Атомное строение стронция. Стронций - характеристика свойств с фото, его биологическая роль в организме человека, лечение препаратами на основе химического элемента

Стронций

Атомный номер
Внешний вид простого вещества
ковкий, серебристо-белый металл
Свойства атома
Атомная масса
(молярная масса)

87,62 а. е. м. (г/моль)

Радиус атома
Энергия ионизации
(первый электрон)

549,0 (5,69) кДж/моль (эВ)

Электронная конфигурация
Химические свойства
Ковалентный радиус
Радиус иона
Электроотрицательность
(по Полингу)
Электродный потенциал
Степени окисления
Термодинамические свойства простого вещества
Плотность
Молярная теплоёмкость

26,79 Дж/(K·моль)

Теплопроводность

(35,4) Вт/(м·K)

Температура плавления
Теплота плавления

9,20 кДж/моль

Температура кипения
Теплота испарения

144 кДж/моль

Молярный объём

33,7 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки
Отношение c/a
Температура Дебая
Sr 38
87,62
5s 2
Стронций

Стронций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

История и происхождение названия

Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Строншиан, давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено почти через 30 лет Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году.

Присутствие в природе

Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%).

В природе стронций встречается в виде смеси 4 стабильных изотопов 84 Sr (0,56 %), 86 Sr (9,86 %), 87 Sr (7,02 %), 88 Sr (82,56 %).

Получение Стронция

Три способа получения металлического стронция:

— термическое разложение некоторых соединений
— электролиз
— восстановление оксида или хлорида

Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.

Электролитическое получение стронция электролизом расплава смеси SrCl 2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.

Физические свойства

Стронций — мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.

Полиморфен — известны три его модификации. До 215 о С устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605 о С — гексагональная (β-Sr), выше 605 о С — кубическая объемно-центрированная модификация (γ-Sr).

Температура плавления — 768 о С, Температура кипения — 1390 о С.

Химические свойства

Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В. Энергично реагирует с водой, образуя гидроксид:

Sr + 2H 2 O = Sr(OH) 2 + H 2

Взаимодействует с кислотами, вытесняет тяжелые металлы из их солей. С концентрированными кислотами (H 2 SO 4 , HNO 3) реагирует слабо.

Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO 2 и нитрид Sr 3 N 2 . При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

Энергично реагирует с неметаллами — серой, фосфором, галогенами. Взаимодействует с водородом (выше 200 о С), азотом (выше 400 о С). Практически не реагирует с щелочами.

При высоких температурах реагирует с CO 2 , образуя карбид:

5Sr + 2CO 2 = SrC 2 + 4SrO

Легкорастворимы соли стронция с анионами Cl - , I - , NO 3 - . Соли с анионами F - , SO 4 2- , CO 3 2- , PO 4 3- малорастворимы.

Применение

Основные области применения стронция и его химических соединений — это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.

Металлургия

Стронций применяется для легирования меди и некоторых ее сплавов, для введения в аккумуляторные свинцовые сплавы, для обессеривания чугуна, меди и сталей.

Металлотермия

Стронций чистотой 99,99—99,999 % применяется для восстановления урана.

Магнитные материалы

Магнитотвердые ферриты стронция — широкоупотребительные материалы для производства постоянных магнитов.

Пиротехника

В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в кирпично-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.

Изотопы

Радиоактивный 90 Sr (период полураспада 28,9 лет) применяется в производстве радиоизотопных источников тока в виде титаната стронция (плотность 4,8 г/см³, а энерговыделение около 0,54 Вт/см³).

Атомноводородная энергетика

Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.

Высокотемпературная сверхпроводимость

Оксид стронция применяется в качестве компонента сверхпроводящих керамик.

Химические источники тока

Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с громадной энергоемкостью и энергоплотностью.

Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.

