Что такое мутация клеток при онкологии. Мутации генов при раке

Человеческое тело состоит из множества крошечных элементов, из которых состоит весь организм. Они называются клетками. Ткани и рост органа у детей или восстановление функциональной системы у взрослых ‒ результат деления клеток.

Возникновение раковых клеток связанно со сбоем упорядоченности процесса образования и гибели обычных клеток, что является основой здорового организма. Деление раковых клеток ‒ признак нарушения цикличности в основе тканей.

Особенности процесса деления клеток

Деление клеток ‒ это точное воспроизведение одинаковых клеток, которое происходит вследствие подчинения химическим сигналам. В нормальных клетках клеточный цикл контролируется сложной системой сигнальных путей, с помощью которых клетка растет, воспроизводит свое ДНК и делится.

Одна клетка делится на две идентичные, с них образовываются четыре и т.д. У взрослых новые клетки формируются тогда, когда организм нуждается в замене стареющих или поврежденных. Многие клетки живут заданный промежуток времени, а затем запрограммированы на процесс отмирания, названный апоптозом.

Такая слаженность работы клеток направлена на исправление возможных ошибок в цикле их жизнедеятельности. Если это становится невозможным, клетка сама убивает себя. Такая жертвенность помогает содержать тело здоровым.

Клетки различных тканей делятся с разной скоростью. Например, клетки кожи возобновляются относительно быстро, в то время как нервные делятся очень медленно.

Как делятся раковые клетки?

Раковая клетка

Сотни генов контролируют процесс деления клеток. Нормальный рост требует баланса между активностью тех генов, которые отвечают за полиферацию клеток, и тех, которые подавляют ее. Жизнеспособность организма также зависит от деятельности генов, которые сигнализируют о потребности апоптоза.

С течением времени раковые клетки становятся все более устойчивыми к управлению, которое поддерживает нормальную ткань. Как результат, атипические клетки делятся быстрее, чем их предшественники, и меньше зависят от сигналов из других клеток.

Раковые клетки даже избегают запрограммированной клеточной гибели, несмотря на то, что нарушения в работе этих функций делает их главной мишенью апоптоза. На поздних стадиях онкозаболевания, раковые клетки делятся с повышенной активностью, прорывая границы нормальных тканей и метастазируя в новые участки организма.

Причины появления раковых клеток

Существует много различных видов рака, но все они связаны с бесконтрольным ростом клеток. Такая ситуация спровоцирована следующими факторами:

  • атипичные клетки перестают делится;
  • не соблюдают сигналы от других нормальных клеток;
  • держаться очень хорошо вместе и распространяются на другие части тела;
  • соблюдают поведенческие характеристики зрелых клеток, но остаются незрелыми.

Генные мутации и раковые заболевания

Большинство онкологических заболеваний вызвано изменением или повреждением генов в процессе деления клеток, иными словами – мутациями. Они представляют собой ошибки, которые не были исправлены. Мутации влияют на структуру гена и останавливают его работу. Они имеют несколько вариантов:

  1. Простейший тип мутации ‒ замена в структуре ДНК. Например, тиамин может заместить аденин.
  2. Удаление или дублирование одного или нескольких базовых элементов (нуклеотидов).

Генные мутации, возникающие при делении раковых клеток

Существует две основных причины генных мутаций: случайные или наследственные.

Отдельные мутации :

Большинство раковых заболеваний происходит из-за случайных генетических изменений в клетках при их делении. Они называются спорадичными, но могут зависеть от таких факторов, как:

  • повреждение ДНК клеток;
  • курение;
  • влияние химических веществ (токсинов), канцерогенов и вирусов.

Большинство таких мутаций происходит в клетках, которые называются соматическими и не передаются от родителей к ребенку.

Наследственные мутации :

Этот вид называют “зародышевой линией мутаций”, потому что он присутствует в половых клетках родителей. Мужчины и женщины, которые являются носителями этого вида, имеют 50% шанс передать мутационный ген своим детям. Но только в 5-10% случаях в связи с этим возникает рак.

Деление раковых клеток и типы генов рака

Ученые обнаружили 3 основных класса генов, которые влияют на деление раковых клеток, что может вызвать онкологическое заболевание.

