Биосинтез пальмитиновой кислоты. Синтез высших жирных кислот
Поскольку способность животных и человека запасать полисахариды довольно ограничена, глюкоза, получаемая в количествах, превышающих непосредственные энергетические потребности и "запасающую емкость" организма, может являться "строительным материалом" для синтеза жирных кислот и глицерина. В свою очередь жирные кислоты при участии глицерина превращаются в триглицериды, которые откладываются в жировых тканях.
Важным процессом является также биосинтез холестерина и других стеринов. Хотя в количественном отношении путь синтеза холестерина не столь важен, однако он имеет большое значение в связи с тем, что из холестерина в организме образуются многочисленные биологически активные стероиды.
Синтез высших жирных кислот в организме
В настоящее время в достаточной степени изучен механизм биосинтеза жирных кислот в организме животных и человека, а также катализирующие этот процесс ферментные системы. Синтез жирных кислот в тканях протекает в цитоплазме клетки. В митохондриях же в основном происходит удлинение существующих цепей жирных кислот 1 .
1 Опыты in vitro показали, что изолированные митохондрии обладают ничтожной способностью включать меченую уксусную кислоту в жирные кислоты с длинной цепью. Например, установлено, что в цитоплазме печеночных клеток синтезируется главным образом пальмитиновая кислота, а в митохондриях печеночных клеток на основе уже синтезированной в цитоплазме клетки пальмитиновой кислоты или на основе жирных кислот экзогенного происхождения, т. е. поступивших из кишечника, образуются жирные кислоты, содержащие 18, 20 и 22 углеродных атомов. При этом реакции синтеза жирных кислот в митохондриях по существу являются обратными реакциями окисления жирных кислот.
Внемитохондриальный же синтез (основной, главный) жирных кислот по своему механизму резко отличается от процесса их окисления. Строительным блоком для синтеза жирных кислот в цитоплазме клетки служит ацетил-КоА, который в основном происходит от митохондриального ацетил-КоА. Установлено также, что для синтеза жирных кислот важно наличие в цитоплазме двуокиси углерода или иона бикарбоната. Кроме того, было выявлено, что цитрат стимулирует синтез жирных кислот в цитоплазме клетки. Известно, что образующийся в митохондриях в процессе окислительного декарбоксилирования ацетил-КоА не может диффундировать в цитоплазму клетки, ибо митохондриальная мембрана непроницаема для данного субстрата. Показано, что митохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате образуется цитрат, который свободно проникает в цитоплазму клетки, где расщепляется до ацетил-КоА и оксалоацетата:
Следовательно, в данном случае цитрат выступает в роли переносчика ацетильного радикала.
Есть еще один путь переноса внутримитохондриального ацетил-КоА в цитоплазму клетки. Это - путь с участием карнитина. Выше указывалось, что карнитин играет роль переносчика ацильных групп из цитоплазмы в митохондрии при окислении жирных кислот. По-видимому, он может выполнять эту роль и в обратном процессе, т. е. в переносе ацильных радикалов, в том числе ацетильного радикала, из митохондрий в цитоплазму клетки. Однако, когда речь идет о синтезе жирных кислот, данный путь переноса ацетил-КоА не является главным.
Важнейшим шагом в понимании процесса синтеза жирных кислот было открытие фермента ацетил-КоА-карбоксилазы. Этот сложный фермент, содержащий биотин, катализирует АТФ-за-висимый синтез малонил-КоА (НООС-СН 2 -CO-S-КоА) из ацетил-КоА и СO 2 .
Данная реакция протекает в два этапа:
Установлено, что функцию активатора ацетил-КоА-карбоксилазной реакции выполняет цитрат.
Малонил-КоА представляет собой первый специфический продукт биосинтеза жирных кислот. В присутствии соответствующей ферментативной системы малонил-КоА (который в свою очередь образуется из ацетил-КоА) быстро превращается в жирные кислоты.
Ферментная система, синтезирующая высшие жирные кислоты, состоит из нескольких ферментов, определенным образом связанных между собой.
В настоящее время процесс синтеза жирных кислот детально изучен у Е. coli и некоторых других микроорганизмов. Мультиферментный комплекс, именуемый синтетазой жирных кислот, состоит у Е. coli из семи ферментов, связанных с так называемым ацилпереносящим белком (АПБ). Этот белок относительно термостабилен, имеет свободную HS-rpynny и вовлекается в процесс синтеза высших жирных кислот практически на всех его этапах. Относительная молекулярная масса АПБ составляет около 10 000 дальтон.
Ниже приводится последовательность реакций, происходящих при синтезе жирных кислот:
Далее цикл реакций повторяется. Допустим, что идет синтез пальмитиновой кислоты (C 16); в этом случае образованием бутирил-АПБ завершается лишь первый из семи циклов, в каждом из которых началом является присоединение молекулы малонил-АПБ к карбоксильному концу растущей цепи жирной кислоты. При этом отщепляется молекула HS-АПБ и дистальная карбоксильная группа малонил-АПБ в виде СО 2 . Например, образовавшийся в первом цикле бутирил-АПБ взаимодействует с малонил-АПБ:
Завершается синтез жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы, например:
Суммарное уравнение синтеза пальмитиновой кислоты можно написать так:
Или, учитывая, что на образование одной молекулы малонил-КоА из ацетил-КоА расходуется одна молекула АТФ и одна молекула СО 2 , суммарное уравнение можно представить в следующем виде:
Основные этапы биосинтеза жирных кислот можно представить в виде схемы.
