку».

    Итак, в соответствии с логикой дисперсионного анализа, исследуемая величина определяется следующим образом: , где x ij - i-тое значение изучаемой величины при j-том значении изучаемого фактора; - генеральное среднее; F j - влияние j-того значения изучаемого фактора; - «ошибка», вклад индивидуальности объекта, к которому относится величина x ij .

    Межгрупповая сумма квадратов

    Итак, SS ошибки = SS f + SS m = 212 + 560 = 772. Этой величиной мы описали внутригрупповую изменчивость (при выделении групп по полу). Но есть и вторая часть изменчивости - межгрупповая, которую мы назовем SS эффекта (поскольку речь идет об эффекте разделения совокупности рассматриваемых объектов на женщин и мужчин).

    Среднее каждой группы отличается от общей средней. Вычисляя вклад этого отличия в общую меру изменчивости, мы должны умножить отличие групповой и общей средней на число объектов в каждой группе.

    SS эффекта = = 7×(168–173) 2 + 5×(180–173) 2 = 7×52 + 5×72 = 7×25 + 5×49 = 175 + 245 = 420.

    Здесь проявился открытый Фишером принцип постоянства суммы квадратов: SS = SS эффекта + SS ошибки , т.е. для данного примера, 1192 = 440 + 722.

    Средние квадраты

    Сравнивая в нашем примере межгрупповую и внутригрупповую суммы квадратов, мы можем увидеть, что первая связана с варьированием двух групп, а вторая - 12 величин в 2 группах. Количество степеней свободы (df ) для какого-то параметра может быть определено как разность количества объектов в группе и количества зависимостей (уравнений), которое связывает эти величины.

    В нашем примере df эффекта = 2–1 = 1, а df ошибки = 12–2 = 10.

    Мы можем разделить суммы квадратов на число их степеней свободы, получив средние квадраты (MS , Means of Squares). Сделав это, мы можем установить, что MS - ни что иное, как вариансы («дисперсии», результат деления суммы квадратов на число степеней свободы). После этого открытия мы можем понять структуру таблицы дисперсионного анализа. Для нашего примера она будет иметь следующий вид.

    Эффект

    Ошибка

    МS эффекта и МS ошибки являются оценками межгрупповой и внутригрупповой вариансы, и, значит, их можно сравнить по критерию F (критерию Снедекора, названному в честь Фишера), предназначенному для сравнения варианс. Этот критерий представляет собой просто частное от деления большей вариансы на меньшую. В нашем случае это 420 / 77,2 = 5,440.

    Определение статистической значимости критерия Фишера по таблицам

    Если бы мы определяли статистическую значимость эффекта вручную, по таблицам, нам было бы необходимо сравнить полученное значение критерия F с критическим, соответствующим определенному уровню статистической значимости при заданных степенях свободы.


    Рис. 5.3.1. Фрагмент таблицы с критическими значениями критерия F

    Как можно убедиться, для уровня статистической значимости p=0,05 критическое значение критерия F составляет 4,96. Это означает, что в нашем примере действие изучавшегося пола зарегистрировано с уровнем статистической значимости 0,05.

    Полученный результат можно интерпретировать так. Вероятность нулевой гипотезы, согласно которой средний рост женщин и мужчин одинаков, а зарегистрированная разница в их росте связана со случайностью при формировании выборок, составляет менее 5%. Это означает, что мы должны выбрать альтернативную гипотезу, заключающуюся в том, что средний рост женщин и мужчин отличается.

    5.4. Однофакторный дисперсионный анализ (ANOVA) в пакете Statistica

    В тех случаях, когда расчеты производятся не вручную, а с помощью соответствующих программ (например, пакета Statistica) величина p определяется автоматически. Можно убедиться, что она несколько выше критического значения.

    Чтобы проанализировать обсуждаемый пример с помощью простейшего варианта дисперсионного анализа, нужно запустить для файла с соответствующими данными процедуру Statistics / ANOVA и выбрать в окне Type of analysis вариант One-way ANOVA (однофакторный дисперсионный анализ), а в окне Specification method - вариант Quick specs dialog.


    Рис. 5.4.1. Диалог General ANOVA/MANOVA (Дисперсионный анализ)

    В открывшемся окне быстрого диалога в поле Variables нужно указать те столбцы, которые содержат данные, изменчивость которых мы изучаем (Dependent variable list; в нашем случае - столбец Growth), а также столбец, содержащие значения, разбивающие изучаемую величину на группы (Catigorical predictor (factor); в нашем случае - столбец Sex). В данном варианте анализа, в отличие от многофакторного анализа, может рассматриваться только один фактор.