  • Онкогены:

Эти структуры при делении приводят к выходу клеток из-под контроля, что способствует росту раковых клеток. Онкогены поврежденных версий нормальных генов называются протогенами. Каждый человек имеет 2 копии каждого гена (по одной от двух родителей). Онкогенные мутации являются доминирующими, что означает, что полученный по наследству дефект в одной копии протогенов может привести к раку, даже если вторая копия нормальная.

  • Гены-супрессоры опухолей:

Они обычно защищают от рака и действуют как тормоза для роста атипичных клеток. Если гены-супрессоры опухолей повреждены, они не работают должным образом. В связи с этим, деление клеток и апоптоз становятся бесконрольными.

Как считается, почти 50% всех случаев рака связано с повреждением или отсутствием гена-супрессора опухоли.

  • Гены репарации ДНК:

Они несут ответственность за восстановление поврежденных генов. Гены репарации ДНК фиксируют ошибки, которые возникают в процессе деления клеток. Когда такие защитные структуры повреждены, они вызывают рецессивные генные мутации в обеих копиях гена, что влияет на риск развития рака.

Метастазирование и деление раковых клеток

В процессе деления раковые клетки проникают в близлежащие ткани. Онкология такого явления характеризуется в способности первичной опухоли попадать в кровоток и лимфатическую систему. Когда защитные силы организма вовремя не выявляют угрозу, она распространяется в отдаленные участки тела, что называется метастазами.

В этом обзоре я расскажу немного об онкогенетике - направлении генетики, изучающем причины и законы возникновения и функционирования опухоли. Тема очень сложная, большая по объему и данная статья не претендует на освещение всех вопросов этого направления. Я попыталась рассказать только об общих положениях, чтобы облегчить понимание частных процессов, о которых далее будут рассказывать мои коллеги.

Введение
Итак, с момента завершения программы «Геном человека» мы вступили в эру молекулярной медицины, которая, помимо всего прочего, подразумевает выяснение генной природы многих наследственных и многофакторных заболеваний, а так же различных патологических состояний, на первый взгляд с генетикой не связанных. Важной характеристикой молекулярной медицины является ее индивидуальный характер ипрофилактическая направленность , благодаря чему масштабные сведения о геноме могут быть получены задолго до начала заболевания, а профилактические мероприятия если и не полностью ликвидировать, то значительно снизить риски.

Причины возникновения рака
Конечно, онкология - одна из актуальных точек приложения этого направления медицины, потому как наряду с сердечно-сосудистыми заболеваниями, является ведущей причиной инвалидизации и смертности (около 20% от всех случаев). Практически каждая семья, так или иначе, сталкивается с этой проблемой. Каковы же современные представления об онкогенезе (причинах возникновения рака)?
Во-первых, рак - это не одно заболевание, это сложный многоступенчатый процесс, в основе которого находятся мутации и разбалансировка механизмов функционирования генома соматических клеток. Так что, по современным представлениям, рак - это генетическая болезнь (не будем забывать, что генетика - это не только изучение наследственности, но и изучение изменчивости генома в течении жизни). Существуют как семейные, так и спорадические формы рака.

Рак и наследственность
Семейные, или менделирующие, формы четко прослеживаются в родословной. К счастью, они занимают не более 5% от всех видов опухолей, однако часто сопровождаются ранним, агрессивным дебютом с вовлечением многих органов и тканей. Именно про такие случаи часто говорят: «унаследовал рак». Хочу подчеркнуть, однако, что здесь мы имеем дело не с наследованием болезни, как таковой, не с наследованием рака, а с наследованием мутации, которая значительно повышает вероятность возникновения определенного вида опухоли.

Что же такое мутация и почему она возникает?
Любое изменение в молекуле ДНК или структуре хромосом можно назвать мутацией (). Мутагенез (процесс появления мутаций) является инструментом эволюции, инструментом видообразования и идет постоянно, а так же является механизмом адаптации организмов к изменениям среды обитания.
Мутации часто возникают под влиянием различных условий внешней среды, к которым можно отнести естественное и искусственное ионизирующее излучение, различные химические вещества, в том числе употребляемые в пищу или принимаемые в виде фармацевтических препаратов и т. д. Такие вещества называются мутагены - т. е. провоцирующие возникновение мутаций. Почти все они (по-совместительству) еще и канцерогены - т. е провоцирующие возникновение мутаций, приводящих к развитию опухоли.
Одни мутации могут содержаться в геноме половых клеток (гамет) - это герминальные мутации. Тогда они наследуются и вызывают генетические болезни, проявление которых часто сопровождается тяжелыми пороками развития органов и систем.
Другие мутации возникают в соматических клетках (все клетки организма за исключением гамет) и потомству не передаются - это соматические мутации. Последствия соматических мутаций тоже могут быть очень разными: от тяжелых врожденных пороков развития, если мутация произошла на ранних этапах эмбриогенеза, до отсутствия какого-либо видимого эффекта. Однако, некоторые соматические мутации приводят к появлению новообразования - опухоли, злокачественной или доброкачественной. Опухоль - это скопление неконтролируемо делящихся клеток, способных (злокачественная) или не способных (доброкачественная) к прорастанию в соседние ткани и миграцию в отдаленные участки организма (метастазированию).

