Что такое микробиология. Что изучает микробиология

Белова Алена, 12 группа

Самостоятельная работа 1

Предмет микробиологии

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Общий признак микроорганизмов – микроскопические размеры; отличаются они строением, происхождением, физиологией.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишённые хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишённые хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Разделом медицинской микробиологии является иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

Самостоятельная работа 2.

История развития микробиологии

Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооружённым какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Предметом изучения микробиологии является их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни.

В таксономическом отношении микроорганизмы очень разнообразны. Они включают прионы, вирусы, бактерии, водоросли, грибы, простейшие и даже микроскопические многоклеточные животные.

По наличию и строению клеток вся живая природа может быть разделена на прокариоты (не имеющие истинного ядра), эукариоты (имеющие ядро) и не имеющие клеточного строения формы жизни. Последние для своего существования нуждаются в клетках, т.е. являются внутриклеточными формами жизни (рис. 1).

По уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки все живое делят на 4 царства жизни: эукариоты, эубактерии, архебактерии, вирусы и плазмодии.

К прокариотам, объединяющим эубактерии и архебактерии, относят бактерии, низшие (сине- зелёные) водоросли, спирохеты, актиномицеты, архебактерии, риккетсии, хламидии, микоплазмы. Простейшие, дрожжи и нитчатые грибы-эукариоты.

Микроорганизмы-это невидимые простым глазом представители всех царств жизни. Они занимают низшие (наиболее древние) ступени эволюции, но играют важнейшую роль в экономике, круговороте веществ в природе, в нормальном существовании и патологии растений, животных, человека.

Микроорганизмы заселяли Землю ещё 3- 4 млрд. лет назад, задолго до появления высших растений и животных. Микробы представляют самую многочисленную и разнообразную группу живых существ. Микроорганизмы чрезвычайно широко распространены в природе и являются единственными формами живой материи, заселяющими любые, самые разнообразные субстраты (среды обитания), включая и более высокоорганизованные организмы животного и растительного мира.

Можно сказать, что без микроорганизмов жизнь в ее современных формах была бы просто невозможна.

Микроорганизмы создали атмосферу, осуществляют кругооборот веществ и энергии в природе, расщепление органических соединений и синтез белка, способствуют плодородию почв, образованию нефти и каменного угля, выветриванию горных пород, многим другим природным явлениям.

С помощью микроорганизмов осуществляются важные производственные процессы - хлебопечение, виноделие и пивоварение, производство органических кислот, ферментов, пищевых белков, гормонов, антибиотиков и других лекарственных препаратов.

Микроорганизмы как никакая другая форма жизни испытывает воздействие разнообразных природных и антропических (связанных с деятельностью людей) факторов, что, с учётом их короткого срока жизни и высокой скорости размножения, способствует их быстрому эволюционированию.

Наибольшую печальную известность имеют патогенные микроорганизмы (микробы-патогены) - возбудители заболеваний человека, животных, растений, насекомых. Микроорганизмы, приобретающие в процессе эволюции патогенность для человека (способность вызывать заболевания), вызывают эпидемии, уносящие миллионы жизней. До настоящего времени вызываемые микроорганизмами инфекционные заболевания остаются одной из основных причин смертности, причиняют существенный ущерб экономике.

Изменчивость патогенных микроорганизмов составляет основную движущую силу в развитии и совершенствовании систем защиты высших животных и человека от всего чужеродного (чужеродной генетической информации). Более того, микроорганизмы являлись до недавнего времени важным фактором естественного отбора в человеческой популяции (пример - чума и современное распространение групп крови). В настоящее время вирус иммунодефицита человека (ВИЧ) посягнул на святое святых человека - его иммунную систему.

Основные этапы развития микробиологии, вирусологии и иммунологии

К ним можно отнести следующие:

1 Эмпирических знаний (до изобретения микроскопов и их применения для изучения микромира).

Дж.Фракасторо (1546г.) предположил живую природу агентов инфекционных заболеваний- contagium vivum.

2 Морфологический период занял около двухсот лет.

Антони ван Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. Несовершенство приборов (максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах.

3.Физиологический период (с 1875г.)- эпоха Л.Пастера и Р. Коха.

Л. Пастер - изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления (аттенуации) вирулентности и получения вакцин (вакцинных штаммов).

Р. Кох - метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры (запятой Коха), туберкулёза (палочки Коха), совершенствование техники микроскопии. Экспериментальное обоснование критериев Хенле, известные как постулаты (триада) Хенле- Коха.

4 Иммунологический период.

И.И. Мечников - “поэт микробиологии” по образному определению Эмиля Ру. Он создал новую эпоху в микробиологии - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета.

Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. В последующей многолетней и плодотворной дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета, и родилась наука иммунология.

В дальнейшем было установлено, что наследственный и приобретенный иммунитет зависит от согласованной деятельности пяти основных систем: макрофагов, комплемента, Т- и В- лимфоцитов, интерферонов, главной системы гистосовместимости, обеспечивающих различные формы иммунного ответа. И.И.Мечникову и П.Эрлиху в 1908г. была присуждена Нобелевская премия.

12 февраля 1892г. на заседании Российской академии наук Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И. Ивановского - ее основоположником. Впоследствии оказалось, что вирусы вызывают заболевания не только растений, но и человека, животных и даже бактерий. Однако только после установления природы гена и генетического кода вирусы были отнесены к живой природе.

5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин, и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго - вне хромосомного (плазмидного) генома бактерий.

Изучение плазмид показало, что они представляют собой еще более просто устроенные организмы, чем вирусы, и в отличии от бактериофагов не вредят бактериям, а наделяют их дополнительными биологическими свойствами. Открытие плазмид существенно дополнило представления о формах существования жизни и возможных путях ее эволюции.

6. Современный молекулярно-генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа.

В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Использование бактерий, вирусов, а затем и плазмид в качестве объектов молекулярно-биологических и генетических исследований привело к более глубокому пониманию фундаментальных процессов, лежащих в основе жизни. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно-генетические закономерности, свойственные более высоко организованным организмам.

Расшифровка генома кишечной палочки сделало возможным конструирование и пересадку генов. К настоящему времени генная инженерия создала новые направления биотехнологии.

Расшифрованы молекулярно-генетическая организация многих вирусов и механизмы их взаимодействия с клетками, установлены способность вирусной ДНК встраиваться в геном чувствительной клетки и основные механизмы вирусного канцерогенеза.

Подлинную революцию претерпела иммунология, далеко вышедшая за рамки инфекционной иммунологии и ставшая одной из наиболее важных фундаментальных медико-биологических дисциплин. К настоящему времени иммунология - это наука, изучающая не только защиту от инфекций. В современном понимании иммунология - это наука, изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании структурной и функциональной целостности организма.

Иммунология в настоящее время включает ряд специализированных направлений, среди которых, наряду с инфекционной иммунологией, к наиболее значимым относятся иммуногенетика, иммуноморфология, трансплантационная иммунология, иммунопатология, иммуногематология, онкоиммунология, иммунология онтогенеза, вакцинология и прикладная иммунодиагностика.

Микробиология и вирусология как фундаментальные биологические науки также включают ряд самостоятельных научных дисциплин со своими целями и задачами: общую, техническую (промышленную), сельскохозяйственную, ветеринарную и имеющую наибольшее значение для человечества медицинскую микробиологию и вирусологию.

Медицинская микробиология и вирусология изучает возбудителей инфекционных болезней человека (их морфологию, физиологию, экологию, биологические и генетические характеристики), разрабатывает методы их культивирования и идентификации, специфические методы их диагностики, лечения и профилактики.

