Что такое генеральная совокупность. Генеральная совокупность и выборочный метод

Математическая статистика – это раздел математики, изучающий приближенные методы отыскания законов распределения и числовых характеристик по результатам эксперимента.

Генеральная совокупность – это множество всех мыслимых значений наблюдений (объектов), однородных относительно некоторого признака, которые смогли быть сделаны.

Выборка это совокупность случайно отобранных наблюдений (объектов) для непосредственного изучения из генеральной совокупности.

Статистическое распределение – это совокупность вариант x i и соответствующих им частот n i .

Гистограмма частот – это ступенчатая фигура, состоящая из смежных прямоугольников, построенных га оной прямой, основания которых одинаковы и равны ширине класса, а высота равна или частоте попадания в интервал n i или относительной частоте n i /n. Ширину интервала i можно определить по формуле Стерджеса :

I=(x max -x min)/(1+3,32lgn),

Где x max – максимальное; x min – минимальное значение вариант, а их разность носит название вариационный размах ; n – объем выборки.

Полигон частот – ломаная линия, отрезки которой соединяют точки с координатами x i , n i .

5. Характеристики положения (мода, медиана, выборочное среднее) и рассеяния (выборочная дисперсия и выборочное среднее квадратическое отклонение).

Мода (М о ) это такое значение варианты, что предшествующее и следующее за ним значения имеют меньшие частоты встречаемости.

Для одномодальных распределений мода – это наиболее часто встречающаяся варианта в данной совокупности.

Для определения моды интервальных рядов служит формула:

M 0 =x ниж +i*((n 2 -n 1 )/(2n 2 -n 1 +n 3 )),

где х ниж – нижняя граница модального класса, т.е. класса с наибольшей частотой встречаемости n 2 ; n 2 – частота модального класса; n 1 – частота класса, предшествующего модальному; n 3 – частота класса, следующего за модальным; i – ширина классового интервала.

Медиана (М е )- это значение признака. Относительно которого ряд распределения делится на 2 равные по объему части.

Выборочная средняя – это среднее арифметическое значение вариант статистического ряда

Выборочная дисперсия – среднее арифметическое квадратов отклонения вариант от их среднего значения:

Среднее квадратическое отклонение это квадратный корень из выборочной дисперсии:

S в =√(S в 2 )

6. Оценка параметров генеральной совокупности по ее выборке (точечная и интервальная). Доверительный интервал и доверительная вероятность.

Числовые значения, характеризующие генеральную совокупность, называются параметрами.

Статистическое оценивание может выполняться двумя способами:

1)точечная оценка – оценка, которая дается для некоторой определенной точки;

2)интервальная оценка – по данным выборки оценивается интервал, в котором лежит истинное значение с заданной вероятностью.

Точечная оценка – это оценка, которая определяется одним числом. И это число определяется по выборке.

Точечная оценка называется состоятельной , если при увеличении объема выборки выборочная характеристика стремится к соответствующей характеристике генеральной совокупности.

Точечная оценка называется эффективной , если она имеет наименьшую дисперсию выборочного распределения по сравнению с другими аналогичными оценками.

Точечную оценку называют несмещенной , если ее математическое ожидание равно оценивающему параметру при любом объеме выборки.

Несмещенной оценкой генеральной средней (математического ожидания) служит выборочная средняя в:

в = i n i ,

где x i – варианты выборки; n i – частота встречаемости вариант x i ; n – объем выборки.

Интервальная оценка – это числовой интервал, который определяется двумя числами – границами интервала, содержащий неизвестный параметр генеральной совокупности.

Доверительный интервал – это интервал, в котором с той или иной заранее заданной вероятностью находится неизвестный параметр генеральной совокупности.

Доверительная вероятность p это такая вероятность, что событие вероятности (1-р) можно считать невозможным. α=1-р – это уровень значимости. Обычно в качестве доверительных вероятностей используют вероятности, близкие к 1. Тогда событие, что интервал накроет характеристику, будет практически достоверным. Это р≥0,95, р≥0,99, р≥0,999.

Для выборки малого объема (n<30) нормально распределенного количественного признака х доверительный интервал может иметь вид:

в - m t≤≤ в + m t (р≥0,95),

где – генеральное среднее; в – выборочное среднее; t – нормированный показатель распределения Стьюдента с(n-1) степенями свободы, который определяется вероятностью попадания генерального параметра в данный интервал; m – ошибка выборочной средней.