Почему мутации приводят к опухолям?
Дело в том, что все гены в организме выполняют определенную работу, некоторые из них контролируют процессы деления, роста и своевременную гибель клеток (апоптоз). Существует 2 типа регуляторов этих процессов: позитивные, способные индуцировать деление и негативные, препятствующие этому. В процессе эволюции были выработаны мощные механизмы поддержания равновесия между этими системами регуляции, нарушение его приводит к опухолевому росту.
К позитивным регуляторам можно отнести протоонкогены - это здоровые гены, они есть у всех и наиболее активны в эмбриональном периоде, т к именно в это время деление клеток должно находиться под очень строгим контролем. Протоонкогены кодируют важные белки, приносящие, принимающие и передающие сигналы извне (факторы роста и рецепторы клеточной поверхности), белки, которые «включают» гены (транскрипционные факторы) и другие белки, которые делают еще очень много полезной работы.
Мутация способна превратить протоонкоген в онкоген. Такие мутации проявляются уже при повреждении одной копии гена (в гетерозиготном состоянии) т.е. являются активизирующими и доминантными. Активация происходит 3-мя путями, которые можно условно обозначит, как:


  1. Мутировать. Если в результате мутации изменяется кодирующая последовательность гена, то он может начать синтезировать сверхактивный видоизмененный белок, что через цепочку реакций приведет к стимуляция деления клетки.

  2. Копировать. Если в результате мутации кодирующий участок гена амплифицируется (появляется много копий), то такой онкоген синтезирует нормальный белок, но в больших количествах.

  3. Перемещаться. Если в результате мутации ген перемещается в другое место генома и начинает активнее работать, стимулируемый новым окружением, то он синтезирует, либо нормальный белок в больших количествах, либо сверхактивный видоизмененный белок.

На сегодняшний день известно более 100 клеточных онкогенов.
Негативных регуляторов известно несколько больше. Они называются гены-супрессоры опухолевого роста (еще иногда их называют анти-онкогенами). Канцерогенный эффект этих генов проявляется только при полной инактивации их функции, т. е в гомозиготном состоянии. Следовательно, мутации в этих генах рецессивные. Эти гены имеют несколько отличительных характеристик, важнейшей из которых является то, что можно унаследовать одну мутантную копию гена-супрессора опухолевого роста и быть гетерозиготой по аллелям данного гена. Такие люди имеют повышенную наследственную предрасположенность к опухолям. Гены-супрессоры очень разнородны, условно их разделяют на группы:

  1. Хранители клеточного цикла (ХКЦ) - регулируют клеточный цикл. Самые известные гены этой группы RB1 (ген ретинобластомы) и TP53 («страж генома»)

  2. Гены-«дворники» - участвуют в репарации поломок ДНК. Мутации в обеих аллелях этих генов приводят к раку «косвенно», за счет накопления вторичных мутаций. К этой группе относятся BRCA1, BRCA2 (рак груди и яичников). Однако, злокачественная трансформация клетки- это сложный, многоступенчатый процесс, предполагающий накопление, как мутаций, так и других функциональных нарушений. На сегодняшний день используется «двухударная» модель канцерогенеза. Она предполагает, что для перехода нормальной клетки в опухолевую необходимо 2 последовательных события («удара»):


  • 1 Удар: мутация, повышающая риск опухолевой трансформации, которая может быть, как герминальной, так и соматической.

  • 2 Удар: соматическая мутация или утрата функции гена в результате химической инактивации (например, метилирования), т е из-за эпигенетических событий. Эпигенетическое подавление экспрессии (активности) генов это нормальный механизм «включения-выключения» генов, однако, случившись невовремя, расценивается как функциональная мутация.