Биологическая роль

Влияние на организм человека

Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция. Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28.9 лет. 90 Sr претерпевает β-распад, переходя в радиоактивный 90 Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90 Sr образуется при ядерных взрывах и выбросах с АЭС. По химическим реакциям радиоактивный и нерадиоактивные изотопы стронция практически не отличаются. Стронций природный — составная часть микроорганизмов, растений и животных. Независимо от пути и ритма поступления в организм растворимые соединения стронция накапливаются в скелете. В мягких тканях задерживается менее 1 %. Путь поступления влияет на величину отложения стронция в скелете. На поведение стронция в организме оказывает влияние вид, пол, возраст, а также беременность, и другие факторы. Например, в скелете мужчин отложения выше, чем в скелете женщин. Стронций является аналогом кальция. Стронций с большой скоростью накапливается в организме детей до четырехлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы. Пути попадания:

  1. вода (предельно допустимая концентрация стронция в воде в РФ — 8 мг/л, а в США — 4 мг/л)
  2. пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)
  3. интратрахеальное поступление
  4. через кожу (накожное)
  5. ингаляционное (через воздух)
  6. из растений или через животных стронций-90 может непосредственно перейти в организм человека.
  7. люди работа которых связана со стронцием (в медицине радиоактивный стронций используют в качестве аппликаторов при лечении кожных и глазных болезней. Основные области применения природного стронция — это радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, пр-во магнитных материалов, радиоактивного — пр-во атомных электрических батарей. атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и др.)

Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» — поражение и деформация суставов, задержка роста и другие нарушения Напротив, радиоактивный стронций практически всегда негативно воздействует на организм человека:

  1. откладывается в скелете (костях), поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.
  2. вызывает лейкемию и злокачественные опухоли (рак) костей, а также поражение печени и мозга

Изотопы

Стронций-90

Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28,79 лет. 90 Sr претерпевает β-распад, переходя в радиоактивный иттрий 90 Y (период полураспада 64 часа). 90 Sr образуется при ядерных взрывах и выбросах с АЭС.

Стронций является аналогом кальция и способен прочно откладываться в костях. Длительное радиационное воздействие 90 Sr и 90 Y поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.

Стронций – металл щелочногоземельного характера. Представляет собой вещество серебристо-белого цвета (см. фото), очень мягкое и пластичное, легко разрезается даже обычным ножом. Обладает высокой активностью, горит в присутствии воздуха, вступает в химические взаимодействия с водой. В природных условиях в чистом виде не обнаружен. В основном его находят в составе ископаемых минералов, обычно в комплексе с кальцием.

Впервые он был найден в Шотландии в конце 18 века в селении с названием Строншиан, которое и дало название найденному минералу – стронцианиту. Но только спустя 30 лет после находки английский ученый Х. Дэви смог выделить его в чистом виде.

Соединения элемента используют в металлургическом производстве, медицине, пищевой промышленности. Очень интересно его свойство при горении выделять огни красного оттенка, что взяли на вооружение пиротехники в начале 20 века.

Действие стронция и его биологическая роль

Действие макроэлемента многие связывают с высокой токсичностью и радиоактивностью. Но такое мнение довольно ошибочно, т.к. природный элемент практически не обладает этими качествами и даже присутствует в тканях биологических организмов, выполняя важную биологическую роль и некоторые функции в качестве спутника кальция. Благодаря свойствам вещества, его используют в медицинских целях.

Основное скопления стронция в организме человека приходится на костные ткани. Это происходит благодаря тому, что элемент схож с кальцием по химическому действию, а тот в свою очередь является основным компонентом «строительства» скелета. А вот в мышцах содержится всего 1% от всей массы элемента в организме.

Также стронций присутствует в отложениях желчных и мочевых камней, опять же в присутствии кальция.

К слову, о вредности стронция – разрушительное для здоровья действие оказывают лишь радиоактивные изотопы, которые по своим химическим свойствам практически не отличаются от природного элемента. Возможно, по этой причине и возникла эта путаница.

Суточная норма

Суточная норма макроэлемента составляет примерно 1 мг. Это количество довольно легко восполняется с пищей и питьевой водой. Всего в организме распределено приблизительно 320 мг стронция.

