Белки и их функции.

Среди органических веществ белки , или протеины , - самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. На их долю приходится 50 - 80% сухой массы клетки.

Молекулы белков имеют большие размеры, поэтому их называют макромолекулами . Кроме углерода , кислорода , водорода и азота , в состав белков могут входить сера, фосфор и железо. Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты (рис. 1)

Бесконечное разнообразие белков создается за счет различного сочетания всего 20 аминокислот. Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде:

Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (-NH 2 ) с основными свойствами, другая - карбоксильной группой (-COOH ) с кислотными свойствами. Часть молекулы, называемая радикалом (R ), у разных аминокислот имеет различное строение. Наличие в одной молекуле аминокислоты основной и кислотной групп обусловливает их высокую реакционную способность. через эти группы происходит соединение аминокислот при образовании белка. При этом возникает молекула воды, а освободившиеся электроны образуют пептидную связь. Поэтому белки называют полипептидами .

Молекулы белков могут иметь различные пространственные конфигурации, и в их строении различают четыре уровня структурной организации.

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.
Большинство белков имеют вид спирали в результате образования водородных связей между -CO- и -NH- группами разных аминокислотных остатков полипептидной цепи. Водородные связи малопрочные, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль - вторичная структура белка.

Третичная структура - трехмерная пространственная «упаковка» полипептидной цепи. В результате возникает причудливая, но для каждого белка специфическая конфигурация - глобула . Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот.

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул белка.
Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.
Нарушение природной структуры белка называют денатурацией . Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде полипептидной цепи.
Этот процесс частично обратим: если не нарушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенность строение макромолекулы белка определяются его первичной структурой.

Кроме простых белков , состоящих только из аминокислот, есть еще и сложные белки

«Белки химия» - В состав слизи и синовиальной жидкости входят мукопротеиды. Структура белка. Кожа и волосы защищают внутреннюю среду организма от внешних воздействий. 2) Денатурация. Белки. Такие аминокислоты называются незаменимыми. Определение. Метионин лизин аргинин аспарагин аспарагиновая кислота глутаминовая кислота.

«Белка и Стрелка» - Белка и Стрелка первые космонавты. Стрелка в Музее Космонавтики. Через некоторое время у Стрелки появились щенки. Белка - беспородная самка белого окраса - была самая активная и общительная. Одними из наиболее приспособившихся собак-претендентов были Белка и Стрелка. 19 августа 1960 года был совершён успешный запуск космического корабля-спутника на орбиту.

«Урок Белки» - Конспект урока. Развивающая: развитие умения анализировать, сравнивать, делать выводы о свойствах белков. Белки. Уровни организации белковой молекулы. Рождение урока начинается: Почему молекулы аминокислот могут взаимодействовать между собой? Качественные реакции белков: биуретовая; ксантопротеиновая; реакция определения серы в белках.

«Дети с нарушением слуха» - Циолковский первым разработал модель ракеты, способной полететь в космос. Отставание мыслительной деятельности слабослышащих детей: С возникновением новых форм мышления старые формы не только не исчезают, а сохраняются и развиваются. Дети сравнительно поздно начинают осознавать свой дефект, как препятствие к развитию.

«Жиры белки углеводы» - Углеводы, как и жиры, являются энергетическим материалом. Что же такое рациональное питание? Проблема. Обед: макароны с сыром 430Ккал. Белки называют еще носителями жизни. Вывод. Результат. Наше питание. Задача. Узнать, почему необходимо правильно питаться и во время, чтобы не заболеть. От правильного питания будет зависить повышенность или пониженность нашего иммунитета.

«Белки урок» - Общие свойства белков. Структура белковой молекулы. Функции белков. Содержание белков в организме (в процентах к сухой массе). Качественные реакции. Что такое жизнь? Биуретовая Ксантопротеиновая HNO3 NaOH CuSO4. Белки. Содержание белков в пище. Четвертичная структура белковой молекулы.

Третичной структурой белка называется способ укладки полипептидной цепи в трехмерном пространстве. Такая конформация возникает за счет образования химических связей между удаленными друг от друга аминокислотными радикалами. Этот процесс осуществляется при участии молекулярных механизмов клетки и играет огромную роль в придании белкам функциональной активности.

Особенности третичной структуры

Для третичной структуры белков характерны следующие типы химических взаимодействий:

  • ионные;
  • водородные;
  • гидрофобные;
  • ван-дер-ваальсовы;
  • дисульфидные.