Итак, если 2 «удара» по клетке были нанесены, начинается каскад мутаций с вовлечением все большего количества генов, образуется резервуар генетически нестабильных клеток, называемых раковыми стволовыми клетками, которые дают начало многочисленным опухолевым клонам.
Это очень общая модель, однако, она составляет основу для понимания механизмов болезни и для поиска путей лечения.

Мутация - не равно болезнь!
К счастью, мутации не обязательно приводят к патологии, многие из них никак себя не проявляют и называются нейтральными, «молчащими» или генетическим полиморфизмом. Т.е в большинстве случаев изменение гена не делает его хуже, а делает его другим. Простым примером, подтверждающим это, может служить тот факт, что разный цвет глаз, волос и кожи - это проявление мутаций в соответствующих генах. Однако, никому не приходит в голову объявлять голубоглазых или рыжеволосых больными.
Поэтому, надо четко понимать, что мутация и генетическое заболевание - это не одно и то же! Гены не для того, что бы вызывать заболевание!
Употребление термина «мутация» с четкой привязкой к патологическому процессу, уравнивание понятий «мутация-болезнь» - это чисто медицинский сленг, принятый для удобства сообщения и усвоения информации, потому как медицина занимается изучением болезней и поиском путей их лечения.
На сегодняшний день, например, благодаря накопленным знаниям, уже удалось создать препараты таргетной («прицельной») терапии для некоторых видов рака. Это препараты, которые направленно уничтожают мутантные, больные клетки, максимально бережно относясь к здоровым. Создание таких препаратов произвело революцию в лечении онкологических заболеваний, значительно увеличилась безрецидивная выживаемость и качество жизни больных людей. Именно систематизация накопленных знаний позволила успешно внедрять в клиническую практику методы ранней диагностики, которые способствуют как постановке диагноза, так и точному прогнозу и оптимизации терапии. Семимильными шагами развивающаяся онкофармакогеномика широко использует методы генетического тестирования для еще большей индивидуализации лечения. Так что в современном мире рак - это НЕ приговор. Читайте нас дальше и будьте здоровы!

Список литературы:


  1. «Наследственные болезни» Национальное руководство/ под ред. акад. РАМН НП Бочкова, акад. РАМН ЕК Гинтера, акад. РАМН ВП Пузырева, Москва, издательская группа «ГЭОТАР-Медиа» 2012г-936с.

  2. Медицинская генетика: учебное пособие/Роберт Л. Ньюссбаум, Родерик Р. Мак-Иннес, Хантингтон Ф. Виллард; пер. с англ. АШ Латыпова; под ред. НП Бочкова, Москва, издательская группа «ГЭОТАР-Медиа» 2010г-624с.

  3. Дэвид Кларк, Лонни Рассел «Молекулярная биология: простой и занимательный подход»/ пер. с англ., издание 2-е, Москва, ЗАО «Компания КОНД», 2004г-472с.

  4. Геномика-медицине. Научное издание/ под ред. акад. РАМН ВИ Иванова и акад. РАН ЛЛ Киселева, Москва, ИКЦ «Академкнига», 2005г-392с.

  5. Клаг Уильям С., Каммингс Майкл Р. «Основы генетики»/ пер. с англ. АА Лушниковой, СС мусаткина, Москва, ТЕХНОСФЕРА, 2007г-896с.

МОСКВА, 19 окт - РИА Новости . Появления всего десяти "удачных" мутаций в ДНК большинства клеток хватает для того, чтобы они "взбунтовались" и породили злокачественную раковую опухоль, говорится в статье, опубликованной в журнале Cell .

"Мы решили один из самых старых вопросов, касающихся рака - сколько мутаций должно появиться в ДНК, чтобы нормальная клетка превратилась в раковую. Как оказалось, их число является крайне небольшим. К примеру, типичные клетки рака печени содержат в себе около 4 мутаций, а клетки прямой кишки порождают рак примерно через 10 "опечаток" в ДНК", — заявил Питер Кемпбелл (Peter Campbell) из Института Сангера (Великобритания).

Рак считается сегодня одной из главных причин смерти человека в развитых странах, и его главной особенностью можно назвать то, что частота его развития заметно вырастает в пожилые годы. Как предполагают ученые, это связано с двумя вещами - ухудшением способности организма "чинить" разрывы в ДНК при наступлении старости и накоплением числа потенциально опасных, но не фатальных мутаций в геноме.