Но стоит учитывать, что наш организм способен усваивать лишь 10% поступающего элемента, а получаем мы до 5 мг в сутки.

Недостаток стронция

Недостаток макроэлемента лишь теоретически может вызывать некоторые патологии, но пока это показано лишь в опытах на животных. Пока еще ученые не выявили негативного воздействия дефицита стронция на организм человека.

На данный момент выявлены только некоторые зависимости усвоения этого макроэлемента при воздействии других веществ, находящихся в организме. Например, этому процессу способствуют некоторые аминокислоты, прием витамины D и лактозы. А противное действие оказывают препараты, на основе сульфатов бария или натрия, а также продукты с большим содержанием пищевых грубых волокон.

Существует еще одна неприятная особенность – при возникновении дефицита кальция организм начинает накапливать радиоактивный стронций даже из воздуха (часто загрязненного промышленными предприятиями).

Чем опасен стронций для человека и в чем заключается его вред?

Стронций, все-таки способен оказывать вредное радиоактивное воздействие. Сам элемент по себе оказывает мало вреда, до сих пор не установлена критическая доза. А вот его изотопы могут вызвать болезни и разнообразные нарушения. Как и натуральный стронций, он скапливается в самом скелете, но его действие вызывает поражение костного мозга и разрушение самой структуры костей. Он может поражать клетки головного мозга и печени, и таким образом вызывать возникновения новообразований и опухолей.

Но одно из самых страшных последствий воздействия изотопа – это лучевая болезнь. В нашей стране до сих пор чувствуются последствия катастрофы в Чернобыле и накопленные запасы радиоактивного стронция дают о себе знать в почве, воде и самой атмосфере. Также получить большую дозу, можно работая на предприятиях, использующих элемент – там самый высокий уровень заболеваний саркомой костей и лейкемией.

Но и природный стронций способен вызывать неприятные последствия. Из-за довольно редкого стечения обстоятельств вроде неполноценного рациона, нехватки кальция, витамина D и дисбаланса в организме элементов, вроде селена и молибдена, получают развитие специфические заболевания – стронциевый рахит и уровская болезнь. Последняя получила имя от местности, где ими еще в 19 веке страдали местные жители. Они становились инвалидами из-за искривления структуры скелета, костей и суставов. Причем страдали по большей части те люди, которые с самого детства росли в этих местах. Только в 20 веке выяснили, что воды местной реки содержали повышенное количество элемента. А в период роста именно костно-суставная система подвергается наибольшему влиянию.

Попадания оксида стронция на слизистые оболочки рта или глаз, способны вызывать ожоги и глубокие повреждения. А вдыхание его с воздухом может способствовать развитию патологических болезней в легких – фиброз, бронхит, а также возможна сердечная недостаточность.

В качестве лечения обычно применяют препараты на основе кальция, магния, сульфатов натрия или бария. Также возможно использование комплексообразователей, которые связывают и выводят радиоактивные токсины из клеток.

Попадая в почву, токсичный изотоп стронция способен таким образом накапливаться в волокнах растений, а затем и в организмах животных. Таким образом человеческий организм медленно, но верно накапливает токсины, употребляя отравленные продукты. Немного спасти положение может термическая обработка продуктов, которая способствует довольно значительному снижению содержания вредного токсина в них.

Этот радионуклеид очень сложно выводится из организма, ведь почти полгода ему может потребоваться, чтобы избавиться хотя бы от половины накопленного запаса.

В каких продуктах питания содержится?

Показания к лечению препаратами на основе этого элемента

Показания к назначению макроэлемента, несмотря на его возможную токсичность все же есть. И даже радиоактивный изотоп применяется в медицинских целях. Его излучение в позволенных дозах может оказывать лечебное воздействие на эрозии, опухоли на коже и слизистых оболочках. При более глубоких очагах этот способ уже используется.