Генеральная совокупность (в англ. - population ) - совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.

Генеральная совокупность состоит из всех объектов, которые подлежат изучению. Состав генеральной совокупности зависит от целей исследования. Иногда генеральная совокупность - это все население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объект исследования. Например, мужчины 30-50 лет, использующие бритву определённой марки не реже раза в неделю, и имеющие доход не ниже $100 на одного члена семьи.

Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

Характеристики выборки:

 Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.

 Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки

 Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

 Существует необходимость в сборе первичной информации.

Объём выборки

Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30 – 35.

17. Основные способы формирования выборки

Формирование выборки прежде всего основывается на знании контура выборки, под которым понимается список всех единиц совокупности, из которого выбираются единицы выборки. Например, если в качестве совокупности рассматривать все автосервисные мастерские города Москвы, то надо иметь список таких мастерских, рассматриваемый как контур, в пределах которого формируется выборка.

Контур выборки неизбежно содержит ошибку, называемую ошибкой контура выборки и характеризующую степень отклонения от истинных размеров совокупности. Очевидно, что не существует полно официального списка всех автосервисных мастерских г. Москвы. Исследователь должен информировать заказчика работы о размерах ошибки контура выборки.

При формировании выборки используются вероятностные (случайные) и невероятностные (неслучайные) методы.

Если все единицы выборки имеют известный шанс (вероятность) быть включенными в выборку, то выборка называется вероятностной. Если эта вероятность неизвестна, то выборка называется невероятностной. К сожалению, в большинстве маркетинговых исследований из-за невозможности точного определения размера совокупности не представляется возможным точно рассчитать вероятности. Поэтому термин «известная вероятность» скорее основан на использовании определенных методов формирования выборки, чем на знании точных размеров совокупности.

Вероятностные методы включают в себя:

Простой случайный отбор;

Систематический отбор;

Кластерный отбор;

Стратифицированный отбор.

Невероятностные методы:

Отбор на основе принципа удобства;

Отбор на основе суждений;

Формирование выборки в процессе опроса;

Формирование выборки на основе квот.

Смысл метода отбора на основе принципа удобства заключается в том, что формирование выборки осуществляется самым удобным с позиций исследователя образом, например с позиций минимальных затрат времени и усилий, с позиций доступности респондентов. Выбор места исследования и состава выборки производится субъективным образом, например, опрос покупателей осуществляется в магазине, ближайшем к месту жительства исследователя. Очевидно, что многие представители совокупности не принимают участия в опросе.

Формирование выборки на основе суждения основано на использовании мнения квалифицированных специалистов, экспертов относительно состава выборки. На основе такого подхода часто формируется состав фокус-группы.

Формирование выборки в процессе опроса основано на расширении числа опрашиваемых исходя из предложений респондентов, которые уже приняли участие в обследовании. Первоначально исследователь формирует выборку намного меньшую, чем требуется для исследования, затем она по мере проведения расширяется.

Формирование выборки на основе квот (квотный отбор) предполагает предварительное, исходя из целей исследования, определение численности групп респондентов, отвечающих определенным требованиям (признакам). Например, в целях исследования было принято решение, что в универмаге должно быть опрошено пятьдесят мужчин и пятьдесят женщин. Интервьюер проводит опрос, пока не выберет установленную квоту.

Лекция 6. Элементы математической статистики

Вопросы для контроля знаний и подведения итога прочитанной лекции

1. Дайте определение случайной величины.

2.Напишите формулы для математического ожидания и дисперсии дискретной и непрерывной случайных величин.

3. Дайте определение локальной интегральной предельная теорем Лапласа

4. Напишите формулы, задающие биномиальное распределение, гипергеометрическое распределение, распределение Пуассона, равномерное распределение и нормальное распределение.

Цель: Изучить основные понятия математической статистики

1. Генеральная совокупность и выборка

2. Статистическое распределение выборки. Полигон. Гистограмма.

3. Оценки параметров генеральной совокупности по ее выборке

4. Генеральная и выборочная средние. Методы их расчета.

5. Генеральная и выборочная дисперсии.