    Рис. 5.4.2. Диалог One-Way ANOVA (Однофакторный дисперсионный анализ)

    В окне Factor codes следует указать те значения рассматриваемого фактора, которые нужно обрабатывать в ходе данного анализа. Все имеющиеся значения можно посмотреть с помощью кнопки Zoom; если, как в нашем примере, нужно рассматривать все значения фактора (а для пола в нашем примере их всего два), можно нажать кнопку All. Когда заданы обрабатываемые столбцы и коды фактора, можно нажать кнопку OK и перейти в окно быстрого анализа результатов: ANOVA Results 1, во вкладку Quick.

    Рис. 5.4.3. Вкладка Quick окна результатов дисперсионного анализа

    Кнопка All effects/Graphs позволяет увидеть, как соотносятся средние двух групп. Над графиком указывается число степеней свободы, а также значения F и p для рассматриваемого фактора.


    Рис. 5.4.4. Графическое отображение результатов дисперсионного анализа

    Кнопка All effects позволяет получить таблицу дисперсионного анализа, аналогичную описанной выше (с некоторыми существенными отличиями).


    Рис. 5.4.5. Таблица с результатами дисперсионного анализа (сравните с аналогичной табличей, полученной "вручную")

    В нижней строке таблицы указана сумма квадратов, количество степеней свободы и средние квадраты для ошибки (внутригрупповой изменчивости). На строку выше - аналогичные показатели для исследуемого фактора (в данном случае - признака Sex), a также критерий F (отношение средних квадратов эффекта к средним квадратам ошибки), и уровень его статистической значимости. То, что действие рассматриваемого фактора оказалось статистически значимым, показывает выделение красным цветом.

    А в первой строке приведены данные по показателю «Intercept». Эта строка таблицы представляет загадку для пользователей, приобщающихся к пакету Statistica в его 6-й или более поздней версии. Величина Intercept (пересечение, перехват), вероятно, связана с разложением суммы квадратов всех значений данных (т.е. 1862 + 1692 … = 360340). Указанное для нее значение критерия F получено путем деления MS Intercept /MS Error = 353220 / 77,2 = 4575,389 и, естественно, дает очень низкое значение p . Интересно, что в Statistica-5 эта величина вообще не вычислялась, а руководства по использованию более поздних версий пакета никак не комментируют ее введение. Вероятно, лучшее, что может сделать биолог, работающий с пакетом Statistica-6 и последующих версий, это попросту игнорировать строку Intercept в таблице дисперсионного анализа.

    5.5. ANOVA и критерии Стьюдента и Фишера: что лучше?

    Как вы могли заметить, те данные, которые мы сравнивали с помощью однофакторного дисперсионного анализа, мы могли исследовать и с помощью критериев Стьюдента и Фишера. Сравним эти два метода. Для этого вычислим разницу в росте мужчин и женщин с использованием этих критериев. Для этого нам придется пройти по пути Statistics / Basic Statistics / t-test, independent, by groups. Естественно, Dependent variables - это переменная Growth, а Grouping variable - переменная Sex.


    Рис. 5.5.1. Сравнение данных, обработанных с помощью ANOVA, по критериям Стьюдента и Фишера

    Как можно убедиться, результат тот же самый, что и при использовании ANOVA. p = 0,041874 в обоих случаях, как показанном на рис. 5.4.5, так и показанном на рис. 5.5.2 (убедитесь в этом сами!).


    Рис. 5.5.2. Результаты анализа (подробная расшифровка таблицы результатов - в пункте, посвященном критерию Стьюдента)

    Важно подчеркнуть, что хотя критерий F с математической точки зрения в рассматриваемом анализе по критериям Стьюдента и Фишера тот же самый, что в ANOVA (и выражает отношение варианс), смысл его в результатах анализа, представляемых итоговой таблицей, совсем иной. При сравнении по критериям Стьюдента и Фишера сравнение средних значений выборок проводится по критерию Стьюдента, и сравнение их изменчивости проводится по критерию Фишера. В результатах анализа выводится не сама варианса, а ее квадратный корень - стандартное отклонение.

    В дисперсионном анализе, напротив, критерий Фишера используется для сравнения средних разных выборок (как мы обсудили, это осуществляется с помощью разделения суммы квадратов на части и сравнения средней суммы квадратов, соответствующей меж- и внутригрупповой изменчивости).