Также его соединения служат препаратами для лечения эпилепсии, нефритов и исправления деформации в детском возрасте ортопедами. В некоторой мере может служить противоглистным средством.

Еще задолго до открытия стронция его нерасшифрованные соединения применяли в пиротехнике для получения красных огней. И до середины 40-х годов прошлого века стронций был прежде всего металлом фейерверков, потех и салютов. Атомный век заставил взглянуть на него по-иному. Во-первых, как на серьезную угрозу всему живому на Земле; во-вторых, как на материал, могущий быть очень полезным при решении серьезных проблем медицины и техники. Но об этом позже, а начнем с истории «потешного» металла, с истории, в которой встречаются имена многих больших ученых.

Четырежды открытая «земля»

В 1764 г. в свинцовом руднике близ шотландской деревни Стронциан был найден минерал, который назвали стронцианитом . Долгое время его считали разновидностью флюорита CaF 2 или витерита BaCO 3 , но в 1790 г. английские минералоги Кроуфорд и Крюикшенк проанализировали этот минерал и установили, что в нем содержится новая «земля», а говоря нынешним языком, окисел.

Независимо от них тот же минерал изучал другой английский химик - Хоп. Придя к таким же результатам, он объявил, что в стронцианите есть новый элемент - металл стронций .

Видимо, открытие уже «витало в воздухе», потому что почти одновременно сообщил об обнаружении новой «земли» и видный немецкий химик Клапрот.

В те же годы на следы «стронциановой земли» натолкнулся и известный русский химик - академик Товий Егорович Ловиц. Его издавна интересовал минерал, известный под названием тяжелого шпата. В этом минерале (его состав BaSO 4) Карл Шееле открыл в 1774 г. окись нового элемента бария . Не знаем, отчего Ловиц был неравнодушен именно к тяжелому шпату; известно только, что ученый, открывший адсорбционные свойства угля и сделавший еще много в области общей и органической химии, коллекционировал образцы этого минерала. Но Ловиц не был просто собирателем, вскоре он начал систематически исследовать тяжелый шпат и в 1792 г. пришел к выводу, что в этом минерале содержится неизвестная примесь. Он сумел извлечь из своей коллекции довольно много - больше 100 г новой «земли» и продолжал исследовать ее свойства. Результаты исследования были опубликованы в 1795 г. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление. Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей. Мне оставалось только проверить. замечательное свойство стронциановой земли - окрашивать спиртовое пламя в карминовокрасный цвет, и, действительно, моя соль. обладала в полной мере этим свойством».

Так почти одновременно несколько исследователей в разных странах вплотную подошли к открытию стронция. Но в элементном виде его выделили лишь в 1808 г.

Выдающийся ученый своего времени Хэмфри Дэви понимал уже, что элемент стронциановой земли должен быть, по-видимому, щелочноземельным металлом, и получил его электролизом, т. е. тем же способом, что и кальций , магний , барий. Л если говорить конкретнее, то первый в мире металлический стронций был получен при электролизе его увлажненной гидроокиси . Выделявшийся на катоде стронций мгновенно соединялся с , образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Металл этот белого цвета, не тяжелый (плотность 2,6 г/см 3), довольно мягкий, плавящийся при 770°C. По химическим свойствам он типичный представитель семейства щелочноземельных металлов. Сходство с кальцием, магнием, барием настолько велико, что в монографиях и учебниках индивидуальные свойства стронция, как правило, не рассматриваются - их разбирают на примере кальция или магния.

И в области практических применений эти металлы не раз заступали дорогу стронцию, потому что они более доступны и дешевы. Так произошло, например, в сахарном производстве. Когда-то один химик обнаружил, что с помощью дисахарата стронция (C 12 H 22 O 4 *2SrO), нерастворимого в воде, можно выделять сахар из мелассы. Внимание к стронцию сразу же возросло, получать его стали больше, особенно в Германии и Англии. Но скоро другой химик нашел, что аналогичный сахарат кальция тоже нерастворим. И интерес к стронцию тут же пропал. Выгоднее ведь использовать дешевый, чаще встречающийся кальций.