По сравнению с β-окислением биосинтез жирных кислот имеет ряд характерных особенностей:
- синтез жирных кислот в основном осуществляется в цитоплазме клетки, а окисление - в митохондриях;
- участие в процессе биосинтеза жирных кислот малонил-КоА, который образуется путем связывания СO 2 (в присутствии биотин-фермента и АТФ) с ацетил-КоА;
- на всех этапах синтеза жирных кислот принимает участие ацилпереносящий белок (HS-АПБ);
- необходимость для синтеза жирных кислот кофермента НАДФН 2 . Последний в организме образуется частью (на 50%) в реакциях пентозного цикла (гексозомонофосфатного "шунта"), частью - в результате восстановления НАДФ малатом (яблочная кислота + НАДФ-пировиноградная кислота + СО 2 + НАДФН 2);
- восстановление двойной связи в еноил-АПБ-редуктазной реакции происходит при участии НАДФН 2 и фермента, простетической группой которого является флавинмононуклеотид (ФМН);
- в процессе синтеза жирных кислот образуются гидроксипроизводные, относящиеся по своей конфигурации к D-ряду жирных кислот, а при окислении жирных кислот - гидроксипроизводные L-ряда.
Образование ненасыщенных жирных кислот
В тканях млекопитающих присутствуют ненасыщенные жирные кислоты, которые можно отнести к четырем семействам, различающимся длиной алифатической цепи между концевой метильной группой и ближайшей двойной связью:
Установлено, что две наиболее распространенные мононасыщенные жирные кислоты - пальмитоолеиновая и олеиновая - синтезируются из пальмитиновой и стеариновой кислот. Двойная связь в молекулу указанных кислот вводится в микросомах клеток печени и жировой ткани при участии специфической оксигеназы и молекулярного кислорода. В этой реакции одна молекула кислорода используется в качестве акцептора двух пар электронов, одна пара из которых принадлежит субстрату (Ацил-КоА), а другая - НАДФН 2:
Вместе с тем ткани человека и ряда животных неспособны синтезировать линолевую и линоленовую кислоты, а должны получать их с пищей (синтез этих кислот осуществляется растениями). В связи с этим линолевую и линоленовую кислоты, содержащие соответственно две и три двойные связи, называют незаменимыми жирными кислотами.
Все другие полиненасыщенные кислоты, обнаруженные у млекопитающих, образуются из четырех предшественников (пальмитоолеиноэой, олеиновой, линолевой и линоленовой киолот) путем дальнейшего удлинения цепи и (или) введения новых двойных связей. Происходит этот процесс при участии митохондриальных и микросомных ферментов. Например, синтез арахидоновой кислоты происходит по следующей схеме:
Биологическая роль полиненасыщенных жирных кислот в значительной мере прояснилась в связи с открытием нового класса физиологически активных соединений - простагландинов.
Биосинтез триглицеридов
Есть основания считать, что скорость биосинтеза жирных кислот во многом определяется скоростью образования триглицеридов и фосфолипидов, ибо свободные жирные кислоты присутствуют в тканях и плазме крови в небольших количествах и в норме не накапливаются.
Синтез триглицеридов происходит из глицерина и жирных кислот (главным образом стеариновой, пальмитиновой и олеиновой). Путь биосинтеза триглицеридов в тканях протекает через образование глицерол-3-фосфата как промежуточного соединения. В почках, а также в стенке кишечника, где активность фермента глицеролкиназы высока, глицерин фосфорилируeтся АТФ с образованием глицерол-3-фосфата:
В жировой ткани и мышцах вследствие очень низкой активности глицеролкиназы образование глицерол-3-фосфата в основном связано с гликолизом или гликогенолизом 1 . 1 В тех случаях, когда содержание глюкозы в жировой ткани понижено (например, при голодании), образуется лишь незначительное количество глицерол-3-фосфата и освободившиеся в ходе липолиза свободные жирные кислоты не могут быть использованы на ресинтез триглицеридов, поэтому жирные кислоты покидают жировую ткань. Напротив, активация гликолиза в жировой ткани способствует накоплению в ней триглицеридов, а также входящих в их состав жирных кислот. Известно, что в процессе гликолитического распада глюкозы образуется диоксиацетонфосфат. Последний в присутствии цитоплазматической НАД-зависимой глицеролфосфатдегидрогеназы способен превращаться в глицерол-3-фосфат:
В печени же наблюдаются оба пути образования глицерол-3-фосфата.
Образовавшийся, тем или иным путем глицерол-3-фосфат ацилируется двумя молекулами КоА-производного жирной кислоты (т. е. "активными" формами жирной кислоты) 2 . 2 У некоторых микроорганизмов, например у Е. coli, донором ацильной группы являются не КоА-пронзводные, а АПБ-производные жирной кислоты. В результате образуется фосфатидная кислота:
Заметим, что хотя фосфатидная кислота и присутствует в клетках в чрезвычайно малых количествах, однако она является весьма важным промежуточным продуктом, общим для биосинтеза триглицеридов и глицерофосфолипидов (см. схему).