    Впрочем, приведенное отличие касается скорее представления результатов статистического исследования, чем его сути. Как указывает, например, Гланц (1999, с. 99), сравнение групп по критерию Стьюдента можно рассматривать как частный случай дисперсионного анализа для двух выборок.

    Итак, сравнение выборок по критериям Стьюдента и Фишера имеет одно важное преимущество перед дисперсионным анализом: в нем можно сравнить выборки с точки зрения их изменчивости. Но преимущества дисперсионного анализа все равно весомее. К их числу, например, относится возможность одновременного сравнения нескольких выборок.

    Дисперсионный анализ

    1. Понятие дисперсионного анализа

    Дисперсионный анализ -это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначается как ANOVA, что переводится как анализ вариативности (Analysis of Variance).

    Задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака вычленить вариативность иного рода:

    а) вариативность обусловленную действием каждой из исследуемых независимых переменных;

    б) вариативность, обусловленную взаимодействием исследуемых независимых переменных;

    в) случайную вариативность, обусловленную всеми другими неизвестными переменными.

    Вариативность, обусловленная действием исследуемых переменных и их взаимодействием, соотносится со случайной вариативностью. Показателем этого соотношения является критерий F Фишера.

    В формулу расчета критерия F входят оценки дисперсий, то есть параметров распределения признака, поэтому критерий F является параметрическим критерием.

    Чем в большей степени вариативность признака обусловлена исследуемыми переменными (факторами) или их взаимодействием, тем выше эмпирические значения критерия .

    Нулевая гипотеза в дисперсионном анализе будет гласить, что средние величины исследуемого результативного признака во всех гра­дациях одинаковы.

    Альтернативная гипотеза будет утверждать, что средние вели­чины результативного признака в разных градациях исследуемого фак­тора различны.

    Дисперсионный анализ позволяет нам констатировать изменение признака, но при этом не указывает направление этих изменений.

    начнем рассмотрение дисперсионного анализа с простей­шего случая, когда исследуется действие только одной переменной (одного фактора).

    2. Однофакторный дисперсионный анализ для несвязан­ных выборок

    2.1. Назначение метода

    Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех. (Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых).

    Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

    Гипотезы

    H 0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

    H 1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.

    2.2. Ограничения метода однофакторного дисперсионного анали­за для несвязанных выборок

    1. Однофакторный дисперсионный анализ требует не менее трех града­ций фактора и не менее двух испытуемых в каждой градации.

    2. Результативный признак должен быть нормально распределен в ис­следуемой выборке.

    Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.

    3. Пример решения задачи методом однофакторного дисперсионного анализа для несвязанных выборок на примере:

    Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 1.

    Количество воспроизведенных слов Таблица 1

    № испытуемого

    низкая скорость

    средняя скорость

    высокая скорость

    Общая сумма

    H 0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.

    H 1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 1, установим некоторые величины, которые будут необходимы для расчета критерия F.

    Расчет основных величин для однофакторного дисперсионного анализа представим в таблице:

    Таблица 2

    Таблица 3

    Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок

    Часто встречающееся в этой и последующих таблицах обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares). Это со­кращение чаще всего используется в переводных источниках.

    SS факт означает вариативность признака, обусловленную действи­ем исследуемого фактора;

    SS общ - общую вариативность признака;

    S CA -вариативность, обусловленную неучтенными факторами, "случайную" или "остаточную" вариативность.

    MS - "средний квадрат", или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.

    df - число степеней свободы, которое при рассмотрении непара­метрических критериев мы обозначили греческой буквой v .

    Вывод: H 0 отклоняется. Принимается H 1 . Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (α=0,05). Итак, скорость предъявления слов влияет на объем их воспроизведения.

    Пример решения задачи в Excel представлен ниже:

    Исходные данные:

    Используя команду: Сервис->Анализ данных->Однофакторный дисперсионный анализ, получим следующие результаты:

    Как было уже отмечено, дисперсионный метод тесно связан со статистическими группировками и предполагает, что изучаемая совокупность подразделена на группы по факторным признакам, влияние которых должно быть изучено.

    На основе дисперсионного анализа производится:

    1. оценка достоверности различий в групповых средних по одному факторному признаку или нескольким;

    2. оценка достоверности взаимодействий факторов;

    3. оценка частных различий между парами средних.

    В основе применения дисперсионного анализа лежит закон разложения дисперсий (вариаций) признака на составляющие.

    Общая вариация D о результативного признака при группировке может быть разложена на следующие составные части:

    1. на межгрупповую D м связанную с группировочным признаком;

    2. на остаточную (внутригрупповую) D B , не связанную с группировочным признаком.