Ученые достаточно давно пытаются использовать обе эти закономерности для предсказания вероятности развития рака у того или иного человека, однако пока такие прогнозы или вообще не работают, или отличаются крайне низкой точностью.

Британские генетики впервые подсчитали, как много мутаций требуется для зарождения большинства самых распространенных разновидностей рака, изучив геномы примерно 7600 раковых опухолей, извлеченных из тела пациентов британских клиник.

Ученые объяснили, почему рыжеволосые люди чаще страдают от рака кожи Ученые определили возможный молекулярный механизм, отвечающий за большую уязвимость людей с мутациями в гене MC1R для солнечных лучей, по сравнению с более темнокожими людьми.

Развитие рака, как объясняют ученые, идет по тем же Дарвиновским законам, как и эволюция всех остальных форм жизни - благоприятные мутации, способствующие выживанию раковых клеток, постепенно накапливаются в организме, а неудачные их версии приводят к гибели их носителей и их исчезновению из своеобразного ракового "генофонда".

Анализируя и сравнивая ДНК раковых клеток, извлеченных из опухолей одного и того же типа, но принадлежащих при этом разным людям, Кемпбелл и его коллеги надеялись найти подобные "удачные" мутации и понять, какое минимальное их количество необходимо для развития рака, и как долго они могут "выживать" в теле человека.

Этот анализ раскрыл две любопытных вещи, которые не ожидали увидеть биологи. Во-первых, оказалось, что "удачные" мутации могут существовать в клетках очень долгое время и не привлекать внимания систем самозащиты организма, что способствует их накоплению и развитию рака даже в том случае, если мутации появляются в той или иной ткани тела достаточно редко.

Во-вторых, число подобных "опечаток" в ДНК, необходимых для развития рака, оказалось крайне небольшим - в некоторых органах рак может возникнуть даже после одной подобной мутации, а в других - через 3-4 или 10 изменений в структуре ряда ключевых генов.

Что еще интереснее, примерно половина подобных "удачных" мутаций находилась в генах, которые раньше никак не связывались с развитием рака, и были неизвестны ученым, занимающимися изучением злокачественных опухолей. Их изучение, как надеются генетики, поможет нам лучше оценивать вероятность развития рака, а также поможет понять, как накопление мутаций может быть связано со старением тела.

Онкологические заболевания ежегодно уносят миллионы жизней. Среди причин смерти рак занимает второе место после сердечно-сосудистых заболеваний, а по сопровождающему его страху - определённо первое. Такая ситуация сложилась из-за представления, что рак сложно диагностировать и практически невозможно предотвратить.

Однако каждый десятый случай заболеваемости раком - это проявление мутаций, заложенных в наших генах с самого рождения. Современная наука позволяет их отловить и значительно уменьшить риск возникновения заболевания.

Эксперты в области онкологии рассказывают, что такое рак, как сильно на нас влияет наследственность, кому показано генетическое тестирование в качестве меры профилактики и как оно может помочь, если рак уже обнаружен.

Илья Фоминцев

исполнительный директор Фонда профилактики рака «Не напрасно»

Рак - это, по сути, генетическое заболевание. Мутации, вызывающие онкологические заболевания, либо наследуются, и тогда они есть во всех клетках организма, либо появляются в какой-то ткани или конкретной клетке. Человек может унаследовать от родителей определённую мутацию в гене, который защищает от рака, или мутацию которая сама по себе может привести к раку.

Ненаследственные мутации возникают в изначально здоровых клетках. Они возникают под воздействием внешних канцерогенных факторов, например, курения или ультрафиолетового излучения. В основном рак развивается у людей в зрелом возрасте: процесс возникновения и накопления мутаций может занимать не один десяток лет. Этот путь люди проходят гораздо быстрее, если уже при рождении они унаследовали поломку. Поэтому при опухолевых синдромах рак возникает в гораздо более молодом возрасте.

Этой весной вышла замечательная - о случайных ошибках, которые возникают в ходе удвоения молекул ДНК и являются основным источником появления онкогенных мутаций. При таких видах рака, как рак простаты, их вклад может достигать 95%.