7.Перспективы развития.

На пороге 21 века микробиология, вирусология и иммунология представляют одно из ведущих направлений биологии и медицины, интенсивно развивающееся и расширяющее границы человеческих знаний.

Иммунология вплотную подошла к регулированию механизмов самозащиты организма, коррекции иммунодефицитов, решению проблемы СПИДа, борьбе с онкозаболеваниями.

Создаются новые генно- инженерные вакцины, появляются новые данные об открытии инфекционных агентов - возбудителей “соматических” заболеваний (язвенная болезнь желудка, гастриты, гепатиты, инфаркт миокарда, склероз, отдельные формы бронхиальной астмы, шизофрения и др.).

Появилось понятие о новых и возвращающихся инфекциях (emerging and reemerging infections). Примеры реставрации старых патогенов- микобактерии туберкулеза, риккетсии группы клещевой пятнистой лихорадки и ряд других возбудителей природноочаговых инфекций. Среди новых патогенов- вирус иммунодефицита человека (ВИЧ), легионеллы, бартонеллы, эрлихии, хеликобактер, хламидии (Chlamydia pneumoniae). Наконец, открыты вироиды и прионы - новые классы инфекционных агентов.

Вироиды - инфекционные агенты, вызывающие у растений поражения, сходные с вирусными, однако эти возбудители отличаются от вирусов рядом признаков: отсутствием белковой оболочки (голая инфекционная РНК), антигенных свойств, одноцепочечной кольцевой структурой РНК (из вирусов - только у вируса гепатита D), малыми размерами РНК.

Прионы (proteinaceous infectious particle- белкоподобная инфекционная частица) представляют лишенные РНК белковые структуры, являющиеся возбудителями некоторых медленных инфекций человека и животных, характеризующихся летальными поражениями центральной нервной системы по типу губкообразных энцефалопатии й- куру, болезнь Крейтцфельдта - Якоба, синдром Герстманна- Страусслера- Шайнкера, амниотрофический лейкоспонгиоз, губкообразная энцефалопатия коров (коровье “бешенство”), скрепи у овец, энцефалопатия норок, хроническая изнуряющая болезнь оленей и лосей. Предполагается, что прионы могут иметь значение в этиологии шизофрении, миопатий. Существенные отличия от вирусов, прежде всего отсутствие собственного генома, не позволяют пока рассматривать прионы в качестве представителей живой природы.

3. Задачи медицинской микробиологии.

К ним можно отнести следующие:

    Установление этиологической (причинной) роли микроорганизмов в норме и патологии.

    Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определения) возбудителей.

    Бактериологический и вирусологический контроль окружающей среды, продуктов питания, соблюдения режима стерилизации и надзор за источниками инфекции в лечебных и детских учреждениях.

    Контроль за чувствительностью микроорганизмов к антибиотикам и другим лечебным препаратам, состоянием микро биоценозов (микрофлорой) поверхностей и полостей тела человека.

4. Методы микробиологической диагностики.

Методы лабораторной диагностики инфекционных агентов многочисленны, к основным можно отнести следующие.

    Микроскопический- с использованием приборов для микроскопии. Определяют форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определёнными красителями.

    К основным способам микроскопии можно отнести световую микроскопию (с разновидностями- иммерсионная, темнопольная, фазово - контрастная, люминесцентная и др.) и электронную микроскопию. К этим методам можно также отнести авторадиографию (изотопный метод выявления).

    Микробиологический (бактериологический и вирусологический) - выделение чистой культуры и ее идентификация.

    Биологический - заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).

    Иммунологический (варианты - серологический, аллергологический) - используется для выявления антигенов возбудителя или антител к ним.

    Молекулярно-генетический - ДНК- и РНК- зонды, полимеразная цепная реакция (ПЦР) и многие другие.

Заключая изложенный материал, необходимо отметить теоретическое значение современной микробиологии, вирусологии и иммунологии. Достижения этих наук позволили изучить фундаментальные процессы жизнедеятельности на молекулярно-генетическом уровне. Они обусловливают современное понимание сущности механизмов развития многих заболеваний и направления их более эффективного предупреждения и лечения.

И ещё 26 файл(а).
Показать все связанные файлы


  1. Микробиология как наука. Задачи и методы исследования в микробиологии.
Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы , неразличимые невооруженным глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Предмет микробиологии – микроорганизмы, их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни. Для медицинской микробиологии – патогенные и условно-патогенные микроорганизмы.

Микроорганизмы - наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных - примерно 3-4 млрд. лет тому назад.

Задачи микробиологии:

Задачи медицинской микробиологии:

1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма ("хозяина").

3. Разработка методов микробиологической диагностики, специфического лечения и профилактики инфекционных болезней человека.

Методы исследования в микробиологии:


  1. Микроскопический - изучение морфологии микробов в окрашенном и неокрашенном состоянии с помощью различных типов микроскопов.

  2. Микробиологический (бактериологические, микологические, вирусологические). Метод основан на выделение чистой культуры возбудителя и ее последующей идентификации.

  3. Химический

  4. Экспериментальный (биологический) - заражение микробами лабораторных животных.

  5. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

  1. Основные периоды в развитии микробиологии и иммунологии.
Выделяют следующие периоды:

  1. Начальный период
Вторая половина XIII века по середину XIX. Он связан с созданием Левенгуком простейшего микроскопа и открытием микроскопических существ, невидимых невооруженным взглядом.

  1. Пастеровский период
Луи Пастер является основоположником микробиологии как науки. Его исследования:

  • брожение

  • роль микробов в круговороте веществ в природе и самопроизвольном зарождении.
Они составили теоретическую базу современной микробиологии. Пастер установил, что в определенных условиях патогенные микробы теряют свою вирулентность. На основе этого открытия он создает вакцины.

Рядом с именем Пастера встало имя Роберта Коха, выдающегося мастера прикладных исследований, он открыл возбудителя сибирской язвы, холеры, туберкулеза и других микроорганизмов.


  1. Третий период
Первая половина XX века. Развитие микробиологии , иммунологии и вирусологии. Здесь важным является открытия Ивановского – возбудители мозаичной болезни табака. Были открыты фильтрующиеся инфекционные агенты - вирусы, L-формы бактерий, микоплазмы. Более интенсивно развивались прикладные аспекты иммунологии. П.Эрлиху разработать гуморальную теорию иммунитета. Мечников – теория фагоцитоза. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин.

  1. Современный период.
Создание электронного микроскопа сделало видимым мир вирусов и макромолекулярных соединений. Изучение генов, строение вирусов, бактерий на молекулярном уровне. Генная инженерия, расшифровка геномов. Изучена роль ДНК в передаче наследственных признаков. Революция в иммунологии. Она стала наукой, изучающей не только инфекции и защиту от них, но и изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании целостности организма.

3. Основоположники микробиологии.

Л.Пастер


  1. изучение микробиологических основ процессов брожения и гниения,

  2. развитие промышленной микробиологии,

  3. выяснение роли микроорганизмов в кругообороте веществ в природе,

  4. открытие анаэробных микроорганизмов ,

  5. разработка принципов асептики,

  6. разработка методов стерилизации,

  7. ослабление (аттенуации) вирулентности. Степень патогенности – вирулентность. Таким образом, если ослабить вирулентность, то можно получить вакцину.

  8. получение вакцин (вакцинных штаммов) – холера и бешенство.

  9. Пастеру принадлежит честь открытия стафилококков, стрептококков

Р.Кох - немецкий естествоиспытатель, ученик Пастера.


4. Роль отечественных ученых в развитии микробиологии.