Все эти связи (кроме ковалентной дисульфидной) очень слабые, однако за счет количества стабилизируют пространственную форму молекулы.

Фактически третий уровень укладки полипептидных цепей представляет собой комбинацию различных элементов вторичной структуры (α-спиралей; β-складчатых слоев и петель), которые ориентируются в пространстве за счет химических взаимодействий между боковыми аминокислотными радикалами. Для схематичного обозначения третичной структуры белка α-спирали обозначаются цилиндрами или спирально закрученными линиями, складчатые слои — стрелками, а петли — простыми линиями.

Характер третичной конформации определяется последовательностью аминокислот в цепи, поэтому двум молекулам с одинаковой первичной структурой при равных условиях будет соответствовать один и тот же вариант пространственной укладки. Такая конформация обеспечивает функциональную активность белка и называется нативной.

В процессе укладки белковой молекулы происходит сближение компонентов активного центра, которые в первичной структуре могут быть значительно удалены друг от друга.

Для одноцепочечных белков третичная структура является конечной функциональной формой. Сложные многосубъединичные белки образуют четвертичную структуру, которая характеризует расположение нескольких цепей по отношению друг к другу.

Характеристика химических связей в третичной структуре белка

В значительной степени сворачивание полипептидной цепи обусловлено соотношением гидрофильных и гидрофобных радикалов. Первые стремятся вступить во взаимодействие с водородом (составным элементом воды) и потому находятся на поверхности, а гидрофобные участки наоборот устремляются в центр молекулы. Такая конформация энергетически наиболее выгодна. В результате формируется глобула с гидрофобной сердцевиной.

Гидрофильные радикалы, которые все же попадают в центр молекулы, взаимодействуют друг с другом с образованием ионных или водородных связей. Ионные связи могут возникать между противоположно заряженными аминокислотными радикалами, в качестве которых выступают:

  • катионные группы аргинина, лизина или гистидина (имеют положительный заряд);
  • карбоксильные группы радикалов глутаминовой и аспарагиновой кислоты (имеют отрицательный заряд).

Водородные связи образуются при взаимодействии незаряженных (OH, SH, CONH 2) и заряженных гидрофильных групп. Ковалентные связи (самые прочные в третичной конформации) возникают между SH-группами цистеиновых остатков, формируя так называемые дисульфидные мостики. Обычно эти группы удалены друг от друга в линейной цепи и сближаются только в процессе укладки. Дисульфидные связи не характерны для большинства внутриклеточных белков.

Конформационная лабильность

Так как связи, формирующие третичную структуру белка, очень слабые, броуновское движение атомов в аминокислотной цепи может привести к их разрыву и образованию в новых местах. Это приводит к незначительному изменению пространственной формы отдельных участков молекулы, но не нарушает нативную конформацию белка. Такое явление называют конформационной лабильностью. Последняя играет огромную роль в физиологии клеточных процессов.

На конформацию белка влияют его взаимодействия с другими молекулами или изменения физико-химических параметров среды.

Как образуется третичная структура белка

Процесс укладки белка в нативную форму называется фолдингом. В основе этого явления лежит стремление молекулы принять конформацию с минимальным значением свободной энергии.

Ни один белок не нуждается в посредниках-инструкторах, которые будут определять третичную структуру. Схема укладки изначально "записана" в последовательности аминокислот.

Однако при обычных условиях, для того чтобы крупная белковая молекула приняла нативную конформацию соответственно первичной структуре, ей потребовалось бы более триллиона лет. Тем не менее в живой клетке этот процесс длится всего лишь несколько десятков минут. Столь значительное сокращение времени обеспечивается участием в фолдинге специализированных вспомогательных белков — фолдаз и шаперонов.

Сворачивание маленьких белковых молекул (до 100 аминокислот в цепи) происходит достаточно быстро и без участия посредников, что показали эксперименты in vitro.

Факторы фолдинга

Участвующие в фолдинге вспомогательные белки делятся на две группы:

  • фолдазы — обладают каталитической активностью, требуются в количестве, значительно уступающем концентрации субстрата (как и другие ферменты);
  • шапероны — белки с разнообразными механизмами действия, нужны в концентрации, сопоставимой с количеством сворачиваемого субстрата.

Оба типа факторов участвуют в фолдинге, но не входят в состав конечного продукта.