6. Вопросы для контроля знаний и подведения итога прочитанной лекции

Мы приступаем к изучению элементов математической статистики, в которой разрабатываются научно обоснованные методы сбора статистических данных и их обработки.

1. Генеральная совокупность и выборка. Пусть требуется изучить множество однородных объектов (это множество называется статистической совокупностью) относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным - контролируемый размер детали.

Лучше всего произвести сплошное обследование, т.е. изучить каждый объект. Однако в большинстве случаев по разным причинам это сделать невозможно. Препятствовать сплошному обследованию может большое число объектов, недоступность их. Если, например, нужно знать среднюю глубину воронки при взрыве снаряда из опытной партии, то, производя сплошное обследование, мы уничтожим всю партию.

Если сплошное обследование невозможно, то из всей совокупности выбирают для изучения часть объектов.

Статистическая совокупность, из которой отбирают часть объектов, называется генеральной совокупностью. Множество объектов, случайно отобранных из генеральной совокупности, называют выборкой.

Число объектов генеральной совокупности и выборки называют соответственно объемом генеральной совокупности и объемом выборки.

Пример 10.1. Плоды одного дерева (200 шт.) обследуют на наличие специфического для данного сорта вкуса. Для этого отбирают 10 шт. Здесь 200 - объем генеральной совокупности, а 10 - объем выборки.

Если выборку отбирают по одному объекту, который обследуют и снова возвращают в генеральную совокупность, то выборка называется повторной. Если объекты выборки уже не возвращаются в генеральную совокупность, то выборка называется бесповторной.



На практике чаще используется бесповторная выборка. Если объем выборки составляет небольшую долю объема генеральной совокупности, то разница между повторной и бесповторной выборками незначительна.

Свойства объектов выборки должны правильно отражать свойства объектов генеральной совокупности, или, как говорят, выборка должна быть репрезентативной (представительной). Считается, что выборка репрезентативна, если все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку, т. е. выбор производится случайно. Например, для того чтобы оценить будущий урожай, можно сделать выборку из генеральной совокупности еще не созревших плодов и исследовать их характеристики (массу, качество и пр.). Если вся выборка будет сделана с одного дерева, то она не будет репрезентативной. Репрезентативная выборка должна состоять из случайно выбранных плодов со случайно выбранных деревьев.

2. Статистическое распределение выборки. Полигон. Гистограмма. Пусть из генеральной совокупности извлечена выборка, причем х 1 наблюдалось n 1 , раз, х 2 - п 2 раз, ..., х k - n k раз и n 1 +n 2 +…+ п k = п - объем выборки. Наблюдаемые значения x 1 , x 2 , …, x k называют вариантами, а последовательность вариант, записанная в возрастающем порядке, - вариационным рядом. Числа наблюдений n 1 , n 2 , …, n k называют частотами, а их отношения к объему выборки , , …, - относительными частотами. Отметим, что сумма относительных частот равна единице: .

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (непрерывное распределение). В качестве частоты, соответствующей интервалу, принимают сумму частот вариант, попавших в этот интервал. Для графического изображения статистического распределения используют полигоны и гистограммы.

Для построения полигона на оси Ох откладывают значения вариант х i , на оси Оу - значения частот п i (относительных частот ).

Пример 10.2. На рис. 10.1 показан полигон следующего распределения

Полигоном обычно пользуются в случае небольшого числа вариант. В случае большого числа вариант и в случае непрерывного распределения признака чаще строят гистограммы. Для этого интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для каждого частичного интервала п i , - сумму частот вариант, попавших в i -интервал. Затем на этих интервалах, как на основаниях, строят прямоугольники с высотами (или , где п - объем выборки).

Площадь i частичного прямоугольника равна , (или ).

Следовательно, площадь гистограммы равна сумме всех частот (или относительных частот), т.е. объему выборки (или единице).

Пример 10.3. На рис. 10.2 показана гистограмма непрерывного распределения объема n = 100, приведенного в следующей таблице.

В предыдущем разделе нас интересовала распределение признака в некоторой совокупности элементов. Совокупность, которая объединяет все элементы, имеющая этот признак, называется генеральный. Если признак человеческий (национальность, образование, коэффициент IQ т.п.), то генеральная совокупность -- все население земли. Это очень большая совокупность, то есть число элементов в совокупности n велико. Число элементов называется объемом совокупности. Совокупности могут быть конечными и бесконечными. Генеральная совокупность - все люди хотя и очень большая, но, естественно, конечная. Генеральная совокупность - все звезды, наверное, бесконечно.