Если идет синтез триглицеридов, то происходит дефосфорилирование фосфатидной кислоты с помощью специфической фосфатазы (фосфатидатфосфатазы) и образование 1,2-диглицерида:
Биосинтез триглицеридов завершается этерификацией образовавшегося 1,2-диглицерида третьей молекулой ацил-КоА:
Биосинтез глицерофосфолипидов
Синтез наиболее важных глицерофосфолипидов локализован главным образом в эндоплазматической сети клетки. Сначала фосфатидная кислота в результате обратимой реакции с цитидинтрифосфатом (ЦТФ) превращается в цитидиндифосфатдиглицерид (ЦДФ-диглицерид):
Затем в последующих реакциях, каждая из которых катализируется соответствующим ферментом, цитидинмонофосфат вытесняется из молекулы ЦДФ-диглицерида одним из двух соединений - серином или инозитом, образуя фосфатидилсерин или фосфатидилинозит, или 3-фосфатидил-глицерол-1-фосфат. В качестве примера приводим образование фосфатидилсерина:
В свою очередь фосфатидилсерин может декарбоксилироваться с образованием фосфатидилэтаноламина:
Фосфатидмлэтаноламин является предшественником фосфатидилхолина. В результате последовательного переноса трех метильных групп от трех молекул S-аденозилметионина (донора метальных групп) к аминогруппе остатка этаноламина образуется фосфатидилхолин:
Существует еще один путь синтеза фосфатидилэтаноламина и фосфатидилхолина в клетках животных. В этом пути также используется ЦТФ в качестве переносчика, но не фосфатидной кислоты, а фосфорилхолина или фосфорилэтаноламина (схема).
Биосинтез холестерина
Еще в 60-х годах нынешнего столетия Блох и сотр. в опытах с использованием ацетата, меченного 14 С по метильной и карбоксильной группе, показал, что оба атома углерода уксусной кислоты включаются в холестерин печени приблизительно в одинаковых количествах. Кроме того, было доказано, что все атомы углерода холестерина происходят из ацетата.
В дальнейшем благодаря работам Линена, Редней, Поляка, Корнфорта, А. Н. Климова и других исследователей были выяснены основные детали ферментативного синтеза холестерина, насчитывающего более 35 энзиматических реакций. В синтезе холестерина можно выделить три основные стадии: первая - превращение активного ацетата в мевалоновую кислоту, вторая - образование сквалена из мевалоновой кислоты, третья - циклизация сквалена в холестерин.
Вначале рассмотрим стадию превращения активного ацетата в мевалоновую кислоту. Начальным этапом синтеза мевалоновой кислоты из ацетил-КоА является образование ацетоацетил-КоА посредством обратимой тиолазной реакции:
Затем последующая конденсация ацетоацетил-КоА с третьей молекулой ацетил-КоА при участии гидроксиметилглутарил-КоА-синтазы (ГМГ-КоА-синтазы) дает образование β-гидрокси-β-метилглутарил-КоА:
Заметим, что эти первые этапы синтеза мевалоновой кислоты нами уже рассматривались, когда речь шла об образовании кетоновых тел. Далее β-гидрокси-β-метилглутарил-КоА под влиянием НАДФ-зависимой гидроксиметилглутарил-КоА-редуктазы (ГМГ-КоА-редуктазы) в результате восстановления одной из карбоксильных групп и отщепления HS-KoA превращается в мевалоновую кислоту:
ГМГ-КоА-редуктазная реакция - первая практически необратимая реакция в цепи биосинтеза холестерина и протекает она со значителоной потерей свободной энергии (около 33,6 кДж). Установлено, что данная реакция лимитирует скорость биосинтеза холестерина.
Наряду с классическим путем биосинтеза мевалоновой кислоты имеется второй путь, в котором в качестве промежуточного субстрата образуется не β-гидрокси-β-метилглутарил-КоА, а β-гидрокси-β-метилглутарнл-S-АПБ. Реакции этого пути идентичны, по-видимому, начальным стадиям биосинтеза жирных кислот вплоть до образования ацетоацетил-S-АПБ. В образовании мевалоновой кислоты по этому пути принимает участие ацетил-КоА-карбоксилаза - фермент, осуществляющий превращение ацетил-КоА в малонил-КоА. Оптимальное соотношение малонил-КоА и ацетил-КоА для синтеза мевалоновой кислоты: две молекулы ацетил-КоА на одну молекулу малонил-КоА.