Это не значит, конечно, что стронций совсем «потерял свое лицо». Есть качества, которые отличают и выделяют его среди других щелочноземельных металлов. О них-то мы и расскажем подробнее.

Стронций металл красных огней

Так называл стронций академик А. Е. Ферсман. Действительно, стоит бросить в пламя щепотку одной из летучих солей стронция, как пламя тотчас окрасится в яркий карминово-красный цвет. В спектре пламени появятся линии стронция.

Попробуем разобраться в сущности этого простейшего опыта. На пяти электронных оболочках атома стронция 38 электронов. Заполнены целиком три ближайшие к ядру оболочки, а на двух последних есть «вакансии». В пламени горелки электроны термически возбуждаются и, приобретая более высокую энергию, переходят с нижних энергетических уровней на верхние. Но такое возбужденное состояние неустойчиво, и электроны возвращаются на более выгодные нижние уровни, выделяя при этом энергию в виде световых квантов. Атом (или ион) стронция излучает преимущественно кванты с такими частотами, которые соответствуют длине красных и оранжевых световых волн. Отсюда карминово-красный цвет пламени.

Это свойство летучих солей стронция сделало их незаменимыми компонентами различных пиротехнических составов. Красные фигуры фейерверков, красные огни сигнальных и осветительных ракет - «дело рук» стронция.

Чаще всего в пиротехнике используют нитрат Sr(NO 3) 2 , оксалат SrC 2 O 4 и карбонат SrCO 3 стронция. Нитрату стронция отдают предпочтение: он не только окрашивает пламя, но и одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород:

Sr(NO 3) 2 → SrO + N2 + 2,502

Окись стронция SrO окрашивает пламя лишь в розовый цвет. Поэтому в пиротехнические составы вводят хлор в том или ином виде (обычно в виде хлорорганических соединений), чтобы его избыток сдвинул равновесие реакции вправо:

2SrO + CI 2 → 2SrCl + O 2 .

Излучение монохлорида стронция SrCl интенсивнее и ярче излучения SrO. Кроме этих компонентов, в пиротехнические составы входят органические и неорганические горючие вещества, назначение которых - давать большое неокрашенное пламя.

Рецептов красных огней довольно много. Приведем для примера два из них. Первый: Sr(NO 3) 2 - 30%, Mg - 40%, смолы - 5%,

гексахлорбензола - 5%, перхлората калия KClO 4 - 20%. Второй: хлората калия KClO 3 - 60%, SrC2O 4 - 25%, смолы - 15%. Такие составы приготовить несложно, но следует помнить, что любые, даже самые проверенные, пиротехнические составы требуют «обращения на вы». Самодеятельная пиротехника опасна...


Стронций, глазурь и эмаль

Первые глазури появились чуть ли не на заре гончарного производства. Известно, что еще в IV тысячелетии до н.э. ими покрывали изделия из глины . Заметили, что если покрыть гончарные изделия взвесью тонкоизмельченных песка, поташа и мела в воде, а затем высушить их и отжечь в печи, то грубый глиняный порошок покроется тонкой пленкой стекловидного вещества и станет гладким, блестящим. Стекловидное покрытие закрывает поры и делает сосуд непроницаемым для воздуха и влаги. Это стекловидное вещество и есть глазурь. Позже изделия из глины стали сначала покрывать красками, а затем глазурью. Оказалось, что глазурь довольно долго не дает краскам тускнеть и блекнуть. Еще позже глазури пришли в фаянсовое и фарфоровое производство. В наши дни глазурью покрывают керамику и металл, фарфор и фаянс, различные строительные изделия.

Какова же здесь роль стронция?