Группу фолдаз представляют 2 фермента:

  • Протеиндисульфидизомераза (ПДИ) — контролирует правильное образование дисульфидных связей в белках с большим количеством остатков цистеина. Эта функция очень важна, поскольку ковалентные взаимодействия очень прочные, и в случае возникновения ошибочных соединений белок не смог бы самостоятельно перестроиться и принять нативную конформацию.
  • Пептидил-пролил-цис-транс-изомераза — обеспечивает изменение конфигурации радикалов, расположенных по бокам от пролина, что изменяет характер изгиба полипептидной цепи на этом участке.

Таким образом, фолдазы выполняют корректирующую роль в образовании третичной конформации белковой молекулы.

Шапероны

Шапероны иначе называются или стресса. Это связано со значительным увеличением их секреции при отрицательных воздействиях на клетку (температура, радиация, тяжелые металлы и т. д.).

Шапероны принадлежат к трем семействам белков: hsp60, hsp70 и hsp90. Эти протеины выполняют множество функции, включая:

  • защиту белков от денатурации;
  • исключение взаимодействия только что синтезированных белков друг с другом;
  • предупреждение образования неправильных слабых связей между радикалами и их лабиализация (исправление).

Таким образом, шапероны способствуют быстрому приобретению энергитически правильной конформации, исключая случайный перебор множества вариантов и ограждая еще не созревшие белковые молекулы от ненужного взаимодействия друг с другом. Кроме этого, шапероны обеспечивают:

  • некоторые виды транспортировки белков;
  • контроль рефолдинга (восстановления третичной структуры после ее утраты);
  • поддержание состояния неоконченного фолдинга (для некоторых белков).

В последнем случае молекула шаперона остается связанной с белком по завершении процесса укладки.

Денатурация

Нарушение третичной структуры белка под воздействием каких-либо факторов называется денатурацией. Потеря нативной конформации происходит при разрушении большого количества слабых связей, стабилизирующих молекулу. При этом белок теряет свою специфическую функцию, но сохраняет первичную структуру (пептидные связи во время денатурации не разрушаются).

При денатурации происходит пространственное увеличение белковой молекулы, а гидрофобные участки вновь выходят на поверхность. Полипептидная цепь приобретает конформацию беспорядочного клубка, форма которого зависит от того, какие связи третичной структуры белка были разорваны. В таком виде молекула более восприимчива к воздействию протеолитических ферментов.

Факторы, нарушающие третичную структуру

Существует целый ряд физико-химических воздействий, способных вызвать денатурацию. К ним относят:

  • температуру выше 50 градусов;
  • радиацию;
  • изменение pH среды;
  • соли тяжелых металлов;
  • некоторые органические соединения;
  • детергенты.

После прекращения денатурирующего воздействия белок может восстановить третичную структуру. Этот процесс называется ренатурацией или рефолдингом. В условиях in vitro такое возможно только для небольших белков. В живой клетке рефолдинг обеспечивают шапероны.

1. Как называется процесс нарушения природной структуры белка, при котором сохраняется его первичная структура? Действие каких факторов может приводить к нарушению структуры белковых молекул?

Процесс нарушения природной структуры белков под влиянием каких-либо факторов без разрушения первичной структуры называется денатурацией. Денатурация белков может быть вызвана действием различных факторов, например, высокой температуры, концентрированных кислот и щелочей, тяжёлых металлов.

2. Чем фибриллярные белки отличаются от глобулярных? Приведите примеры фибриллярных и глобулярных белков.

Молекулы фибриллярных белков имеют вытянутую, нитевидную форму. Глобулярные белки характеризуются компактной округлой формой молекул. К фибриллярным белкам относятся, например, кератин, коллаген, миозин. Глобулярными белками являются глобулины и альбумины крови, фибриноген, гемоглобин и др.

3. Назовите основные биологические функции белков, приведите соответствующие примеры.

● Структурная функция. Белки входят в состав всех клеток и межклеточного вещества, являются компонентами различных структур живых организмов. Например, у животных белок коллаген входит в состав хрящей и сухожилий, эластин – в состав связок и стенок кровеносных сосудов, кератин является важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт.

● Ферментативная (каталитическая) функция. Белки-ферменты являются биологическими катализаторами, ускоряя протекание химических реакций в живых организмах. Например, пищеварительные ферменты амилаза и мальтаза расщепляют сложные углеводы до простых, пепсин – белки до пептидов, под действием липаз происходит расщепление жиров до глицерина и карбоновых кислот.