Участие малонил-КоА, основного субстрата биосинтеза жирных кислот, в образовании мевалоновой кислоты и различных полиизопреноидов показано для ряда биологических систем: печени голубя и крысы, молочной железы кролика, бесклеточных дрожжевых экстрактов. Этот путь биосинтеза мевалоновой кислоты отмечается преимущественно в цитоплазме клеток печени. Существенную роль в образовании мевалоната в данном случае играет гидроксиметилглутарил-КоА-редуктаза, обнаруженная в растворимой фракции печени крысы и неидентичная микросомному ферменту по ряду кинетических и регуляторных свойств. Известно, что микросомная гидроксиметилглутарил-КоА-редуктаза является основным звеном регуляции пути биосинтеза мевалоновой кислоты из ацетил-КоА с участием ацетоацетил-КоА-тиолазы и ГМГ-КоА-синтазы. Регуляция второго пути биосинтеза мевалоновой кислоты при ряде воздействий (голодание, кормление холестерином, введение поверхностно-активного вещества - тритона WR-1339) отличается от регуляции первого пути, в котором принимает участие микросомная редуктаза. Эти данные свидетельствуют о существовании двух автономных систем биосинтеза мевалоновой кислоты. Физиологическая роль второго пути изучена неокончательно. Полагают, что он имеет определенное значение не только для синтеза веществ нестероидной природы, таких, как боковая цепь убихинона и уникального основания N 6 (Δ 2 -изопентил)-аденозина некоторых тРНК, но и для биосинтеза стероидов (А. Н. Климов, Э. Д. Полякова).
Во второй стадии ситеза холестерина мевалоновая кислота превращается в сквален. Реакции второй стадии начинаются с фосфорилирования мевалоновой кислоты с помощью АТФ. В результате образуется 5"-пирофосфорный эфир, а затем 5"-пирофосфорный эфир мевалоновой кислоты:
5"-пирофосфомевалоновая кислота в результате последующего фосфорилирования третичной гидроксильной группы образует нестабильный промежуточный продукт - 3"-фосфо-5"-пирофосфомевалоновую кислоту, которая, декарбоксилируясь и теряя фосфорную кислоту, превращается в изопентенилпирофосфат. Последний изомеризуется в диметилаллилпирофосфат:
Затем эти два изомерных изопентенилпирофосфата (диметилаллилпирофосфат и изопентенилпирофосфат) конденсируются с высвобождением пирофосфата и образованием геранилпирофосфата. К геранилпирофосфату вновь присоединяется изопентенилпирофосфат, давая в результате этой реакции фарнезилпирофосфат.
20.1.1. Высшие жирные кислоты могут быть синтезированы в организме из метаболитов углеводного обмена. Исходным соединением для этого биосинтеза является ацетил-КоА , образующийся в митохондриях из пирувата - продукта гликолитического распада глюкозы. Место синтеза жирных кислот - цитоплазма клеток, где имеется мультиферментный комплекссинтетаза высших жирных кислот . Этот комплекс состоит из шести ферментов, связанных с ацилпереносящим белком , который содержит две свободные SH-группы (АПБ-SH). Синтез происходит путём полимеризации двууглеродных фрагментов, конечным продуктом его является пальмитиновая кислота - насыщенная жирная кислота, содержащая 16 атомов углерода. Обязательными компонентами, участвующими в синтезе, являются НАДФН (кофермент, образующийся в реакциях пентозофосфатного пути окисления углеводов) и АТФ.
20.1.2. Ацетил-КоА поступает из митохондрий в цитоплазму при помощи цитратного механизма (рисунок 20.1). В митохондриях ацетил-КоА взаимодействует с оксалоацетатом (фермент -цитратсинтаза ), образующийся цитрат переносится через митохондриальную мембрану при помощи специальной транспортной системы. В цитоплазме цитрат реагирует с HS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат (фермент - цитратлиаза ).
Рисунок 20.1. Перенос ацетильных групп из митохондрий в цитоплазму.
20.1.3. Начальной реакцией синтеза жирных кислот является карбоксилирование ацетил-КоА с образованием малонил-КоА (рисунок 20.2). Фермент ацетил-КоА-карбоксилаза активируется цитратом и ингибируется КоА-производными высших жирных кислот.
Рисунок 20.2. Реакция карбоксилирования ацетил-КоА.
Затем ацетил-КоА и малонил-КоА взаимодействуют с SH-группами ацилпереносящего белка (рисунок 20.3).
Рисунок 20.3. Взаимодействие ацетил-КоА и малонил-КоА с ацилпереносящим белком.
Рисунок 20.4. Реакции одного цикла биосинтеза жирных кислот.
Продукт реакции взаимодействует с новой молекулой малонил-КоА и цикл многократно повторяется вплоть до образования остатка пальмитиновой кислоты.
20.1.4. Запомните основные особенности биосинтеза жирных кислот по сравнению с β-окислением:
- синтез жирных кислот в основном осуществляется в цитоплазме клетки, а окисление - в митохондриях;
- участие в процессе связывания СО2 с ацетил-КоА;
- в синтезе жирных кислот принимает участие ацилпереносящий белок, а в окислении - коэнзим А;
- для биосинтеза жирных кислот необходимы окислительно-восстановительные коферменты НАДФН, а для β-окисления - НАД+ и ФАД.
Синтез жиров осуществляется главным образом из углеводов, поступивших в избыточном количестве и не используемых для пополнения запаса гликогена. Кроме того, в синтезе участвуют и некоторые аминокислоты. Накоплению жиров способствует и избыток пищи.
Строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который в основном поступает из митохондрий. Ацетил Ко-А самостоятельно не может диффундировать в цитозоль клетки, так как митохондриальная мембрана непроницаема для него. Вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.