  1. Ценковский Л.С . организовал производство сибиреязвенной вакцины, и 1883 успешно ее использовал для вакцинации скота.

  2. Минх. Доказал, что спирохета возвратного тифа является возбудителем заболевания.

  3. Мочутковский самозаразил себя сыпным тифом (ввел кровь больной), доказав, что возбудитель присутствует в крови больного.

  4. Леша Ф.А. Доказал, что дизентерию могут вызывать простейшие, принадлежащие амебам.

  5. Большое значение в микробиологии сыграл И.И. Мечников. Он был создателем фагоцитарной теории иммунитета. Затем он издает труд «Невосприимчивость к к инфекционным болезням».

  6. В 1886 в Одессе открыта первая бактериологическая станция, заведовал ей Мечников и его помощники Гамель Н.Ф. и Барлах Л.В.

  7. Далее станция открыта в Харькове. Заведовал Виноградский. Он работал в области общей микробиологии. Открыл серо- и железобактерии, нитрифицирующие бактерии – возбудители нитрификации в почве.

  8. Д.И. Ивановский (открыл вирус табачной мозаики, считается основателем вирусологии).

  9. Цинковский (участвовал в разработке методов прививки от сибирской язвы).

  10. Амилянский – написал первый учебник «Основы микробиологии», открыл возбудителя брожения клетчатки , изучил азотофиксирующие бактерии.

  11. Михин – положил начало ветеринарной микробиологии, открыл возбудителя лептоспироза.

  12. Шапошников – основоположник технической микробиологии.

  13. Войткевич – работал с ацидофильной палочкой, считается основоположником лечебного и диетического питания для животных.

С середины 20 века микробиология как дисциплина была включена в программу обучения студентов.

5. Основы систематики и номенклатуры микроорганизмов.

Согласно современной систематике, микроорганизмы к 3 царствам:

I. Прокариоты:
* Эубактерии
1. Грациликуты (тонкая клеточная стенка)
2. Фирмикуты (толстая клеточная стенка)
3. Тенерикуты (нет клеточной стенки)
Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты.
* Архебактерии
4. Мендосикуты
II. Эукариоты: Животные Растения Грибы Простейшие
III. Неклеточные формы жизни: Вирусы Прионы Плазмиды

Вид – Род – Семейство – Порядок – Класс – Отдел – Царство.

Обозначение микроорганизмов включает в себя название рода и вида. Род с большой буквы , вид с маленькой. Родовое название по фамилии автора или морфологии бактерий. Видовое название – по клиническим признакам, морфологии колоний, месту обитания.

В настоящее время для систематики микроорганизмов используется ряд таксономических систем.

1. Нумерическая таксономия . Признает равноценность всех признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность устанавливается по числу совпадающих признаков.

2. Серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками. Наиболее часто применяется в медицинской бактериологии. Недостаток – бактерии не всегда cодержат видоспецифический антиген.

3. Хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов.

4. Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации , трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.еографическому месту выявления.

Специализированные термины:

Вид – эволюционно сложившаяся совокупность особей, имеющая единый генотип, проявляющийся сходными фенотипическими признаками.

Вариант – особи одного вида, различающиеся по разным признакам (серовары, хемовары, культивары, морфовары, фаговары).

Популяция – совокупность особей одного вида, относительно длительно обитающих на определенной территории .

Культура – совокупность бактерий одного вида (чистая) или нескольких видов (смешанная), выращенная на питательной среде (жидкой или плотной).

Штамм – чистая культура одного вида бактерий, выделенная в определенное время из одного источника .

Колония – видимое скопление бактерий одного вида на поверхности или в глубине плотной питательной среды.

Клон – культура клеток, выращенная из одного микроорганизма методом клонирования.

Микробиология играет огромную роль в развитии человечества. Становление науки началось еще 5-6 веке до н. э. Уже тогда предполагали, что многие болезни вызваны невидимыми живыми существами. Краткая история развития микробиологии, которая описана в нашей статье, позволит выяснить, как образовалась наука.

Общая информация о микробиологии. Предмет и задачи

Микробиология - это наука, которая изучает жизнедеятельность и строение микроорганизмов. Микробы невозможно увидеть невооруженным глазом. Они могут иметь как растительное, так и животное происхождение. Микробиология - Для изучения мельчайших оорганизмов используются методы других предметов, таких как физика, химия, биология, цитология.

Существует общая и частная микробиология. Первая изучает строение и жизнедеятельность микроорганизмов на всех уровнях. Предмет изучения частной - отдельные представители микромира.

Достижения медицинской микробиологии в 19 веке способствовали развитию иммунологии, которая сегодня является общебиологической наукой. Становление микробиологии происходило в три этапа. На первом было установлено, что в природе существуют бактерии, которые нельзя увидеть невооруженным глазом. На втором этапе становления были дифференцированы виды, а на третьем началось изучение иммунитета и инфекционных заболеваний.

Задачи микробиологии - изучение свойств бактерий. Для исследований используют приборы для микроскопии. Благодаря этому можно увидеть форму, расположение и структуру бактерий. Нередко ученые подсаживают микроорганизмы здоровым животным. Это необходимо для воспроизведения инфекционных процессов.

Пастер Луи

Луи Пастер родился 27 декабря 1822 года на востоке Франции. В детстве он увлекался искусством. Со временем его начали привлекать естественные науки. Когда Луи Пастеру исполнился 21 год, он отправился в Париж для обучения в Высшей школе, после окончания которой должен был стать преподавателем естествознания.

В 1848 году Луи Пастер представил в Парижской академии наук результаты своей научной работы. Он доказал, что в винной кислоте есть два типа кристаллов, которые по-разному поляризуют свет. Это было блестящим началом его карьеры ученого.

Пастер Луи - это основатель микробиологии. Ученые до начала его деятельности предполагали, что дрожжи образуют химический процесс. Однако именно Пастер Луи, проведя ряд исследований, доказал, что образование алкоголя при брожении связано с процессом жизнедеятельности мельчайших организмов - дрожжей. Он выяснил, что существует два типа таких бактерий. Один вид создает алкоголь, а другой - так называемую молочную кислоту, которая портит спиртосодержащие напитки.

На этом ученый не остановился. Через некоторое время он выяснил, что при нагревании до 60 градусов по Цельсию нежелательные бактерии погибают. Он рекомендовал технику постепенного подогревания виноделам и поварам. Однако первое время они относились к такому методу отрицательно, считая, что это испортит качество продукции. Со временем они поняли, что такой способ действительно положительно сказывается на процессе изготовления алкоголя. Сегодня метод Пастера Луи известен как пастеризация. Он используется при сохранении не только спиртосодержащих напитков, но и других продуктов.

Ученый нередко задумывался об образовании плесени на продуктах. После ряда исследований, он понял, что пища портится только в том случае, если она на протяжении длительного периода времени контактирует с воздухом. Однако если воздух нагреть до 60 градусов по Цельсию, процесс гниения останавливается на некоторое время. Не портятся продукты и высоко в Альпах, где воздух разреженный. Ученый доказал, что плесень образуется из-за спор, которые находятся в окружающей среде. Чем меньше их в воздухе, тем медленнее портится пища.

Популярность ученого росла. В 1867 году Наполеон III распорядился предоставить Пастеру хорошо оснащенную лабораторию. Именно там ученый создал прививку от бешенства, благодаря которой он стал известен по всей Европе. Умер Пастер 28 сентября 1895 года. Основателя микробиологии похоронили со всеми государственными почестями.