Если исследователь проводит измерение некоторой непрерывной случайной величины X, то каждый результат измерения можно считать элементом некоторой гипотетической неограниченной генеральной совокупности. В этой генеральной совокупности бесчисленная количество результатов распределены по вероятности под влиянием погрешностей в приборах, невнимательности экспериментатора, случайных помех в самом явлении и др.

Если мы проведем n повторных измерений случайной величины Х, то есть получим n конкретных различных численных значений, то этот результат эксперимента можно считать выборкой объема n из гипотетической генеральной совокупности результатов единичных измерений.

Естественно считать, что действительным значением измеряемой величины является среднее арифметическое от результатов. Эта функция от n результатов измерений называется статистикой, и она сама является случайной величиной, имеющей некоторое распределение называемая выборочным распределением. Определение выборочного распределения той или иной статистики -- важнейшая задача статистического анализа. Ясно, что это распределение зависит от объема выборки n и от распределения случайной величины Х гипотетической генеральной совокупности. Выборочное распределение статистики представляет собой распределение Х q в бесконечной совокупности всех возможных выборок объема n из исходной генеральной совокупности.

Можно проводить измерения и дискретной случайной величины.

Пусть измерение случайной величины Х представляет собой бросание правильной однородной треугольной пирамиды, на гранях которой написаны числа 1, 2, 3, 4. Дискретная, случайная величина Х имеет простое равномерное распределение:

Эксперимент можно производить неограниченное число раз. Гипотетической теоретической генеральной совокупностью является бесконечная совокупность, в которой имеются одинаковые доли (по 0.25) четырех разных элементов, обозначенных цифрами 1, 2, 3, 4. Серия из n повторных бросаний пирамиды или одновременное бросание n одинаковых пирамид можно рассматривать как выборку объема n из этой генеральной совокупности. В результате эксперимента имеем n чисел. Можно ввести некоторые функции этих величин, которые называются статистиками, они могут быть связаны с определенными параметрами генерального распределения.

Важнейшими числовыми характеристиками распределений являются вероятности Р i , математическое ожидание М, дисперсия D. Статистиками для вероятностей Р i являются относительные частоты, где n i -- частота результата i (i=1,2,3,4) в выборке. Математическому ожиданию М соответствует статистика

которая называется выборочным средним. Выборочная дисперсия

соответствует генеральной дисперсии D.

Относительная частота любого события (i=1,2,3,4) в сериях из n повторных испытаний (или в выборках объема n из генеральной совокупности) будет иметь биномиальное распределение.

У этого распределения математическое ожидание равно 0.25 (не зависит от n), а среднее квадратическое отклонение равно (быстро убывает с ростом n). Распределение является выборочным распределением статистики, относительная частота любого из четырех возможных результатов единичного бросания пирамиды в n повторных испытаниях. Если бы мы выбрали из бесконечной, генеральной совокупности, в которой четыре разных элемента (i=1,2,3,4) имеют равные доли по 0.25, все возможные выборки объемом n (их число также бесконечно), то получили бы так называемую математическую выборку объема n. В этой выборке каждый из элементов (i=1,2,3,4) распределен по биномиальному закону.

Допустим, мы выполнили бросания этой пирамиды, и число двойка выпало 3 раза (). Мы можем найти вероятность этого результата, используя выборочное распределение. Она равна

Наш результат оказался весьма маловероятным; в серии из двадцати четырех кратных бросаний он встречается примерно один раз. В биологии такой результат обычно считается практически невозможным. В этом случае у нас появится сомнение: является пирамида правильной и однородной, справедливо ли при одном бросании равенство, верно ли распределение и, следовательно, выборочное распределение.

Чтобы разрешить сомнение, надо выполнить еще один раз четырехкратное бросание. Если снова появится результат, то вероятность двух результатов с очень мала. Ясно, что мы получили практически совершенно невозможный результат. Поэтому исходное распределение неверное. Очевидно, что, если второй результат окажется еще маловероятней, то имеется еще большее оснований разобраться с этой "правильной" пирамидой. Если же результат повторного эксперимента будет и, тогда можно считать, что пирамида правильная, а первый результат (), тоже верный, но просто маловероятный.