В цитозоле цитрат реагирует с НS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитрат-лиазой. Уже в цитозоле оксалоацетат при участии цитозольной малатдегидрогеназы восстанавливается до малата. Последний при помощи дикарбоксилаттранспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата.
Имеются два типа синтазных комплексов, катализирующих биосинтез жирных кислот, оба находятся в растворимой части клетки. У бактерий, растений и низших форм животных, таких как эвглена, все индивидуальные ферменты синтазной системы находятся в виде автономных полипептидов; ацильные радикалы связаны с одним из них, получившим название «ацилпереносящий белок» (АПБ). У дрожжей, млекопитающих и птиц синтазная система представляет собой полиферментный комплекс, который нельзя разделить на компоненты, не нарушив его активности, а АПБ является частью этого комплекса. Как АПБ бактерий, так и АПБ полиферментного комплекса содержит пантотеновую кислоту в виде 4 / -фосфопантетеина. В синтетазной системе АПБ выполняет роль КоА. Синтазный комплекс, катализирующий образование жирных кислот, является димером. У животных мономеры идентичны и образованы одной полипептидной цепью, включающей 6 ферментов, катализирующих биосинтез жирных кислот, и АПБ с реакционноспособной SH-группой, принадлежащей 4 / -фосфопантетеину. В непосредственной близости от этой группы расположена другая сульфгидрильная группа, принадлежащая остатку цистеина, входящего в состав 3-кетоацил-ситазы (конденсирующего фермента), которая входит в состав другого мономера. Поскольку для проявления ситазной активности необходимо участие обеих сульфгидрильных групп, синтазный комплекс активен только в виде димера.
Первой реакций биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуется бикарбонат, АТФ, ионы марганца. Катализирует реакцию ацетил-КоА-карбоксилаза. Фермент относится к классу лигаз и содержит в качестве простетической группы биотин.
Реакция протекает в два этапа: I – карбоксилирование биотина с участием АТФ и II-перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:
Малонил-КоА переходит в комплекс с SH-АПБ при участии фермента малонил-трансацилазы. В следующей реакции происходит взаимодействие ацетил-S-АПБ и малонил-S-АПБ. Происходит выделение карбоксильной группы малонил-S-АПБ в виде СО 2 . Ацетоацетил-S-АПБ при участии НАДФ + -зависимой редуктазы восстанавливается с образованием b-гидроксибутирил-S-АПБ. Далее реакция гидратации b-гидроксибутирил-S-АПБ приводит к образованию кротонил-b-гидроксибутирил-S-АПБ, который восстанавливается НАДФ + -зависимой редуктазой с образованием бутирил-S-АПБ. Далее рассмотренный цикл реакций повторяется: полученный бутирил-S-АПБ реагирует с другой молекулой малонил-S-АПБ с выделением молекулы СО 2 (рис. 42).
Рис. 42. Биосинтез жирных кислот
В случае синтеза пальмитиновой кислоты (С 16) необходимо повторение шести реакций, началом каждого из циклов будет присоединение молекулы малонил-S-АПБ к карбоксильному концу синтезируемой цепи жирной кислоты. Таким образом, присоединяя одну молекулу малонил-S-АПБ, углеродная цепь синтезируемой пальмитиновой кислоты увеличивается на два углеродных атома.
Синтез жиров в организме происходит главным образом из углеводов, поступающих в избыточном количестве и не используемых для синтеза гликогена. Кроме этого, в синтезе липидов участвуют также и некоторые аминокислоты. По сравнению с гликогеном жиры представляют более компактную форму хранения энергии, поскольку они менее окислены и гидратированы. При этом количество энергии, резервированное в виде нейтральных липидов в жировых клетках, ничем не ограничивается в отличие от гликогена. Центральным процессом в липогенезе является синтез жирных кислот, поскольку они входят в состав практически всех групп липидов. Кроме этого, следует помнить, что основным источником энергии в жирах, способным трансформироваться в химическую энергию молекул АТФ, являются процессы окислительных превращений именно жирных кислот.
Биосинтез жирных кислот
Структурным предшественником для синтеза жирных кислот является ацетил-КоА. Это соединение образуется в матриксе митохондрий преимущественно из пирувата, в результате реакции его окислительного декарбоксили- рования, а также в процессе р-окислсния жирных кислот. Следовательно, углеводородные цепи собираются в ходе последовательного присоединения двухуглсродных фрагментов в форме ацетил-КоА, т. е. биосинтез жирных кислот происходит по той же схеме, но в противоположном направлении по сравнению с р-окислснием.
Однако существует ряд особенностей, различающих эти два процесса, благодаря которым они становятся термодинамически выгодными, необратимыми и по-разному регулируются.
Следует отметить основные отличительные особенности анаболизма жирных кислот.
- Синтез насыщенных кислот с длиной углеводородной цепи до С 16 (пальмитиновая кислота) в эукариотических клетках осуществляется в цитозоле клетки. Дальнейшее наращивание цепи происходит в митохондриях и частично в ЭПР, где идет превращение насыщенных кислот в ненасыщенные.