Кох Роберт

Вклад ученых в микробиологию позволил сделать массу открытий в медицине. Благодаря этому человечество знает, как избавиться от многих опасных для здоровья заболеваний. Считается, что Кох Роберт - это современник Пастера. Ученый родился в декабре 1843 года. С детства он интересовался природой. В 1866 году он окончил обучение в университете и получил медицинский диплом. После этого работал в нескольких больницах.

Роберт Кох начал деятельность бактериолога. Он сосредоточился на изучении сибирской язвы. Кох изучал под микроскопом кровь больных животных. Ученый нашел в ней массу микроорганизмов, которые отсутствуют у здоровых представителей фауны. Роберт Кох решил привить их мышам. Подопытные погибли спустя сутки, а в их крови присутствовали такие же микроорганизмы. Ученый выяснил, что сибирскую язву вызывают которые имеют форму палочки.

После успешных исследований Роберт Кох начал задумываться об изучении туберкулеза. Это неслучайно, ведь в Германии (место рождения и проживания ученого) от данного заболевания погибал каждый седьмой житель. В то время врачи еще не знали, как бороться с туберкулезом. Они считали, что это наследственное заболевание.

Для своих первых исследований Кох использовал труп молодого рабочего, который погиб от чахотки. Он исследовал все внутренние органы и не обнаружил никаких болезнетворных бактерий. Затем ученый решил окрашивать препараты и рассматривать их на стекле. Однажды, рассматривая под микроскопом такой препарат, окрашенный в синий цвет, Кох заметил между тканями легких маленькие палочки. Он привил их морской свинке. Животное погибло спустя несколько недель. В 1882 году Роберт Кох рассказал на заседании Общества врачей о результатах своего исследования. Позже он попытался создать вакцину от туберкулеза, которая, к сожалению, не помогла, но применяется до сих пор при диагностировании заболевания.

Краткая история развития микробиологии в то время вызывала интерес у многих. Вакцина от туберкулеза была создана только спустя несколько лет после смерти Коха. Однако это не уменьшает его заслуги в исследовании данного заболевания. В 1905 году ученый был удостоен Нобелевской премии. Бактерии туберкулеза получили название в честь исследователя - палочка Коха. Умер ученый в 1910 году.

Виноградский Сергей Николаевич

Сергей Николаевич Виноградский - это известный бактериолог, который сделал огромный вклад в развитие микробиологии. Родился он в 1856 году в Киеве. Его отец был состоятельным юристом. Сергей Николаевич после окончания местной гимназии получил образование в Консерватории Санкт-Петербурга. В 1877 году он поступил на второй курс естественного факультета. Окончив его в 1881 году, ученый посвятил себя изучению микробиологии. В 1885 году он поехал для обучения в Страсбург.

Сегодня Сергей Николаевич Виноградский считается основателем экологии микроорганизмов. Он изучал грунтовое микробное сообщество и разделил все микроорганизмы, живущие в нем, на автохтонных и аллохтонных. В 1896 году Виноградский сформулировал представление о жизни на Земле как о системе взаимосвязанных биогеохимических циклов, которые катализируют живые существа. Его последняя научная работа была посвящена систематике бактерий. Умер ученый в 1953 году.

Возникновение микробиологии

Краткая история развития микробиологии, описанная в нашей статье, позволит выяснить, как человечество начало борьбу с опасными заболеваниями. С процессами жизнедеятельности бактерий человек сталкивался задолго до их открытия. Люди сквашивали молоко, использовали брожение теста и вина. В трудах врача из Древней Греции были названы предположения о связи опасных заболеваний и особых болезнетворных испарений.

Подтверждение было получено Антони ван Левенгуком. Стачивая стекла, он смог создать линзы, которые увеличивали исследуемый предмет более чем в 100 раз. Благодаря этому он смог рассмотреть все окружающие его объекты.

Он выяснил, что на них проживают мельчайшие организмы. Полная и краткая история развития микробиологии началась именно с результатов исследований Левенгука. Он не смог доказать предположения о причинах заразных заболеваний, но практическая деятельность врачей со времен древности подтверждала их. Законы индусов предусматривали профилактические мероприятия. Известно, что специальной обработке поддавались вещи и жилища больных людей.

В 1771 году военный врач Москвы впервые производит дезинфекцию вещей больных чумой и делает прививки людям, которые контактировали с переносчиками заболевания. Темы по микробиологии разнообразны. Наиболее интересной считается та, которая описывает создание прививки от оспы. Она с давних времен использовалась персами, турками и китайцами. Ослабленные бактерии вводились в тело человека, потому что считалось, что так болезнь протекает легче.

(английский врач) заметил, что большинство людей, которые не болели оспой, не заражаются при близком контакте с переносчиками заболевания. Наиболее часто это наблюдалось у доярок, которые заражались при доении коров больных коровьей оспой. Исследования врача длились 10 лет. В 1796 году Дженнер ввел кровь больной коровы здоровому мальчику. Спустя некоторое время он попытался привить ему бактерии заболевшего человека. Так была создана прививка, благодаря которой человечество избавилось от заболевания.

Вклад отечественных ученых

Открытия в микробиологии, сделанные учеными со всего мира, позволяет понять, как справиться почти с любым заболеванием. Немалый вклад в развитие науки внесли отечественные исследователи. В 1698 году Петр I познакомился с Левенгуком. Тот продемонстрировал ему микроскоп и показал ряд предметов в увеличенном виде.

Во время образования микробиологии как науки Лев Семенович Ценковский опубликовал свою работу, в которой он отнес микроорганизмы к растительным организмам. Он также использовал метод Пастера для угнетения сибирской язвы.

Немалую роль в микробиологии сыграл Илья Ильич Мечников. Он считается одним из основоположников науки о бактериях. Ученый создал теорию иммунитета. Он доказал, что многие клетки организма могут угнетать вирусные бактерии. Его исследования стали основой для изучения воспаления.

Микробиология, вирусология и иммунология, а также сама медицина в то время вызывали огромный интерес почти у каждого. Мечников исследовал человеческий организм и пытался понять, почему он стареет. Ученый желал найти способ, который позволил бы продлить жизнь. Он считал, что ядовитые вещества, которые образуются из-за жизнедеятельности гнилостных бактерий, отравляют человеческий организм. По мнению Мечникова, необходимо заселить тело молочнокислыми микроорганизмами, которые угнетают гнилостных. Ученый считал, что таким образом можно существенно продлить жизнь.

Мечников изучал множество опасных заболеваний, таких как тиф, туберкулез, холера и другие. В 1886 году он создал бактериологическую станцию и школу микробиологов в Одессе (Украина).

Микробиология техническая

Техническая микробиология изучает бактерии, которые используют при создании витаминов, некоторых препаратов и заготовке продуктов. Основной задачей данной науки является интенсификация технологических процессов на производстве (чаще пищевом).


Освоение технической микробиологии ориентирует специалиста на необходимость тщательного соблюдения всех санитарных норм на производстве. Изучив данную науку, можно предупредить порчу продукта. Предмет чаще всего изучают будущие специалисты пищевой промышленности.

Дмитрий Иосифович Ивановский

Основой для создания множества других наук стала микробиология. История науки началась еще задолго до ее общественного признания. Вирусология была образована в 19 веке. Данная наука изучает не все бактерии, а лишь те, которые являются вирусными. Ее основоположником считается Дмитрий Иосифович Ивановский. В 1887 году он начал исследовать заболевания табака. Он обнаружил в клетках больного растения кристаллические вкрапления. Таким образом, он открыл возбудителей заболеваний небактериальной и непротозойной природы, которые в дальнейшем были названы вирусами.

Результаты своих исследований о больных растениях Ивановский представил на заседании Общества естествоиспытателей. Дмитрий Иосифович также активно изучал почвенную микробиологию.