Нам можно было и не заниматься проверкой правильности и однородности пирамиды, а считать априори пирамиду правильной и однородной, и, следовательно, правильным выборочное распределение. Далее следует выяснить, что дает знание выборочного распределения для исследования генеральной совокупности. Но поскольку установление выборочного распределения является основной задачей статистического исследования, подробное описание экспериментов с пирамидой можно считать оправданным.

Будем считать, что выборочное распределение верное. Тогда экспериментальные значения относительной частоты в различных сериях по n бросаний пирамиды будут группироваться около значения 0.25, являющегося центром выборочного распределения и точным значением оцениваемой вероятности. В этом случае говорят, что относительная частота является несмещенной оценкой. Поскольку, выборочная дисперсия стремиться к нулю с ростом n, то экспериментальные значения относительной частоты будут все теснее группироваться около математического ожидания выборочного распределения с ростом объема выборки. Поэтому является состоятельной оценкой вероятности.

Если бы пирамида оказалась направильной и неоднородной, то выборочные распределения для различных (i=1,2,3,4) имели бы отличные математические ожидания (разные) и дисперсии.

Отметим, что полученные здесь биномиальные выборочные распределения при больших n () хорошо апроксимируются нормальным распределением с параметрами и, что значительно упрощает расчеты.

Продолжим случайный эксперимент -- бросание правильной, однородной, треугольной пирамиды. Случайная величина Х, связанная с этим опытом, имеет распределение. Математическое ожидание здесь равно

Проведем n бросаний, что эквивалентно случайной выборке объема n из гипотетической, бесконечной, генеральной совокупности, содержащей равные доли (0.25) четырех разных элементов. Получим n выборочных значений случайной величины Х (). Выберем статистику, которая представляет собой выборочное среднее. Величина сама является случайной величиной, имеющей некоторое распределение, зависящее от объема выборки и распределения исходной, случайной величины Х. Величина является усредненной суммой n одинаковых, случайных величин (то есть с одинаковым распределением). Ясно, что

Поэтому статистика является несмещенной оценкой математического ожидания. Она является также состоятельной оценкой, поскольку

Таким образом, теоретическое выборочное распределение имеет тоже математическое ожидание, что и у исходного распределения, дисперсия уменьшена в n раз.

Напомним, что равна

Математическая, абстрактная бесконечная выборка, связанная с выборкой объема n из генеральной совокупности и с введенной статистикой будет содержать в нашем случае элементов. Например, если, то в математической выборке будут элементы со значениями статистики. Всего элементов будет 13. Доля крайних элементов в математической выборке будет минимальной, так как результаты и имеют вероятности, равные. Среди множества элементарных исходов четырех кратного бросания пирамиды имеются только по одному благоприятному и. При приближении статистик к средним значениям, вероятности будут возрастать. Например, значение будет реализоваться при элементарных исходах, и т. д. Соответственно возрастет и доля элемента 1.5 в математической выборке.

Среднее значение будет иметь максимальную вероятность. С ростом n экспериментальные результаты будут теснее группироваться около среднего значения. То обстоятельство, что среднее выборочного среднего равно среднему исходной совокупности часто используется в статистике.

Если выполнить расчеты вероятностей в выборочном распределении с, то можно убедиться, что уже при таком небольшом значении n выборочное распределение будет выглядеть как нормальное. Оно будет симметричным, в котором значение будет медианой, модой и математическим ожиданием. С ростом n оно хорошо апроксимируется соответствующим нормальным даже, если исходное распределение прямоугольное. Если же исходное распределение нормально, то распределение является распределением Стьюдента при любом n.

Для оценки генеральной дисперсии необходимо выбрать более сложную статистику, которая дает несмещенную и состоятельную оценку. В выборочном распределении для S 2 математическое ожидание равно, а дисперсия. При больших объемах выборок выборочное распределение можно считать нормальным. При малых n и нормальном исходном распределении выборочное распределение для S 2 будет ч 2 _распределение.