- Термодинамически важным является карбоксилирование ацетил-КоА и превращение его в малонил-КоА (СООН-СН 2 -СООН), на образование которого затрачивается одна макроэргическая связь молекулы АТФ. Из восьми молекул ацетил-КоА, необходимых для синтеза пальмитиновой кислоты, только одна включается в реакции в виде ацетил-КоА, остальные семь в виде малонил-КоА.
- В качестве донора восстановительных эквивалентов для восстановления кетогруппы до гидроксигруппы функционирует НАДФН, в то время как при обратной реакции в процессе р-окисления восстанавливается НАДН или ФАДН 2 в реакциях дегидрирования ацил-КоА.
- Ферменты, катализирующие анаболизм жирных кислот, объединены в единый мультиферментный комплекс, получивший название «синтетаза высших жирных кислот».
- На всех этапах синтеза жирных кислот активированные ацильные остатки связаны с ацилпереносящим белком, а не с коэнзимом А, как в процессе р-окисления жирных кислот.
Транспорт внутримитохондриального ацетил-КоА в цитоплазму. Ацетил-КоА образуется в клетке преимущественно в процессе внутри митохондриальных реакций окисления. Как известно, митохондриальная мембрана непроницаема для ацетил-КоА.
Известны две транспортные системы, обеспечивающие перенос ацетил-КоА из митохондрий в цитоплазму: ацил-карнитиновый механизм, описанный ранее, и цитрат-транспортная система (рис. 23.14).
Рис. 23.14.
В процессе транспорта внутри митохондриального ацетил-КоА в цитоплазму по нитратному механизму вначале происходит его взаимодействие с оксалоацетатом, который превращается в цитрат (первая реакция цикла три- карбоновых кислот, катализируемая ферментом цитратсинтазой; гл. 19). Специфической транслоказой образовавшийся цитрат переносится в цитоплазму, где расщепляется ферментом цитратлиазой при участии коэнзима А на окса- лоацстат и ацетил-КоА. Механизм этой реакции, сопряженной с гидролизом АТФ, приведен ниже:
В связи с тем что для оксалоацетата мембрана митохондрии непроницаема, уже в цитоплазме он восстанавливается посредством НАДН в малат, который при участии специфической транслоказы может вернуться в матрикс митохондрии, где окисляется до оксалатацетата. Таким образом, завершается так называемый челночный механизм транспорта ацетила через метохондриальную мембрану. Часть цитоплазматического малата подвергается окислительному дскарбоксилированию и превращается в пируват с помощью особого «малик»- фермента, коферментом которого является НАДФ + . Восстановленный НАДФН наряду с ацетил-КоА и С0 2 используется в синтезе жирных кислот.
Обратите внимание, что цитрат транспортируется в цитоплазму лишь тогда, когда его концентрация в матриксе митохондрии достаточно велика, например при избытке углеводов, когда цикл трикарбоновых кислот обеспечен ацетил-КоА.
Таким образом, цитратный механизм обеспечивает как транспорт аце- тил-КоА из митохондрии, так и примерно на 50% потребности в НАДФН, который используется в восстановительных реакциях синтеза жирных кислот. Кроме этого, потребности в НАДФН восполняются также за счет пентозофос- фатного пути окисления глюкозы.
Биосинтез жирных кислот включает серию реакций, которые не соответствуют процессу их деградации.
В частности, посредниками в синтезе жирных кислот являются специальные белки - АПБ (acyl carrier proteins). Напротив, при распаде жирной кислоты используется HS-KoA.
Синтез жирной кислоты происходит в цитозоле, а распад жирной кислоты - в митохондрии.
Для синтеза жирной кислоты используется кофермент НАДФ^/НАДФН, тогда как распад жирной кислоты вовлекает кофермент НАД + /НАДН.
Жирные кислоты, входящие в состав липидов тканей, можно разделить на коротко- (2-6 атомов углерода), средне- (8-12 атомов углерода) и длинноцепочечные (14-20 и более атомов углерода в составе молекулы). Большинство жирных кислот в тканях животного являются длинноцепочечными. Подавляющее большинство жирных кислот в организме содержит четное число атомов углерода в молекуле (С: 16,18, 20), хотя в жирах нервной ткани есть и более длинные молекулы жирных кислот, включающие 22 атома углерода с шестью двойными связями.
Кислота с одной двойной связью относится к мононенасыщен- ным жирным кислотам, тогда как кислоты с двумя или более двойными изолированными связями являются полиненасыщенными.
Таблица 2
Основные жирные кислоты организма млекопитающих
Название кислоты |
Структура кислоты |
Количество и позиция двойных связей |
Масляная |
СзНтСООН |
|
Капроновая |
||
Каприловая |
СтНюСООН |
|
Каприновая |
||
Лауриновая |
С11Н21СООН |
|
Миристиновая |
СпНзсСООН |
|
Пальмитиновая |
С15Н31СООН |
|
Стеариновая |
С17Н35СООН |
|
Олеиновая |
СпНззСООН |
|
Линолевая |
С17Н31СООН |
|
Линоленовая |
СпНззСООН |
|
Арахидоновая |
С19Н31СООН |
4 (5, 8. 11, 14) |
Ненасыщенные жирные кислоты обычно находятся в цыс-фор- ме. Жиры растений и рыб содержат в своем составе больше по- линенасыщенных жирных кислот, а в составе жиров млекопитающих и птиц преобладают насыщенные жирные кислоты.