Учебная литература

Микробиология - это наука, которую невозможно изучить за несколько дней. Она играет важную роль в развитии медицины. Книги по микробиологии позволяют самостоятельно изучить данную науку. В нашей статье вы можете ознакомиться с наиболее популярными.

  • (2011) - это книга, которая описывает жизнедеятельность бактерий, которые проживают при высоких температурах. Они существуют на большой глубине, где тепло поступает от магмы. В книге собраны статьи различных ученых со всех уголков Российской Федерации.
  • "Три жизни великого микробиолога. Документальная повесть о Сергее Николаевиче Виноградском" - это книга о величайшем ученом, автор которой Георгий Александрович Заварзин. Написана она по дневникам Виноградского. Ученым было заложено несколько крупных направлений в микробиологии (микробная, почвенная, хемосинтез). Книга будет необычайно полезна будущим врачам и просто любознательным людям.
  • "Общая микробиология", написанная Гансом Шлегелем - это издание, которое позволит познакомиться с удивительным миром бактерий. Стоит отметить, что Ганс Шлегель - известный во всем мире немецкий микробиолог, который еще жив. Издание множество раз обновлялось и дополнялось. Считается, что это одна из лучших книг по микробиологии. Она кратко описывает строение, а также процесс жизнедеятельности и размножения бактерий. Книга легко читается. В ней нет лишней информации.
  • "Микробы хорошие и плохие. Наше здоровье и выживание в мире" - это современная книга, написанная Джессикой Сакс и изданная в прошлом году. После улучшения санитарных условий и возникновения антибиотиков продолжительность жизни у людей существенно возросла. Книга посвящена проблеме возникновения иммунных заболеваний, которая связана с чрезмерной заботой об улучшении санитарных условий.
  • "Смотри, что у тебя внутри" - это книга Роба Найта. Она была издана в прошлом году. В книге рассказывается о микробах, которые проживают в разных уголках нашего тела. Автор утверждает, что микроорганизмы играют более важную роль, чем мы думали ранее.

Основа новейших технологий

Микробиология - это основа новейших технологий. Мир бактерий изучен еще не до конца. Многие ученые не сомневаются в том, что благодаря микроорганизмам можно создавать не имеющие аналогов технологии. Биотехнология будет служить для них основой.

При разработке месторождения угля и нефти используются микроорганизмы. Не секрет, что ископаемое топливо уже заканчивается, несмотря на то, что человечество использует его на протяжении около 200 лет. В случае его исчерпания ученые рекомендуют использовать микробиологические способы получения спиртов из возобновляемых источников сырья.


Биотехнология позволяет справиться как с экологическими, так и с энергетическими проблемами. Удивительно, но микробиологическая переработка отходов органического типа позволяет не только очистить окружающую среду, но и получить биогаз, который ничуть не уступает природному. Такой метод получения топлива не требует лишних затрат. Уже сегодня в окружающей среде присутствует достаточное количество материала для переработки. Например, только в США его около 1,5 млн тонн. Однако на данный момент не продуман метод утилизации отходов от переработки.

Подводим итоги

Микробиология занимает важное место в жизни человечества. Благодаря данной науке врачи научись справляться с опасными для жизни заболеваниями. Микробиология стала также основой для создания вакцин. Известно немало величайших ученых, которые внесли вклад в данную науку. С некоторыми из них вы познакомились в нашей статье. Многие ученые, живущие в наше время, считают, что в будущем именно микробиология позволит справиться со многими экологическими и энергетическими проблемами, которые могут возникнуть уже в ближайшее время.

Viva animalika – маленькие зверушки.

В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

Начинается II период развития микробиологии пастеровский или физиологический.

Работы Пастера. (1822-1895)

Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

Пастер доказал невозможность самозарождения жизни.

Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

Пастеризация.

Роберт Кох (1843-1910)

Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

Русская микробиология.

^ Н. Н. Мечников (1845-1916)

Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

В 1909г. Получил за эту теорию Нобелевскую премию.

^ С. Н. Виноградский (1856-1953)

Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

^ В. Л. Омелонский (1867-1928)

Написал первый учебник по микробиологии.

Методы микробиологических исследований.

Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

Общебиологические :

Методы молекулярной биологии,

Цитохимии

Генетики

Биофизики

Химический состав и строение бактериальной клетки.

Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

Ультраструктура бактериальной клетки.

Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

Поверхностная структура это:

Ворсинки

Клеточная стенка

Внутренние структуры:

Цитоплазматическая мембрана (ЦПМ)

Нуклеоид

Рибосомы

Мезосомы

Включения

Функции органеллы.

^ Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

Функции

Поддержание постоянной внешней формы бактерий.

Механическая защита клетки

Дают возможности существовать в гипотонических растворах.

^ Слизистая капсула (слизистый чехол)

Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющее четко очерченную поверхность.

Различают:

Микрокапсулу (меньше 0,2 мкм)

Микрокапсулу (больше 0,2 мкм)

Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

Различают капсульные колонии:

S-типа (гладкие, ровные, блестящие)

R-типа (шероховатые)

Функции:

Защищает клетку от механических повреждений

Защищает от высыхания

Создает дополнительный осмотический барьер

Служит препятствием для проникновения вирусом

Является источником запасных питательных веществ

Может быть приспособлением к окружающей среде

Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

Функции:

Те же, что у капсулы.

Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

Жгутики

Функция

Локомоторная

ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

Функции:

Перенос веществ – через мембраны,

Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

Пассивный (по градиенту концентрации)

Локализуется большинство ферментативных систем клетки

Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

Нуклеоид :

Не имеет мембраны,

Не содержит хромасом

Не делиться митозом.

Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

Количество нуклеоидов в клетке – 1, реже от 1 до 8.

Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

Пластинчатые

Трубчатые

^ Функции

Окисление веществ.

Аэросомы - структуры, которые содержат какой-либо газ.

Внутрицитоплазмотические включения

В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

Химический состав клеток прокариотов.

В состав любой клетки прокариотов входят:

2 типа нуклеиновых кислот (ДНК и РНК)

Углеводы

Минеральные вещества

Вода

В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

Вода в клетках бывает в 3-х состояниях:

Свободном

Связанном

Связанном с боиполимерами

Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

^ Минеральные вещества

Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn, Mo, B, Cr, Co, Cu, и др.

Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

^ Роль минеральных веществ :

Являются активаторами и ингибиторами ферментативных систем.

Биополимеры.

Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

Нуклеиновых кислот

Углеводов (полисахаридов)

Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

^ Нуклиновые кислоты .

В клетках в среднем содержится 10% РНК и 3-4% ДНК.

Белки.

Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

Лепиды

В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

Углеводы

Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

Морфология бактерий.

По внешнему виду бактерии делятся на 3 группы:

Кокковидной формы

Палочковидной формы

Извитые (или спиралевидные)

^ Шаровидные бактерии – (кокки).

Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

или в виде виноградной кисти – стафилококки

Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

По признаку расположения клеток по отношению друг к другу кокки делят на:

Монококки

Диплококки

Стрептококки

Стафилококки

^ Палочковидные бактерии (цилиндрические)

Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

Палочковидные микроорганизмы могут образовывать споры.

Спорообразующие формы называются бациллы.

Неспорообразующие называються бактериями.

Булавовидные.

Клострициальные.

В зависимости от взаимного расположения делят:

Монобациллы

Диплобациллы

Стептобациллы

^ Спиралевидные бактерии

Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

В зависимости от количества витков делят на группы:

Вибрионы

Спироллы 4-6 витков

Спирохеты 6-15 витков

Чаще всего это болезнетворные микроорганизмы.