Выше мы попытались представить первые шаги исследователя, пытающегося провести простой статистический анализ повторных экспериментов с правильной однородной треугольной призмой (тетраэдром). В этом случае нам известно исходное распределение. Можно в принципе теоретически получить и выборочные распределения относительной частоты, выборочного среднего и выборочной дисперсии в зависимости от числа повторных опытов n. При больших n все эти выборочные распределения будут приближаться к соответствующим нормальным распределениям, так как они представляют собой законы распределения сумм независимых случайных величин (центральная предельная теорема). Таким образом, нам известны ожидаемые результаты.

Повторные эксперименты или выборки дадут оценки параметров выборочных распределений. Мы утверждали, что экспериментальные оценки будут правильными. Мы не выполняли эти эксперименты и даже не приводили результаты опытов, полученные другими исследователями. Можно подчеркнуть, что при определении законов распределений теоретические методы используются чаще, чем прямые эксперименты.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Генеральная совокупность - вся изучаемая выборочным методом статистическая совокупность объектов и/или явлений общественной жизни, имеющих общие качественные признаки или количественные переменные.

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и времени. Примеры генеральных совокупностей:
- Все жители Москвы (10,6 млн. человек по данным переписи 2002 года)
- Мужчины-Москвичи (4,9 млн. человек по данным переписи 2002 года)
- Юридические лица России (2,2 млн. на начало 2005 года)
- Розничные торговые точки, осуществляющие продажу продуктов питания (20 тысяч на начало 2008 года) и т.д.

Корректное определение Г.С. и ее характеристик чрезвычайно важно для выбора дизайна исследования - стратегии построения репрезентативной выборки (см. ). Важнейшими характеристиками Г.С. являются ее объем и доступность элементов для определения.

С точки зрения объема, принято выделять конечные и бесконечные Г.С. Это деление является чисто техническим, оно обусловлено особенностями процедур оценивания объема и ошибок репрезентативной вероятностной (случайной) выборки. Конечными считаются Г.С., численность которых сопоставима с объемом выборки. Если объем выборки превышает несколько процентов от численности Г.С., ошибку выборки необходимо оценивать с поправкой на объем Г.С.

Бесконечными называются Г.С., объем которых, по сравнению с объемом репрезентативной случайной выборки, несоизмеримо велик. Строго говоря, все Г.С. в социальных науках конечны (даже если их численность составляет несколько миллиардов), однако на практике Г.С. можно считать бесконечной, если объем выборки, обеспечивающий приемлемый уровень ошибки, не превышает 1-2 % от ее численности. Иногда понятие бесконечности связывают непосредственно с объемом Г.С., например, более ста тысяч объектов.

Г.С., принадлежность к которым очевидна или легко устанавливается, называются конкретными. Для конкретных Г.С. несложно определить объем и получить относительно полный список их элементов - основу выборки (см. Выборки основа ). Например, список совершеннолетних жителей города можно получить в адресном столе, а списки студентов крупного города - в университетах. Если конкретная Г.С. очень велика (например, население страны), списки могут быть получены для всех ее структурных частей. Построение репрезентативной выборки случайной (см. ) для конкретных Г.С. технически всегда возможно; проблемы могут возникнуть в связи с недостатком времени, квалифицированного персонала или материальных ресурсов.

Г.С., принадлежность к которой можно установить только в результате целенаправленных процедур или специальных исследований, называются гипотетическими. К таким Г.С. относятся, например, аудитории СМК (нельзя узнать, видел ли человек конкретный рекламный ролик, если не спросить его об этом), любители определенных видов аквариумных рыбок, эксперты по узкой проблеме и т.п. Для определения объема некоторых гипотетических Г.С. также необходимы специальные исследования. Возможность построения репрезентативной выборки случайной (см. ) для гипотетичных Г.С. большого объема во многих случаях представляется проблематичной.

ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ ПАРАМЕТР - статистический термин, применяемый для обозначений любой количественной характеристики генеральной совокупности (см. ). Математическое ожидание (см. ), дисперсия (см. ), вероятность (см. ) положительного ответа, коэффициент корреляции между двумя случайными величинами (см. ) являются Г.С.П. Аналогичные характеристики выборки (см. ) называются статистиками выборочными (см. ).

Выборка (Выборочная совокупность) - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Характеристики выборки:

Качественная характеристика выборки - кого именно мы выбираем и какие способы построения выборки мы для этого используем.

Количественная характеристика выборки - сколько случаев выбираем, другими словами объём выборки.

Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30—35.

Похожие публикации