Жирные кислоты рациона и их эндогенный биосинтез необходимы организму для получения энергии и формирования гидрофобных компонентов биомолекул. Избыток белков и углеводов в рационе активно конвертируется в жирные кислоты и запасается в форме триглицеридов.
Большинство тканей способно осуществлять синтез насыщенных жирных кислот. Важным в количественном плане является синтез жирных кислот в первую очередь в печени, кишечнике, жировой ткани, молочной железе, костном мозге, легких. Если окисление жирных кислот происходит в митохондриях клеток, то их синтез имеет место в цитоплазме.
Основной путь обеспечения организма жирными кислотами - их биосинтез из небольших молекул-посредников, производных катаболизма углеводов, отдельных аминокислот и других жирных кислот. Обычно насыщенная 16-карбоновая кислота - пальмитиновая - синтезируется в первую очередь, а все другие жирные кислоты представляют собой модификацию пальмитиновой кислоты.
Все реакции синтеза жирных кислот катализируются муль- тиферментным комплексом - синтазой жирных кислот, который находится в цитозоле. Ацетил-КоА - прямой источник атомов углерода для этого синтеза. Основными поставщиками молекул ацетил-КоА являются: распад аминокислот, окисление жирных кислот, пируват гликолиза.
Необходимый для синтеза жирных кислот малонил-КоА поступает в результате карбоксилирования ацетил-КоА, а также необходимый НАДФН может быть получен в пентозофос- фатном пути.
Молекулы ацетил-КоА в основном содержатся в митохондриях. Однако внутренняя митохондриальная мембрана непроницаема для такой сравнительно крупной молекулы, как аце- тил-КоА. Поэтому для перехода из митохондрии в цитоплазму ацетил-КоА при участии цитратсинтазы вступает во взаимодействие со щавелево-уксусной кислотой, образуя лимонную:
В цитоплазме лимонная кислота расщепляется под влиянием цитратлиазы:
Таким образом, лимонная кислота выступает в роли транспортера ацетил-КоА. У жвачных животных вместо лимонной кислоты в цитоплазме клетки используется ацетат, образующийся в рубце из полисахаридов, который в клетках печени и жировой ткани превращается в ацетил-КоА.
1. На первом этапе биосинтеза жирной кислоты происходит взаимодействие ацетил-КоА со специальным ацилперено- сящим белком (HS-АПБ), содержащим в своем составе витамин В 3 и сульфгидрильную группу (HS), напоминая структуру коэнзима А:
2. Обязательным промежуточным продуктом в синтезе является малонил-КоА, который образуется в реакции карбокси- лирования ацетил-КоА с участием АТФ и биотин-содержащего фермента - ацетил-КоА-карбоксилазы:
Биотин (витамин Н) в качестве кофермента карбоксилазы ковалентно связан с апоферментом для переноса одноуглеродного фрагмента. Ацетил-КоА-карбоксилаза - это мультифунк- циональный фермент, который регулирует скорость синтеза жирной кислоты. Инсулин стимулирует синтез жирной кислоты за счет активирования карбоксилазы, тогда как адреналин и глюкагон обладают обратным эффектом.
3. Полученный малонил-S-KoA взаимодействует с HS-АПБ при участии фермента малонил-трансацилазы:
4. В следующей реакции конденсации под влиянием фермента ацил-малонил-Б-АПБ-синтазы происходит взаимодействие малонил-Б-АПБ и ацетил-Б-АПБ с образованием ацето- ацетил-Б-АПБ:
5. Ацетоацетил-Б-АПБ при участии НАДФ + -зависимой редуктазы восстанавливается с образованием р-гидроксилбути- рил-Б-АПБ:
7. В следующей реакции кротонил-Б-АПБ восстанавливается НАДФ + -зависимой редуктазой с образованием бутирил-Б-АПБ:
В случае синтеза пальмитиновой кислоты (С: 16) необходимо повторение еще шести циклов реакций, началом каждого будет присоединение молекулы малонил-Б-АПБ к карбоксильному концу синтезируемой цепи жирной кислоты. Таким образом, присоединяя одну молекулу малонил-Б-АПБ, углеродная цепь синтезируемой пальмитиновой кислоты увеличивается на два углеродных атома.
8. Синтез пальмитиновой кислоты завершается гидролитическим отщеплением HS-АПБ от пальмитил-Б-АПБ при участии фермента деацилазы:
Синтез пальмитиновой кислоты является основой в синтезе других жирных кислот, включая мононенасыщенные кислоты (олеиновая, например). Свободная пальмитиновая кислота при участии тиокиназы превращается в пальмитил-S-KoA. Паль- митил-S-KoA в цитоплазме может использоваться в синтезе простых и сложных липидов или поступать с участием карнитина в митохондрии для синтеза жирных кислот с более длинной углеродной цепью.
В митохондриях и в гладком эндоплазматическом ретикулуме имеется система ферментов удлинения жирных кислот для синтеза кислот с 18 и более углеродными атомами за счет удлинения углеродной цепи жирных кислот от 12 до 6 атомов углерода. Если при этом используется пропионил-S-KoA вместо аце- тил-S-KoA, то синтез приводит к получению жирной кислоты с нечетным числом атомов углерода.