Чаще всего причиной возникновения рака являются именно ненаследственные мутации: когда никаких генетических поломок человек не унаследовал, но в течение жизни в клетках накапливаются ошибки, которые рано или поздно приводят к возникновению опухоли. Дальнейшее накопление этих поломок уже внутри опухоли может сделать её более злокачественной или привести к возникновению новых свойств.

Несмотря на то, что в большинстве случаев онкологические заболевания возникают из-за случайных мутаций, надо очень серьёзно относиться к наследственному фактору. Если человек знает об имеющихся у него унаследованных мутациях, он сможет предотвратить развитие конкретного заболевания, риск возникновения которого у него очень велик.

Есть опухоли с ярко выраженным наследственным фактором. Это, например, рак молочной железы и рак яичников. До 10% случаев заболеваемости этими видами рака связаны с мутациями в генах BRCA1 и BRCA2. Самый распространенный среди нашего мужского населения вид рака - рак лёгкого - в основной массе вызывается внешними факторами, а конкретнее - курением. Но если предположить, что внешние причины исчезли, то роль наследственности стала бы примерно такой же, как и у рака молочной железы. То есть, в относительном соотношении для рака лёгкого наследственные мутации видны довольно слабо, но в абсолютных числах это всё же вполне существенно.

Кроме того, наследственный компонент довольно значительно проявляет себя в раке желудка и поджелудочной железы, колоректальном раке, опухолях головного мозга.

Антон Тихонов

научный директор биотехнологической компании yRisk

Большая часть онкологических заболеваний возникает за счёт сочетания случайных событий на клеточном уровне и внешних факторов. Однако в 5-10% случаев предопределяющую роль в возникновении рака играет наследственность.

Представим себе, что одна из онкогенных мутаций появилась в половой клетке, которой повезло стать человеком. Каждая из примерно 40 триллионов клеток этого человека (а также его потомков) будет содержать мутацию. Следовательно, каждой клетке нужно будет накопить меньше мутаций, чтобы стать раковой, а риск заболеть определённым видом рака у носителя мутации будет существенно выше.

Повышенный риск развития рака передаётся из поколения в поколение вместе с мутацией и называется наследственным опухолевым синдромом. Опухолевые синдромы встречаются достаточно часто - у 2-4% людей, и вызывают 5-10% случаев рака.

Благодаря Анджелине Джоли самым известным опухолевым синдромом стал наследственный рак молочной железы и яичников, который вызывается мутациями в генах BRCA1 и BRCA2. У женщин с этим синдромом риск заболеть раком молочной железы составляет 45-87%, в то время как средняя вероятность этого заболевания гораздо ниже - 5,6%. Увеличивается вероятность развития рака и в других органах: яичниках (с 1 до 35%), поджелудочной, а у мужчин еще и предстательной железе.

Наследственные формы есть практически у любого онкологического заболевания. Известны опухолевые синдромы, которые вызывают рак желудка, кишечника, мозга, кожи, щитовидной железы, матки и другие, менее распространённые типы опухолей.

Знать о том, что у вас или и у ваших родственников есть наследственный опухолевый синдром, может быть очень полезно для того, чтобы снизить риск развития рака, диагностировать его на ранней стадии, и эффективнее лечить заболевание.

Носительство синдрома можно определить с помощью генетического теста, а на то, что вам стоит сдать тест, укажут следующие особенности семейной истории.

    Несколько случаев одного вида рака в семье;

    Заболевания в раннем для данного показания возрасте (для большинства показаний – раньше 50 лет);

    Единичный случай определенного вида рака (например, рак яичников);

    Рак в каждом из парных органов;

    Больше одного типа рака у родственника.

Если для вашей семьи характерно что-либо из вышеперечисленного, вам следует проконсультироваться у врача-генетика, который определит, есть ли медицинские показания для того, чтобы сдавать генетический тест. Носителям наследственных опухолевых синдромов следует проходить тщательный скрининг на онкологические заболевания для того, чтобы обнаружить рак на ранней стадии. А в некоторых случаях риск развития рака можно существенно снизить с помощью превентивных операций и лекарственной профилактики.

Несмотря на то, что наследственные опухолевые синдромы встречаются очень часто, западные национальные системы здравоохранения пока не ввели генетическое тестирование на носительство мутаций в широкую практику. Тесты рекомендуется сдавать лишь при наличии определённой семейной истории, указывающей на определённый синдром, и только в том случае, если известно, что тестирование может принести человеку пользу.