    Соотношение между этими показателями выражается следующим образом:

    D о = D м + D в. (1.30)

    Рассмотрим применение дисперсионного анализа на примере.

    Допустим, требуется доказать, влияют ли сроки посева на урожайность пшеницы. Исходные опытные данные для дисперсионного анализа представлены в табл. 8.

    Таблица 8

    В данном примере N = 32, K = 4, l = 8.

    Определим общую суммарную вариацию урожайности, которая представляет собой сумму квадратов отклонений индивидуальных значений признака от общей средней:

    где N – число единиц совокупности; Y i – индивидуальные значения урожайности; Y o – общая средняя урожайности по всей совокупности.

    Для определения межгрупповой суммарной вариации, определяющей вариацию результативного признака за счет изучаемого фактора, необходимо знать средние значения результативного признака по каждой группе. Эта суммарная вариация равна сумме квадратов отклонений групповых средних величин от общей средней величины признака, взвешенной на число единиц совокупности в каждой из групп:

    Внутригрупповая суммарная вариация равна сумме квадратов отклонений индивидуальных значений признака от групповых средних по каждой группе, суммированной по всем группам совокупности.

    Влияние фактора на результативный признак проявляется в соотношении между D м и D в: чем сильнее влияние фактора на величину изучаемого признака, тем больше D м и меньше D в.

    Для проведения дисперсионного анализа нужно установить источники варьирования признака, объем вариации по источникам, определить число степеней свободы для каждой компоненты вариации.

    Объем вариации уже установлен, теперь необходимо определить число степеней свободы вариации. Число степеней свободы – это число независимых отклонений индивидуальных значений признака от его среднего значения. Общее число степеней свободы, соответствующее общей сумме квадратов отклонений в дисперсионном анализе, разлагается по составляющим вариации. Так, общей сумме квадратов отклонений D о соответствует число степеней свободы вариации, равное N – 1 = 31. Групповой вариации D м соответствует число степеней свободы вариации, равное K – 1 = 3. Внутригрупповой остаточной вариации соответствует число степеней свободы вариации, равное N – K = 28.


    Теперь, зная суммы квадратов отклонений и число степеней свободы, можно определить дисперсии для каждой составляющей. Обозначим эти дисперсии: d м – групповые и d в – внутригрупповые.

    После вычисления этих дисперсий приступим к установлению значимости влияния фактора на результативный признак. Для этого находим отношение: d M /d B = F ф,

    Величина F ф, называемая критерием Фишера , сравнивается с табличным, F табл. Как уже было отмечено, если F ф > F табл, то влияние фактора на результативный признак доказано. Если F ф < F табл то можно утверждать, что различие между дисперсиями находится в пределах возможных случайных колебаний и, следовательно, не доказывает с достаточной вероятностью влияние изучаемого фактора.

    Теоретическая величина связана с вероятностью, и в таблице ее значение приводится при определенном уровне вероятности суждения. В приложении имеется таблица, позволяющая установить возможную величину F при вероятности суждения, наиболее часто используемой: уровень вероятности «нулевой гипотезы» – 0,05. Вместо вероятностей «нулевой гипотезы» таблица может быть названа таблицей для вероятности 0,95 существенности влияния фактора. Повышение уровня вероятности требует для сравнения более высокого значения F табл.

    Величина F табл зависит также от числа степеней свободы двух сравниваемых дисперсий. Если число степеней свободы стремится к бесконечности, то F табл стремится к единице.

    Таблица значений F табл построена следующим образом: в столбцах таблицы указаны степени свободы вариации для большей дисперсии, а в строках – степени свободы для меньшей (внутригрупповой) дисперсии. Величина F находится на пересечении столбца и строки соответствующих степеней свободы вариации.

    Так, в нашем примере F ф = 21,3/3,8 = 5,6. Табличное же значение F табл для вероятности 0,95 и степеней свободы, соответственно равных 3 и 28, F табл = 2,95.

    Значение F ф полученное в опыте, превышает теоретическое значение даже для вероятности 0,99. Следовательно, опыт с вероятностью более 0,99 доказывает влияние изучаемого фактора на урожайность, т. е. опыт можно считать надежным, доказанным, а значит, сроки посева оказывают существенное влияние на урожайность пшеницы. Оптимальным сроком посева следует считать период с 10 по 15 мая, так как именно при этом сроке посева получены наилучшие результаты урожайности.