● Транспортная функция. Многие белки способны присоединять и переносить различные вещества. Например, гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют высшие карбоновые кислоты, а глобулины – ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из неё.

● Сократительная (двигательная) функция. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Например, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения, тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.

● Регуляторная функция. Некоторые белки и пептиды участвуют в регуляции различных физиологических процессов. Например, гормоны белково-пептидной природы инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) – процессы роста и физического развития.

● Сигнальная функция заключается в том, что некоторые белки, входящие в состав цитоплазматической мембраны клеток, в ответ на действие внешних факторов изменяют свою пространственную конфигурацию, тем самым обеспечивая приём сигналов из внешней среды и передачу информации в клетку. Например, белок опсин, входящий в состав пигмента родопсина, воспринимает свет и обеспечивает возникновение зрительного возбуждения рецепторов (палочек) сетчатки глаза.

● Защитная функция. Белки предохраняют организм от вторжения чужеродных объектов и от повреждений. Например, иммуноглобулины (антитела) участвуют в иммунном ответе, интерферон защищает организм от вирусной инфекции. Фибриноген, тромбопластин и тромбин обеспечивают свёртывание крови, предотвращая кровопотерю.

● Токсическая функция. Многие живые организмы выделяют белки-токсины, которые являются ядами для других организмов.

● Энергетическая функция. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии.

● Запасающая функция. Например, в семенах растений запасаются особые белки, которые используются при прорастании зародышем, а затем и проростком в качестве источника азота.

4. Что такое ферменты? Почему без их участия протекание большинства биохимических процессов в клетке было бы невозможным?

Ферменты – белки, которые выполняют функцию биологических катализаторов, т. е. ускоряют протекание химических реакций в живых организмах. Они катализируют реакции синтеза и расщепления различных веществ. Без участия ферментов эти процессы протекали бы слишком медленно или не протекали бы вовсе. Практически все процессы жизнедеятельности организмов обусловлены ферментативными реакциями.

5. В чем заключается специфичность ферментов? Какова её причина? Почему ферменты активно функционируют лишь в определённом диапазоне температуры, рН и других факторов?

Специфичность ферментов заключается в том, что каждый фермент ускоряет только одну реакцию либо действует только на определённый тип связи. Эта особенность объясняется соответствием пространственной конфигурации активного центра фермента тому или иному субстрату (субстратам).

Ферменты являются белками. Изменение рН, температуры и других факторов может вызвать денатурацию ферментов, в результате чего они теряют способность связываться со своими субстратами.

6. Почему белки, как правило, используются в качестве источников энергии лишь в крайних случаях, когда в клетках исчерпаны запасы углеводов и жиров?

Белки – основа жизни. Они выполняют чрезвычайно важные биологические функции, многие из которых (ферментативную, транспортную, двигательную и др.) не способны выполнять ни углеводы, ни жиры. Белки, использованные в качестве энергетического субстрата, дают столько же энергии, сколько и углеводы (1 г – 17,6 кДж) и в 2,2 раза меньше, чем жиры (1 г – около 39 кДж). Кроме того, при полном расщеплении белков (в отличие от углеводов и жиров) образуются не только СО 2 и Н 2 О, но также соединения азота и серы, причём некоторые из них токсичны для организма (например, NH 3). Поэтому энергетическую функцию у живых организмов выполняют прежде всего углеводы и жиры.

7*. У многих бактерий в процессах синтеза веществ, необходимых для нормального роста и размножения, участвует парааминобензойная кислота (ПАБК). В то же время в медицине для лечения ряда бактериальных инфекций используются сульфаниламиды - вещества, по структуре сходные с ПАБК. Как вы думаете, на чём основано лечебное действие сульфаниламидов?

С помощью фермента (дигидроптероатсинтетазы) бактерии осуществляют превращение ПАБК в продукт (дигидроптероевую кислоту), который далее используется для синтеза необходимых ростовых факторов. Из-за структурного сходства с ПАБК, сульфаниламиды также способны связываться с активным центром этого фермента, блокируя его работу (т.е. наблюдается конкурентное ингибирование). Это ведёт к нарушению синтеза ростовых факторов и нуклеиновых кислот у бактерий.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Похожие публикации