К сожалению, такой консервативный подход пропускает множество носителей синдромов: слишком мало людей и врачей подозревает о существовании наследственных форм рака; высокий риск заболевания далеко не всегда проявляется в семейной истории; многие пациенты не знают о заболеваниях своих родственников, даже когда есть, кого спросить.

Всё это - проявление современной медицинской этики, которая гласит, что знать человеку стоит только то, что принесет ему больше вреда, чем пользы.

Причём право судить о том, что такое польза, что такое вред, и как они соотносятся друг с другом, врачи оставляют исключительно себе. Медицинское знание - такое же вмешательство в мирскую жизнь, как таблетки и операции, и поэтому меру знания должны определять профессионалы в светлых одеждах, а то как бы чего не вышло.

Я, как и мои коллеги, считаю, что право на знание о собственном здоровье принадлежит людям, а не врачебному сообществу. Мы делаем генетический тест на наследственные опухолевые синдромы, чтобы те, кто хочет узнать о своих рисках развития рака, могли реализовать это право, и взять на себя ответственность за собственную жизнь и здоровье.

Владислав Милейко

директор Atlas Oncology Diagnostics

В процессе развития рака клетки изменяются и теряют свой первоначальный генетический «вид», унаследованный от родителей. Поэтому, чтобы использовать молекулярные особенности рака для лечения, недостаточно исследовать только наследственные мутации. Чтобы узнать слабые места опухоли, нужно провести молекулярное тестирование образцов, полученных в результате биопсии или операции.

Нестабильность генома позволяет опухоли копить генетические нарушения, которые могут быть выгодными для самой опухоли. К ним относятся мутации в онкогенах - генах, которые регулируют деление клеток. Такие мутации могут многократно повышать активность белков, делать их нечувствительными к тормозящим сигналам или вызывать повышенную выработку ферментов. Это приводит к неконтролируемому делению клеток, а впоследствии и к метастазированию.

что такое таргетная терапия

Некоторые мутации имеют известные эффекты: мы знаем, как именно они меняют структуру белков. Это даёт возможность разработать лекарственные молекулы, которые будут действовать только на опухолевые клетки, и при этом не будут уничтожать нормальные клетки организма. Такие препараты называют таргетными . Чтобы современная таргетная терапия работала, нужно до назначения лечения знать, какие мутации есть в опухоли.

Эти мутации могут различаться даже в пределах одного типа рака (нозологии) у разных пациентов, и даже в опухоли одного пациента. Поэтому для некоторых лекарств молекулярно-генетическое тестирование рекомендовано в инструкции к препарату.

Определение молекулярных изменений опухоли (молекулярное профилирование) - важное звено в цепочке принятия клинических решений, а его значимость будет только расти со временем.

На сегодняшний день в мире проводится более 30 000 исследований противоопухолевой терапии. По разным данным, до половины из них используют молекулярные биомаркеры для включения больных в исследование или для наблюдения в ходе лечения.

Но что даст пациенту молекулярное профилирование? Где его место в клинической практике сегодня? Хотя для ряда лекарств тестирование является обязательным, это всего лишь «надводная часть айсберга» современных возможностей молекулярного тестирования. Результаты исследований подтверждают влияние различных мутаций на эффективность лекарств, а некоторые из них можно встретить в рекомендациях международных клинических сообществ.

Однако известно ещё не менее 50 дополнительных генов и биомаркеров, анализ которых может быть полезным в выборе лекарственной терапии (Chakravarty et al., JCO PO 2017). Их определение требует использования современных методов генетического анализа, таких как высокопроизводительное секвенирование (NGS). Секвенирование позволяет обнаружить не только распространенные мутации, но «прочитать» полную последовательность клинически значимых генов. Это позволяет выявить все возможные генетические изменения.

На этапе анализа результатов используются специальные биоинформатические методы, которые помогают выявить отклонения от нормального генома даже если важное изменение встречается в небольшом проценте клеток. Интерпретация полученного результата должна опираться на принципы доказательной медицины, так как не всегда ожидаемый биологический эффект подтверждается в клинических исследованиях.

Из-за сложности процесса проведения исследований и интерпретации результатов молекулярное профилирование пока не стало «золотым стандартом» в клинической онкологии. Однако есть ситуации, в которых этот анализ может существенно повлиять на выбор лечения.