    Нами рассмотрена методика дисперсионного анализа при группировке по одному признаку и случайному распределению повторностей внутри группы. Однако часто бывает так, что опытный участок имеет какие-то различия в плодородии почвы и т. д. Поэтому может возникнуть такая ситуация, что большее число делянок одного из вариантов попадет на лучшую часть, и его показатели будут завышены, а другого варианта – на худшую часть, и результаты в этом случае, естественно, будут хуже, т. е. занижены.

    Чтобы исключить варьирование, которое вызывается не относящимися к опыту причинами, надо из внутригрупповой (остаточной) дисперсии вычленить дисперсию, рассчитанную по повторностям (блокам).

    Общая сумма квадратов отклонений подразделяется в этом случае уже на 3 составляющие:

    D о = D м + D повт + D ост. (1.33)

    Для нашего примера сумма квадратов отклонений, вызванная повторностями, будет равна:

    Стало быть, собственно случайная сумма квадратов отклонений будет равна:

    D ост = D в – D повт; D ост = 106 – 44 = 62.

    Для остаточной дисперсии число степеней свободы будет равно 28 – 7 = 21. Результаты дисперсионного анализа представлены в табл. 9.

    Таблица 9

    Поскольку фактические значения F-критерия для вероятности 0,95 превышают табличные, то влияние сроков посева и повторностей на урожайность пшеницы следует считать существенным. Рассмотренный способ построения опыта, когда участок предварительно делится на блоки с относительно выровненными условиями, а проверяемые варианты распределяются внутри блока в случайном порядке, называется способом рендомизированных блоков.

    С помощью анализа дисперсионным методом можно изучить влияние не только одного фактора на результат, а двух и более. Дисперсионный анализ в этом случае будет называться многофакторным дисперсионным анализом .

    Двухфакторный дисперсионный анализ отличается от двух однофакторных тем, что он может ответить на следующие вопросы:

    1. 1каково влияние обоих факторов вместе?

    2. какова роль сочетания этих факторов?

    Рассмотрим дисперсионный анализ опыта, в котором следует выявить влияние не только сроков посева, но и сортов на урожайность пшеницы (табл. 10).

    Таблица 10. Данные опыта по влиянию сроков посева и сортов на урожайность пшеницы

    – это сумма квадратов отклонений индивидуальных значений от общей средней.

    Вариация по совместному влиянию сроков посева и сорта

    – это сумма квадратов отклонений средних по подгруппам от общей средней, взвешенных на число повторностей, т. е. на 4.

    Вычисление вариации по влиянию только сроков посева:

    Остаточная вариация определяется как разность между общей вариацией и вариацией по совместному влиянию изучаемых факторов:

    D ост = D о – D пс = 170 – 96 = 74.

    Все расчеты можно оформить в виде таблицы (табл. 11).

    Таблица 11. Результаты дисперсионного анализа

    Результаты дисперсионного анализа показывают, что влияние изучаемых факторов, т. е. сроков посева и сорта, на урожайность пшеницы существенно, так как F-критерии фактические по каждому из факторов значительно превышают табличные, найденные для соответствующих степеней свободы, и при этом с достаточно высокой вероятностью (р = 0,99). Влияние же сочетания факторов в данном случае отсутствует, так как факторы независимы друг от друга.

    Анализ влияния трех факторов на результат ведется по такому же принципу, что и для двух факторов, только в этом случае будет три дисперсии по факторам и четыре дисперсии по сочетанию факторов. С увеличением числа факторов резко увеличивается объем расчетных работ и, кроме того, становится затруднительно оформлять исходную информацию в комбинационную таблицу. Поэтому вряд ли целесообразно изучать влияние многих факторов на результат с использованием дисперсионного анализа; лучше взять меньшее их число, но выбрать наиболее существенные факторы с точки зрения экономического анализа.

    Нередко исследователю приходится иметь дело с так называемыми непропорциональными дисперсионными комплексами, т. е. такими, в которых не соблюдается пропорциональность численностей вариантов.

    В таких комплексах вариация суммарного действия факторов не равна сумме вариации по факторам и вариации сочетания факторов. Она отличается на величину, зависящую от степени связей между отдельными факторами, возникающих вследствие нарушения пропорциональности.

    В этом случае возникают трудности при определении степени влияния каждого фактора, так как сумма частных влияний не равна суммарному влиянию.

    Одним из способов приведения непропорционального комплекса к единой структуре является способ его замены пропорциональным комплексом, в котором частоты усреднены по группам. Когда такая замена произведена, задача решается по принципам пропорциональных комплексов.

Похожие публикации