Чтобы ответить на этот вопрос, придется еще раз обратиться к истории. Основу глазурей составляют различные окислы. Издавна известны щелочные (поташные) и свинцовые глазури. Основу первых составляют окислы кремния , щелочных металлов (К и Na) и кальция . Во вторых присутствует еще и окись свинца . Позже стали широко использовать глазури, содержащие бор . Добавки свинца и бора придают глазурям зеркальный блеск, лучше сохраняют подглазурные краски. Однако соединения свинца ядовиты, а бор дефицитен.

В 1920 г. американец Хилл впервые применил матовую глазурь, в состав который входили окислы стронция (система Sr-Ca-Zn). Однако этот факт остался незамеченным, и только в годы второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. И хлынула лавина исследований: в разных странах появились десятки (!) рецептур стронциевых глазурей. Предпринимались попытки и здесь заменить стронций кальцием, но кальциевые глазури оказались неконкуренто способными.

Стронциевые глазури не только безвредны, но и доступны (карбонат стронция SrCO 3 в 3,5 раза дешевле свинцового сурика). Все положительные качества свинцовых глазурей свойственны и им. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе окислов кремния и стронция готовят также эмали - непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка . Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» - разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280-1300°C, затем температуру снижают до 150-220°C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта , если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800-850°C - соли плавятся в трещинах и герметизируют их. Глазурь «кракле» популярна и широко распространена во многих странах мира. Произведения декоративно-прикладного искусства, выполненные в этой манере, ценят любители. Остается добавить, что использование стронциевых безборных глазурей дает большой экономический эффект.


Стронций радиоактивный

Еще одна особенность стронция, резко выделяющая его среди щелочноземельных металлов, - существование радиоактивного изотопа стронция-90, который волнует биофизиков, физиологов, радиобиологов, биохимиков и просто химиков уже давно.

В результате цепной ядерной реакции из атомов плутония и урана образуются около 200 радиоактивных изотопов. Большинство из них короткоживущие. Но в тех же процессах рождаются и ядра стронция-90, период полураспада которого 27,7 года. Стронций-90 - чистый бета-излучатель. Это значит, что он испускает потоки энергичных электронов, которые действуют на все живое на сравнительно небольших расстояниях, но очень активно. Стронций как аналог кальция активно участвует в обмене веществ и вместе с кальцием откладывается в костной ткани.

Стронций-90, а также образующийся при его распаде дочерний изотоп иттрий-90 (с периодом полураспада 64 часа, излучает бета-частицы) поражают костную ткань и, самое главное, особо чувствительный к действию радиации костный мозг. Под действием облучения в живом веществе происходят химические изменения. Нарушаются нормальная структура и функции клеток. Это приводит к серьезным нарушениям обмена веществ в тканях. А в итоге развитие смертельно опасных болезней - рака крови (лейкемия) и костей. Кроме того, излучение действует на молекулы ДНК и, следовательно, влияет на наследственность. Влияет пагубно.

Содержание стронция-90 в человеческом организме находится в прямой зависимости от общей мощности взорванного атомного оружия. Он попадает в организм при вдыхании радиоактивной пыли, образующейся в процессе взрыва и разносимой ветром на большие расстояния. Другим источником заражения служат питьевая вода, растительная и молочная пища. Но и в том и в другом случаях природа ставит естественные препоны на пути стронция-90 в организм. В тончайшие структуры дыхательных органов могут попасть лишь частицы величиной до 5 мкм, а таких частиц при взрыве образуется немного. Во-вторых, стронций при взрыве выделяется в виде окиси SrO, растворимость которой в жидкостях организма весьма ограничена. Проникновению стронция через пищевую систему препятствует фактор, который называют «дискриминацией стронция в пользу кальция». Он выражается в том, что при одновременном присутствии кальция и стронция организм предпочитает кальций. Соотношение Ca: Sr в растениях вдвое больше, чем в почвах. Далее, в молоке и сыре содержание стронция в 5-10 раз меньше, чем в траве, идущей на корм скоту.