Исчерпаны возможности стандартной терапии

К сожалению, даже на фоне правильно подобранного лечения заболевание может прогрессировать, и не всегда есть выбор альтернативной терапии в рамках стандартов для данного онкологического заболевания. В этом случае молекулярное профилирование может выявить «мишени» для экспериментальной терапии, в том числе в рамках клинических исследований (например TAPUR).

спектр потенциально значимых мутаций широк

Некоторые виды рака, например, немелкоклеточный рак лёгкого или меланома, известны множеством генетических изменений, многие из которых могут быть мишенями для таргетной терапии. В таком случае молекулярное профилирование может не только расширить выбор возможных вариантов лечения, но и помочь расставить приоритеты при выборе препаратов.

Редкие виды опухолей или опухоли с изначально плохим прогнозом

Молекулярное исследование в таких случаях помогает на начальном этапе определить более полный спектр возможных вариантов лечения.

Молекулярное профилирование и персонализация лечения требуют сотрудничества специалистов из нескольких областей: молекулярной биологии, биоинформатики и клинической онкологии. Поэтому такое исследование, как правило, стоит дороже обычных лабораторных тестов, а его ценность в каждом конкретном случае может определить только специалист.

Генетическое разнообразие раковой опухоли оказалось гораздо большим, чем выходило по самым смелым расчётам – в трёхсантиметровой опухоли может быть около ста тысяч мутаций!

Клетки становятся раковыми из-за накапливающихся мутаций: изменения в последовательностях генов приводят к тому, что в клетке синтезируются неправильные белки, в том числе и те, которые контролируют клеточное деление, и в результате получается злокачественная опухоль. Известно, что мутаций в раковых клетках довольно много, и что как раз именно благодаря мутационному разнообразию рак может противостоять самым разным схемам лечения. Но много – это сколько? Реально ли посчитать количество мутаций в опухоли, учитывая, что разные её клетки могут в той или иной степени отличаться друг от друга по мутационному профилю?

Исследователи из Медицинского центра Чикагского университета и Геномного института в Пекине попробовали посчитать мутации в небольшой печёночной опухоли человека: её размер был около 3,5 см в диаметре, и насчитывала она более миллиарда клеток. Для анализа ДНК из неё взяли 300 проб. После того, как посчитали мутации в каждой из трёхсот зон, результат экстраполировали на всю опухоль, и оказалось, что в целом в ней должно быть около 100 000 (!) повреждений ДНК , приходящихся на кодирующие участки генов (то есть те, в которых зашифрована информация об аминокислотной последовательности белков). Эта величина превзошла самые смелые расчёты – до сих пор считалось, что раковые клетки отличаются от здоровых несколькими сотнями или же несколькими тысячами мутационных дефектов (предельная оценка составляла всего 20 000 мутаций). Результаты исследования опубликованы в журнале Proceedings of the National Academy of Sciences.



Конечно, следует помнить, что мутации распределяются неравномерно, и большая их часть встречается с довольно низкой частотой. Сами авторы работы говорят, что 99% разных мутаций приходится менее чем на сто клеток, причём клетки с редкими генетическими дефектами предпочитают находиться вместе. Так или иначе, новые данные говорят нам о том, что в раковой опухоли существуют масса мутаций «про запас» , в которых, очевидно, нет насущной необходимости, которые не находятся под давлением отбора, то есть не представляют жизненной необходимости для раковой клетки. О том, что в опухолях есть полезные (для рака) мутации, или мутации-драйверы, которые помогают опухоли расти, и мутации-«пассажиры», которые никакого эффекта на рост не оказывают и просто так переходят из поколения в поколение, известно уже довольно давно, однако никто и подумать не мог, что рак может обладать настолько большим генетическим разнообразием.

Для медицины это представляет огромную проблему: как мы сказали в начале, рак может выжить благодаря мутациям, обеспечивающим устойчивость к лекарствам, а при таком огромном мутационном ассортименте найти нужную мутацию будет довольно легко, какая-нибудь мутация-«пассажир» внезапно окажется очень даже нужной в изменившихся условиях – например, при смене схемы лечения. (Действительно, предыдущие исследования показали, что клинический прогноз ухудшается с увеличением генетического разнообразия опухоли .) Так что при противораковой терапии нужно как можно скорее и как можно полнее избавиться абсолютно от всех раковых клеток, что весьма и весьма непросто.

Похожие публикации