Существуют еще редко встречающиеся бактерии.

Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

Для некоторых групп прокариотов характерно ветвление.

В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

Движение бактерий.

Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

Скользящие

Плавающее

Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих

периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

Монотрих

Биполярный монотрих или амфитрих

Лофотрих

Амфитрих или биполярный лофотриф

Перетрих

Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

Жгутики не являются жизненно важными органами.

Жгутики как бы присутствуют на определенных стадиях развития клетки.

Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

Таксисы могут быть хема, фото, аэро,

Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

Споры и спорообразование.

Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

Микроцисты:

При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

Они функционально аналогичны бактериальным эндоспорам:

Более устойчивы к изменению температур

Высушиванию

Различным физическим воздействиям, чем вегетативная клетка.

Эндоспоры:

Образуются эндоспоры у следующих бактерий:

Desulfotomaculum

Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

Спора- это покоящаяся стадия спорообразующих видов бактерий.

Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

Факторы и индуцирующие споро образование:

Недостаток питательных веществ в среде

Изменение pH

Изменение температуры

Накопление выше определенного уровня продуктов клеточного метаболизма.

Принципы систематики микроорганизмов.

Понятие вид, штамм, клон.

Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

Важным критерием определения понятия вид является однородность особей.

Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillus anthracis.

В микробиологии широко применяются термины штамм и клон.

Штамм более узкое понятие чем вид.

Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

Однако свойства различных штаммов не выходят за пределы вида.

Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

Популяции микробов состоящие из особей одного вида называются чистой культурой.

Понятие о статических и проточных микробных культурах.
Хемостат

Турбиностат – определение мертвых микроорганизмов по мутности.

Таких емкостях выращивается проточная микробная культура.

Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

Закономерности роста и развития микроорганизмов.

Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

Размножение.

Под ростом подразумевается увеличение размеров организма или его живого веса.

Под размножением подразумевается увеличение количества организмов.

Скорости роста микробной популяции:
Абсолютная скорость.
Относительная скорость по биомассе.

Понятие генерации:

Фазы развития стационарной микробной культуры.

Фаза – лаг-фоза.

Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

Фаза – ускорение роста.

Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

Фаза – линейного роста.

Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

Фаза – замедление роста.

В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

II, III и IV фазы объединяются в одну фазу роста.

Фаза- стационарная.

В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

Фаза – отмирание.

Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.

Потребности прокариот в питательных веществах.

Бактерии кик и все живые организмы нуждаються в питательных веществах необходимых для синтеза основных клеточных компонентов, которые могут быть синтезированы клеткой или поступать в готовом виде.

Чем больше готовых соединений должен получать организм извне, тем ниже уровень его биосинтетических способностей, т.к. химическая организация всех живущих форм одинакова.

Источники углерода.

В конструктивном метаболизме основная роль принадлежит углероду. В зависимости от источника углерода для конструктивного метаболизма все прокариоты делятся на:

Автотрофов – организмы способные синтезировать все компоненты клетки из углекислого газа, воды и минеральных веществ.

Гетеротрофы – источником углерода для конструктивного метаболизма служат органические соединения.
Степени гетеротрофии.

Сапрофиты (сапрос – гнилой, греч.)

Гетеротрофные организмы, которые непосредственно от других организмов не зависят, но нуждаются в готовых органических соединениях. Они используют продукты жизнедеятельности других организмов или разлагающиеся растительные и животные ткани. К сапрофитам относятся большая часть бактерий.

Степень требовательности к субстрату у сапрофитов весьма различна.

В эту группу входят организмы которые могут расти только на достаточно сложных субстратах (молоко, трупы животных, гниющие растительные остатки), т.е. им нужны в качестве обязательных элементов питания углеводы, органические формы азота в виде кабера аминокислот, пентуров, белков, все или часть витаминов, нуклеотиды, или готовые

компоненты необходимые для синтеза последних (азотистые основания, пятиуглеродные сахара). Чтобы удовлетворить потребности этих гетеротрофов в элементах питания их обычно культивируют на средах содержащих мясные или рыбные гидролизаты, автолизаты дрожжей, растительные экстракты, молочную сыворотку.

Есть прокариоты требующие для роста весьма ограниченное число готовых органических соединений, в основном из число витаминов и аминокислот, хотя они не в состоянии синтезировать сами. С другой стороны есть гетеротрофы нуждающееся только в одном органическом источнике углерода (сахар, спирт, кислота или другие углерод содержащие соединения).

Олиготрофные бактерии (олиго – мало) обитают в водоемах, способны расти при низких концентрациях в среде органических веществ (в пределах 1-15 мг. Углерода на литр).
Потребности в азоте.

Азота содержится примерно 10-14% в расчете на сухой вес клетки. В природе азот встречаеться в окисленной, восстановленной форме и в виде молекулярного азота.

Подавляющее большинство прокариот усваивают азот в восстановленной форме (соли аммония, мочевина, аминокислоты или продукты их неполного гидролиза).

Роль микроорганизмов в круговороте азота.




денитрофикация



нитрофикация

азотофикация



аммонофикация


Источники серы и фосфора.

Сера фосфор необходимы в небольших количествах 1-3% от сухой массы клетки. Сера входит в состав аминокислот, витаминов и кофакторов (биотин, коферменты и т.д.). фосфор неаобходимый компонетк нуклеиновых кислот, коферментов.

В природе сера находится в форме неорганических солей, главным образом сульфатов, молекулярной серы или в составе органических соединений. большинство прокариот потреляют серу в виде сульфата переводя её в сероводород. Основная форма фосфора в природе – фосфаты и прокариоты потребляют в основном одно или двузамещенные фосфаты.

Роль ионов металлов.

Металлы в форме катионов неорганических солей, как составная часть ферментов в достаточно высоких концентрациях необходимы: Mg, Ca, K, Fe. В небольших количествах нужны: Zn, Mn, Na, Cu, Y, Ni, Co.

Факторы роста.

Некоторые прокариоты обнаруживают потребности в одном каком-либо органическом соединении из группы витаминов, аминокислот, или азотистых оснований, которые они по каким-либо причинам не могут синтезировать. Такие органические соединения необходимы в очень не больших количествах получили название факторов роста. Организмы которые в дополнение к основным источникам углерода необходим один и больше факторов роста называеться ауксотрофами, в отличии от прототрофов синтезирующих все необходимые органические соединения из основных источников углерода.

Общая характеристика метаболизма прокариот.

Метаболизм (обмен веществ) – складывается из двух противоположных, но взаимосвязанных потоков реакций.

Энергетический метаболизм (катоболизм) – это поток реакций сопровождающейся мобилизацией энергии и преобразованием её в электрохимическую (поток электронов) и химическую (АТФ), которая затем может использоваться во всех энергозависимых процессах.

Катоболизм характерен только для групп организмов, метаболизм который связан с превращением органических соединений.

Конструктивны метаболизм (анаболизм) (биосинтезы) –это поток реакций в результате которых за счет поступающих из вне веществ строиться вещество клеток. Это процесс

связанный с потреблением свободной энергией, запасенной в химической форме в молекулах АТФ или других богатых энергией соединений.

Есть прокариоты у которых функционирует один поток превращений органических соединений углерода.

Фотолитотрофы и хемолитотрофы.

Метоболические пути состоят из множества последовательных ферментативных реакций.

На начальном этапе потребления веществ из окружающей среды молекулы служащие исходным субстратом для питания перерабатываются в дополнительном (периферическом) метаболизме.

Связь между двумя типами метаболизма.

Катаболизм и анаболизм связаны по нескольким каналам:

Основной энергетический пред. Реакции поставляют энергию необходимую для биосинтеза и других клеточных энергозависимых функций.