Однако целиком полагаться на эти благоприятные факторы не приходится - они способны лишь в какой-то степени предохранить от стронция-90. Не случайно до тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от стронция росло из года в год. Но те же страшные свойства стронция-90 - и мощную ионизацию, и большой период полураспада - удалось обратить на благо человека.

Радиоактивный стронций нашел применение в качестве изотопного индикатора при исследовании кинетики различных процессов. Именно этим методом в опытах с животными установили, как ведет себя стронций в живом организме: где преимущественно он локализуется, каким образом участвует в обмене веществ и так далее. Тот же изотоп применяют в качестве источника излучения при лучевой терапии. Аппликаторами со стронцием-90 пользуются при лечении глазных и кожных болезней. Препараты стронция-90 применяют также в дефектоскопах, в устройствах для борьбы со статическим электричеством, в некоторых исследовательских приборах, в атомных батареях. Нет открытий принципиально вредных - все дело в том, в чьих руках окажется открытие. История радиоактивного стронция - тому подтверждение.

Его название происходит от деревни Strontian в Шотландии, где был обнаружен минерал, содержащий стронций. В 1790 году стронций был идентифицирован как индивидуальный элемент А. Крофордом и В. Крюикшенком. Впервые выделил металлический стронций Г. Дэви в 1808 году.

Получение:

На долю стронция приходится 0,008 % общего числа атомов земной коры. Помимо силикатных пород стронций встречается в виде своих труднорастворимых углекислых и сернокислых солей: SrCO 3 - стронцианит, SrSO 4 - целестин.
В свободном состоянии может быть получен накаливанием оксида с металлическим алюминием в высоком вакууме:
3SrO+2Al=Al 2 O 3 +3Sr

Физические свойства:

Как и кальций, стронций представляет собой ковкий золотисто-желтый металл, он значительно мягче кальция. Летучие соединения стронция окрашивают пламя в карминово-красный цвет.

Химические свойства:

На воздухе стронций покрывается пленкой, содержащей, наряду с оксидом, пероксид и нитрид стронция. Вследствие быстрого окисления металл хранят в минеральном масле или запаянным в ампулы.
Реагирует при нагревании с водородом и азотом, галогенами. Легко вытесняет водород не только из разбавленных кислот, но и из воды. Растворяется в жидком аммиаке. В своих соединениях двухвалентен.

Важнейшие соединения:

Оксид стронция представляет собой белое тугоплавкое вещество, энергично присоединяющее воду с образованием белого гидроксида. Наряду с оксидом известен белый пероксид стронция(II)
Гидроксид стронция, Sr(OH) 2 - сильное основание, хорошо растворимое в воде. При взаимодействии с кислотами оксид и гидроксид легко образуют соли, как правило, бесцветные.
Нитрат стронция, Sr(NO 3) 2 выделяется в виде кристаллогидратов, которые очень легко растворимы в воде. Нитратам аналогичны по составу хлораты, броматы, иодаты.
Растворимость солей в воде уменьшается в ряду: Ca - Sr - Ba и Cl - Br - I.
Сульфид стронция представляет собой твердое белое вещество. Известны полисульфиды стронция SrS n .

Применение:

Стронций - геттер в электровакуумных приборах, модификатор сплавов, чугунов и сталей. Радиоактивные изотопы 89 Sr и 90 Sr используются как источники b -излучения.
Нитрат стронция служит в пиротехнике для изготовления составов, дающих при сгорании ярко окрашенное пламя красного цвета (фейерверки и сигнальные ракеты).
Многие соединения стронция используются как компоненты керамик, люминофоры, оптические материалы.
Стронций способен накапливаться в организме человека, замещая кальций, что ведет к повышению хрупкости костей. Но если это не природный стронций, а образующийся в результате ядерных взрывов 90 Sr, то последствия гораздо тяжелее: поражение костного мозга, лейкемия, лучевая болезнь.

Эльмик Галина

См. также:
С.И. Венецкий. О редких и рассеянных. Рассказы о металлах.

Похожие публикации