Суммарно синтез пальмитиновой кислоты можно представить следующим уравнением:
Ацетил-S-KoA в цитоплазме в данном синтезе служит источником атомов углерода молекулы пальмитиновой кислоты. АТФ необходим для активации ацетил-S-KoA, тогда как НАДФН + Н + является обязательным восстановителем. НАДФН + + Н + в печени образуется в реакциях пентозофосфатного пути. Лишь при наличии указанных основных компонентов в клетке происходит синтез жирной кислоты. Следовательно, в биосинтезе жирных кислот необходима глюкоза, снабжающая процесс радикалами ацетилов, С0 2 и Н 2 в форме НАДФН 2 .
Все ферменты биосинтеза жирных кислот, включая HS-АПБ, находятся в цитоплазме клетки в виде мультиферментного комплекса, получившего название синтетазы жирных кислот.
Синтез олеиновой (непредельной) кислоты с одной двойной связью происходит за счет реакции предельной стеариновой кислоты с НАДФН + Н + в присутствии кислорода:
В гепатоцитах и в молочной железе лактирующих животных НАДФН 2 , необходимый для синтеза жирных кислот, обеспечивается за счет пентозофосфатного пути. Если у большинства эукариотов синтез жирных кислот происходит исключительно в цитоплазме, то синтез жирных кислот в фотосинтезирующих клетках растений имеет место в строме хлоропластов.
Полиненасыщенные жирные кислоты - линолевая (С 17 Н 31 СООН), линоленовая (С 17 Н 29 СООН), имея двойные связи вблизи метильного конца углеродной цепи, в организме млекопитающих не синтезируются по причине отсутствия необходимых ферментов (десатураз), обеспечивающих образование непредельных связей в молекуле. Однако арахидоновая кислота (С 19 Н 31 СООН) может быть синтезирована из линолевой кислоты. В свою очередь арахидоновая кислота является предшественником в синтезе простагландинов. Отметим, что растения способны синтезировать двойные связи в положении 12 и 15 углеродной цепи с участием необходимых ферментов в синтезе линолевой и линоленовой кислот.
Основная роль всех полиненасыщенных жирных кислот, вероятно, состоит в обеспечении свойства текучести в биологических мембранах. Это подтверждается тем, что низшие организмы обладают способностью изменять состав жирных кислот фосфолипидов благодаря их текучести, например при различных температурах внешней среды. Это достигается путем увеличения пропорции жирных кислот с двойными связями или увеличением степени ненасыщенности жирных кислот.
Метиленовый углерод любой двойной связи в структуре по- линенасыщенной жирной кислоты очень чувствителен к удалению водорода и фиксации кислорода с образованием свободных радикалов. Образующиеся таким образом молекулы гидропероксида формируют диальдегиды в основном в форме малонового диальдегида. Последний способен вызывать кросс-связи, приводящие к цитотоксичности, мутагенности, разрушению мембран и модификации ферментов. Полимеризация малонового альдегида формирует нерастворимый пигмент липофусцин, который аккумулируется с возрастом в некоторых тканях.
Интерес к полиненасыщенным жирным кислотам на биохимическом уровне связан с исследованиями, которые свидетельствуют, что рационы с высоким уровнем полиненасыщенных жирных кислот по отношению к уровню насыщенных жирных кислот способствуют снижению уровня холестерина в организме.
В организме голодающего животного при последующем наличии рациона с высоким уровнем углеводов и низким уровнем жиров значительно усиливается активность ацетил-КоА-кар- боксилазы за счет ковалентной модификации и синтез жирных кислот в течение нескольких дней. Это адаптивный контроль регуляции жирового обмена. Синтез и окисление жирных кислот в организме являются взаимозависимыми процессами. При голодании животного уровень свободных жирных кислот в крови возрастает за счет повышения активности липазы жировых клеток под влиянием таких гормонов, как адреналин, глюкагон. Биосинтез жирных кислот, превращая молекулы НАДФН + Н + в НАДФ~, вызывает распад глюкозы по пентозофосфатному пути. Таким образом, глюкоза является незаменимой в биосинтезе жирных кислот, поставляя не только радикалы ацетила, но и коферменты в форме НАДФН + Н + .
Свободные жирные кислоты связываются с альбуминами сыворотки крови, которые являются основными транспортерами неэтерифицированных жирных кислот. В комплексе с альбуминами жирные кислоты представляют активный транспортный источник энергии для различных тканей в определенный период времени. Однако нервная ткань, получающая почти все количество энергии за счет глюкозы, не способна использовать жирные кислоты, связанные с альбуминами, для получения энергии.
Концентрация свободных жирных кислот в крови сравнительно постоянна (0,6 мМ). Период их полураспада составляет лишь две минуты. Печень интенсивно вовлекает жирные кислоты в синтез триглицеридов, связывая их в липопротеины низкой плотности (ЛПНП), которые поступают в циркуляцию крови. ЛПНП переносят холестерин плазмы крови в различные ткани, стенки кровеносных сосудов.