Биосинтетические реакции кроме энергии часто нуждаются в поступлении из вне восстановителей в виде протонов H⁺ или электронов, источником которые также служат реакции энергетического метаболизма.

Определенные промежуточные этапы – метаболиты обеих путей могут быть одинаковыми, хотя направленность потоков реакции различно. Это создает возможность для использование общих промежуточных продуктов в каждом из метаболических путей. Промежуточные вещества называются амфиболитами, а промежуточные реакции – амфиболистическими. Ключевые метаболиты образуются на пересечении метаболистичесских путей и выполняющих многообразные функции называются центроболиты.

Ферменты.

Это катализаторы биохимических реакций клетки, белковой природы.

Классификация:

По месту действия.

Эндоферменты – ферменты которые работают внутри клетки.

Экзофермены – ферменты которые клетка выделяет за свою мембрану для того что бы расщеплять крупные молекулы.

По характеру присутствия в клетке.

Конститутивные – ферменты которые в клетке всегда есть.

Индуцибельные – которые вырабатываются клеткой в ответ на поступление нового питательного вещества.

Биохимическая (международная) 1961 год.

По характеру ферментных реакций.

Оксиредуктазы – это ферменты которые катализируют окислительно-восстановительные реакции, сопровождающиеся переносом протонов и электронов.

Трансферазы – это ферменты которые катализируют реакции переноса отдельных групп.

Гидролазы – это ферменты катализирующие гидролитическое расщипление сложных органических субстратов.

Лиазы – ферменты которые катализируют не гидролитическое расщипление субстрата.

Изомеразы – катализируют реакции изомеризации.

Лигазы (синтетазы) – катализируют реакции синтеза или образов сложных органических молекул.

Механизм ферментативных реакций.

Особенности ферментативных реакций.

Особенность ферментативных раекций состоит в строгой спецефичности действия ферментов.

Специфичность – это способность реагировать только с одним веществом или группой веществ. Специфичность бывает абсолютная- фермент действует только с одним веществом, и групповая – фермент катализирует реакции с группой веществ обладающих общими структурными признаками, относительная – проявляется в том случае, когда фермент действует на определенную химическую связь, стереохимическая – когда фермент действует на определенный стереоизомер.

Многие ферменты образуют так называемы мультиферментные системы
Эти системы определяют перенос веществ н\з клеточную мембрану, реакции фотосинтеза, окислительно-восстановительные процессы в метахондриях и тд. Процесс превращения вещества с участием системы ферментов представляет собой серию последовательных реакций, каждая из которых катализирует определенный фермент.

В отличие от неорганических катализаторов ферменты отличаются кооперативностью и строгой последовательностью действия.

Каждая клетка имеет регуляторные механизмы, позволяющие ей в зависимости от потребностей изменять скорость отдельных биохимических реакций, в результате регуляции синтеза определенных ферментов или их активности. Способность подчинять такой регуляции – важная особенность ферментов.

Каталич. Активность ферментов чрезвычайно высокая.

Реакция проходит в 10¹⁰ раз быстрее некаталической.

Способы существования прокариот.


Источник энергии

Источник электронов и протонов

Источник углерода

Способ существования микроорганизмов.

Свет

фото-


Литотрофы Mn, Fe, H

И др. неорг. соединения.


CO₂, HCO₃ автотрофы

Фотолитоавтоторофы

Органика,

гетеротрофы


фотолитогетеротрофы

Органические вещества органотрофы

CO₂, HCO₃ автотрофы

Фотоорганоавторофы

Органика,

гетеротрофы


фотоорганогетеротрофы

Химич. Связь

Хемо-


Неорганч. литорофы

CO₂, HCO₃ автотрофы

Хемолитоавтрофы

Органика,

гетеротрофы


Хемолитогетеротрофы

Органич. органотрофы

CO₂, HCO₃ автотрофы

Хемоорганоавтотровы

Органика,

гетеротрофы


Хемоорганогетеротрофы

Отношение к кислороду.

Если микроорганизмы нуждаются для осуществления окислительно-восстановительных реакций в кислороде, то их называют аэробными . Если микроорганизмы для осуществления окислительно-восстановительных реакций используются не в кислород, а окисленные соединения (NO₃, NO₂, SO₄ и т.п.), то их называют анаэробными.

Различают строгих (облигатных) аэробов или анаэробов.

Существуют так же факультативные (необязательные) аэробы и анаэробы.

Существуют группы никсотрофов (лизотрофы) – организмы способные переходить от одного способа питания к другому, или одновременно использовать 2 источника углерода и \ или 2 энергии: энергия света + энергия окисления органических хим. соединений.

Микроорганизмы и окружающая среда.

Представили прокариот разных способов существования

Фотолитоавтотрофы: цианобактерии, пурпурные и зеленые бактерии (+высшие растения)

Фотолитогетеротрофы: некоторые цианобактерии, пурпурные и зеленые бактерии.

Фотоорганоавтотрофы: некоторые пурпурные бактерии.

Фотоорганогетеротрофы: пурпурные и некоторые зеленые бактерии, галобактерии, некоторые цианобактерии.

Хемолитоавтотрофы: нитрифицирующие, теоновые, водородные ацидофильные железобактерии.

Хемолитогетеротрофы: метанообразующи, водородные бактерии.

Хемоорганоавтотрофы: факультативные литератрофы, окисляющие муравьиную кислоту.

Хемоорганогетеротрофы: большинство пркариот (+ все животные и грибы).

Физические факторы.

Температура :

Мезофиллы –микроорганизмы приспособленные к существованию в интервале средних температур (20⁰-45⁰ С). В этой группе как и в других есть организмы развивающиеся в более широком и более узком диапазоне температур и указанный интервал нельзя считать строго ограниченным.

К мезофиллам относиться большая часть микроорганизмов, в том числе и болезнетворные, причем наточенные для человека микробы имеют оптимум около 37⁰С.

Психрофилы – приспособлены к существованию про пониженных температурах (-8⁰,+20⁰С)

Большинство психрофинов способны расти при температурах характерных для мезофиллов, по этому их называют факультативными, т.е. не обязательными психрофилами.

В отличии них облигатные (обязательные) психрофилы погибают при температурах близких к +30⁰С. К данной группе относятся некоторые почвенные и морские бактерии а так же виды поточенные для морских животных и растений.

Некоторые психрофилы вызывают порчу продуктов хранящихся при пониженных температурах.

Термофилы – развиваются в зоне высоких температур 15⁰ – 75⁰С. В природе термофильные бактерии обитают в горячих источниках, молоке, почве, навозе.

Газовый состав атмосферы.

Аэробы, анаэробы. Есть узкие группы бактерий которые развиваются при избыточном содержании в воздухе некоторых газов.

^ Метан (СН₄), метанобразующие бактерии на торфяных почвах.

Водород (Н) водородные бактерии так же.

Азот (N₂) азотфиксирующие бактерии, почвенные бактерии находящиеся в симбиозе с корнями бобовых растений.

^ Сероводрод (H₂ S ) в навозных кучах болотах, в местах где много гниющей органики, сероводородные бактерии.

В разряженных частях атмосферы на высоте более 10км. Встречаются споры и жизнеспособные бактерии. На морских глубинах вплоть до 10 000 метров встречаются жизнеспособные бактерии. Есть данные, что в литосфере на глубине 5км. Так же встречаются споры и жизнеспособные бактерии.

Свет. (Смотреть фототрофов в способах сущ. прокариот.)

Биохимические факторы.

В природных условиях микроорганизмы существуют в сообществах и поэтому каждая отдельная особь испытывает влияние не только абатических факторов окружающей сред, но и подвергается воздействию факторов биохимического происхождения.

Все многообразие взяиомотношений между микроорганизмами пожно подразделить на 5 видов:

Метабиоз

Антагонизм

Из них 3 и 4 факторы являющиеся прямыми воздействиями, а 2 и 3 – косвенными воздействиями.

Симбиоз - сожительство организмов разных видов приносящее им взаимную пользу.

Азотфиктирующие бактерии и корни бобовых растений.

Метобиоз- такой тип взаимоотношений, при котором продукты жизнедеятельность жизнедеятельности одних организмов потребляются в качестве питательных веществ другими организмами.

Антогонизм- называют такие отношения когда продукты жизнедеятельности одного микроорганизма угнетают другой.

Существует 3 типа жизни:

Брожение (субстратное фосфорелирование)

Дыхание (окислительное фосфорелирование)

Фотосинтез (фотофосфорелирование)

Брожение характерно только для микроорганизмов, дыхание характерно для консументов и микроорганизмов, фотосинтез характерен для растений и микроорганизмов.

Брожение – самый древний тип жизни характерен тем, что расщепление углеродов происходит в акаэробных условиях. В зависимости от конечного продукта брожения различают спиртовое брожение, уксусно-кислое, пропионово-кислое, молочно-кислое, масляно-кислое и др.

Гликолиз – сбраживание углеродов.

1стадия происходит накопление простых сахаров и их превращение в глицеральдегидрофосфат.

Происходит расходование АТФ

Глюкоза С₆

Глюкоза 6 фосфор

Глюкоза 1-6 фосфат

2 глицеральдегидрофосфат
2 стадия:

Происходит окисление – восстановление триоз и существующее образование АТФ
Фн (фосфор не органический)+ глицеральдегирофосфат

1-3 дифосфоглицерат

3 фосфоглицерат

2 фосфоглицерат

Фосфоенолпируват.

Пируват (правиноградная кислота)

Спирт, молочная кислота и т.д.
^ Энергетический выход гликолиза

2 молекулы АТФ образуется при расщеплении 1 молекулы глюкозы

Дыхание

Процесс дыхания происходит в аэробных условиях. Происходит окисление углеродов за счет кислорода.

Цикл Кребса. См приложение 2.

Фотосинтез

Происходит образование углеродов из углекислого газа за счет энергии квантов света. См прил.3

Смысл – запасание энергии квантов света, химических связей триоз и образование тексоз.
Приложение

И других кисломолочных продуктов, получения алкоголя , уксуса , при мочке льна .

Донаучный этап развития

Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо ( -), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.

Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха . Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.

Описательный этап

Антони ван Левенгук.

Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем . В Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии . По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер ( -), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука .

Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике . Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт , не имея никакого понятия о фотосинтезе , заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в -1776 годах . Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.

В течение следующих 100-150 лет развитие микробиологии проходило лишь с описанием новых видов. Видную роль в изучении многообразия микроорганизмов сыграл Отто Фридрих Мюллер [кто? ] , который к описал и назвал по линнеевской биномиальной номенклатуре 379 различных видов. В это время было сделано и несколько интересных открытий. Так, в была определена причина «кровоточения» просфор - бактерия, названная Serratia marcescens (другое название Monas prodigiosa ). Также следует отметить Христиана Готтфрида Эренберга [кто? ] , описавшего множество пигментированных бактерий, первые железобактерии , а также скелеты простейших и диатомовых водорослей в морских и лиманных отложениях, чем положил начало микропалеонтологии. Именно он впервые объяснил окраску воды Красного моря развитием в ней цианобактерий Trichodesmium erythraeum . Он, однако, причислял бактерий к простейшим и рассматривал их вслед за Левенгуком как полноценных животных с желудком, кишечником и конечностями…

В России одним из первых микробиологов был Л. С. Ценковский ( -), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы .

Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович ( -1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы - возможности оптики тогда ещё не позволяли это сделать. В итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер , Йёнс Якоб Берцелиус и Юстус Либих . Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» () - саркастическую пародию на микробиологические исследования тех лет.

Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.

Споры о самозарождении и брожении

Открытие вирусов

Изучение обмена веществ микроорганизмов

Техническая, или промышленная, микробиология

Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.

Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников ( -), Д. И. Ивановский ( -), Н. Ф. Гамалея ( -), Л. С. Ценковский, С. Н. Виноградский , В. Л. Омелянский , Д. К. Заболотный ( -), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.

Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва , А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.

Частью технической микробиологии является пищевая микробиология, изучающая способы получения пищевых продуктов с использованием микроорганизмов. Например, дрожжи применяют в виноделии, пивоварении, хлебопечении, спиртовом производстве; молочнокислые бактерии - в производстве кисломолочных продуктов, сыров, при квашении овощей; уксусно-кислые бактерии - в производстве уксуса; мицелиальные грибы используют для получения лимонной и других пищевых органических кислот и т. д. К настоящему времени выделились специальные разделы пищевой микробиологии: микробиология дрожжевого и хлебопекарного производства, пивоваренного производства, консервного производства, молока и молочных продуктов, уксуса, мясных и рыбных продуктов, маргарина и т. д.

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

  • микроскопия : световая, фазово-контрастная , темнопольная , флуоресцентная , электронная ;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях);
  • молекулярно-генетический метод (ПЦР , ДНК- и РНК-зонды и др.);
  • серологический метод - выявления антигенов микроорганизмов или антител к ним (ИФА).

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Связь с другими науками

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

Примечания

Литература

  • Вербина Н. М., Каптерёва Ю. В. Микробиология пищевых производств. - М.: изд. ВО «АГРОПРОМИЗДАТ», 1988. - ISBN 5-10-000191-7
  • Воробьёв А. В., Быков А. С., Пашков Е. П., Рыбакова А. М. Микробиология: Учебник. - 2-е изд. перераб. и доп. - М.: Медицина, 2003. - 336 с. - (Учеб. лит. для студ. фарм. вузов). - ISBN 5-225-04411-5
  • Галынкин В. А., Заикина Н.А., Кочеровец В.И. и др. Основы фармацевтической микробиологии: учебное пособие для системы послевузовского образования. - С.-П.: Проспект науки, 2008. - 288 с. - ISBN 978-5-903090-14-3
  • Гусев М. В. , Минеева Л. А. Микробиология. - 9-е изд., стер. - М.: Издательский центр «Академия», 2010. - 464 с. - (Серия: Классическая учебная книга). - ISBN 978-5-7695-7372-9
  • Гусев М. В., Минеева Л. А. Микробиология: Учебник для студ. биол. специальностей вузов. - 4-е изд., стер. - М.: Издательский центр «Академия», 2003. - 464 с. - ISBN 5-7695-1403-5
  • Заварзин Г. А. , Колотилова Н. Н. Введение в природоведческую микробиологию. - М.: Книжный дом «Университет», 2001. - 256 с. - ISBN 5-8013-0124-0
  • Кондратьева Е. Н. Автотрофные прокариоты: Учеб. пособие для студентов вузов, обучающихся по направлению «Биология», специальностям «Микробиология», «Биотехнология». - М.: Изд-во МГУ, 1996. - 302 с. - ISBN 5-211-03644-1
  • Лысак В. В. Микробиология: учеб. пособие. - Минск: БГУ, 2007. - 426 с. - ISBN 985-485-709-3
  • Шлегель Г. Г. История микробиологии: Перевод с немецкого. - М: изд-во УРСС, 2002. - 304 с. - ISBN 5-354-00010-6

См. также

  • Портал:Микробиология и иммунология

Ссылки

Похожие публикации