Асимптотическая формула Пуассона.

Теорема Пуассона . При неограниченном увеличении числа n независимых испытаний в каждом из которых может наступить некоторое событие с одной и той же вероятностью стремящейся к нулю при этом вероятность того, что событие наступит m, приближенно равна:

(3.22)

Формулу (3.22) называют формулой Пуассона. Эта приближенная формула дает незначительные погрешности, если Значения функции Пуассона находят в таблице, приведенной в приложении 3 , на пересечении соответствующих значений и

Пример 3.40. Известно, что на 10000 выпущенных деталей приходится 10 бракованных. Какова вероятность того, что четыре случайно выбранные детали окажутся бракованными?

По условию задачи Вероятность случайного выбора бракованной детали Так как значение велико, а − мало и воспользуемся (3.22) и найдем значение функции Пуассона из таблицы (приложение 3 ) для значений и

Контрольные вопросы

1. Сформулировать определения понятий: случайного события, несовместных и независимых событий. Привести примеры.

2. Какое событие называется суммой и произведением событий?

3. В чем заключается статистический подход к понятию вероятности?

4. В чем заключается классический подход к понятию вероятности?

5. В чем заключается геометрический подход к понятию вероятности?

6. Сформулировать аксиоматическое определение понятия вероятности?

7. Чему равна вероятность суммы несовместных событий?

8. Чему равна вероятность произведения независимых событий?

9. Чему равна вероятность произведения зависимых событий?

10. Записать формулу полной вероятности и формулу Байеса. Привести примеры их применения для решения задач.

11. Записать формулу Бернулли. Привести примеры её применения для решения задач.

12. Записать локальную формулу Муавра

13. Записать интегральную формулу Муавра Лапласа. Привести примеры её применения для решения задач.

14. Записать формулу Пуассона. Привести примеры её применения для решения задач.

Как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п . И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

И следующие две задачи принципиально отличаются от предыдущих:

Пример 4

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение : случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах :

Вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ :

Аналогичная задача на понимание:

Пример 5

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим , если он удовлетворяет условиям стационарности , отсутствия последствий и ординарности . Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в двери?» – нет уж, увольте.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в минуту (в час, в день или в произвольный промежуток времени). Тогда вероятность того, что за данный промежуток времени , в систему поступит ровно заявок, равна:

Пример 6

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение : используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

Где λ равна среднему числу появления событий в одинаковых независимых испытаниях, т.е. λ = n × p, где p – вероятность события при одном испытании, e = 2,71828 .

Ряд распределения закона Пуассона имеет вид:


Назначение сервиса . Онлайн-калькулятор используется для построения Пуассоновского распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Число испытаний: n = , Вероятность p =
Вычислить вероятность для: m =
наступит раз
менее раз
не менее раз
более раз
не более раз
не менее и не более раз
наступит хотя бы один раз
В случае, когда n велико, а λ = p·n > 10 формула Пуассона дает очень грубое приближение и для расчета P n (m) используют локальную и интегральную теоремы Муавра-Лапласа .

Числовые характеристики случайной величины Х

Математическое ожидание распределения Пуассона
M[X] = λ

Дисперсия распределения Пуассона
D[X] = λ

Пример №1 . Семена содержат 0.1% сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
Решение.
Вероятность р мала, а число n велико. np = 2 P(5) = λ 5 e -5 /5! = 0.03609
Математическое ожидание : M[X] = λ = 2
Дисперсия : D[X] = λ = 2

Пример №2 . Среди семян ржи имеется 0.4% семян сорняков. Составить закон распределения числа сорняков при случайном отборе 5000 семян. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Математическое ожидание: M[X] = λ = 0.004*5000 = 20. Дисперсия: D[X] = λ = 20
Закон распределения:

X 0 1 2 m
P e -20 20e -20 200e -20 20 m e -20 /m!

Пример №3 . На телефонной станции неправильное соединение происходит с вероятностью 1/200. Найдите вероятность того, что среди 200 соединений произойдет:
а) ровно одно неправильное соединение;
б) меньше чем три неправильных соединения;
в) больше чем два неправильных соединения.
Решение. По условию задачи вероятность события мала, поэтому используем формулу Пуассона (15).
а) Задано: n = 200, p = 1/200, k = 1. Найдем P 200 (1).
Получаем: . Тогда P 200 (1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k < 3. Найдем P 200 (k < 3).
Имеем: a = 1.

в) Задано: n = 200, p = 1/200, k > 2. Найдем P 200 (k > 2).
Эту задачу можно решить проще: найти вероятность противоположного события, так как в этом случае нужно вычислить меньше слагаемых. Принимая во внимание предыдущий случай, имеем

Рассмотрим случай, когда n является достаточно большим, а p - достаточно малым; положим np = a, где a - некоторое число. В этом случае искомая вероятность определяется формулой Пуассона:


Вероятность появления k событий за время длительностью t можно также найти по формуле Пуассона:
где λ - интенсивность потока событий, то есть среднее число событий, которые появляются в единицу времени.

Пример №4 . Вероятность того, что деталь бракованная, равна 0.005. проверяется 400 деталей. Укажите формулу вычисления вероятности того, что больше 3 деталей оказались с браком.

Пример №5 . Вероятность появления бракованных деталей при их массовом производстве равна p. определить вероятность того, что в партии из N деталей содержится а) ровно три детали; б) не более трех бракованных деталей.
p=0,001; N = 4500
Решение.
Вероятность р мала, а число n велико. np = 4.5 < 10. Значит случайная величина Х – распределена по Пуассоновскому распределению. Составим закон.
Случайная величина X имеет область значений (0,1,2,...,m). Вероятности этих значений можно найти по формуле:

Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e - λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999

Тогда вероятность того, что в партии из N деталей содержится ровно три детали, равна:

Тогда вероятность того, что в партии из N деталей содержится не более трех бракованных деталей:
P(x<3) = P(0) + P(1) + P(2) = 0,01111 + 0,04999 + 0,1125 = 0,1736

Пример №6 . Автоматическая телефонная станция получает в среднем за час N вызовов. Определить вероятность того, что за данную минуту она получит: а) ровно два вызова; б) более двух вызовов.
N = 18
Решение.
За одну минуту АТС в среднем получает λ = 18/60 мин. = 0,3
Считая, что случайное число X вызовов, поступивших на АТС за одну минуту,
подчиняется закону Пуассона, по формуле найдем искомую вероятность

Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e - λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222

Вероятность того, что за данную минуту она получит ровно два вызова:
P(2) = 0,03334
Вероятность того, что за данную минуту она получит более двух вызовов:
P(x>2) = 1 – 0,7408 – 0,2222 – 0,03334 = 0,00366

Пример №7 . Рассматриваются два элемента, работающих независимо друг от друга. Продолжительность времени безотказной работы имеет показательное распределение с параметром λ1 = 0,02 для первого элемента и λ2 = 0,05 для второго элемента. Найти вероятность того, что за 10 часов: а) оба элемента будут работать безотказно; б) только Вероятность того, что за 10 часов элемент №1 не выйдет из строя:
Рещение.
P 1 (0) = e -λ1*t = e -0.02*10 = 0,8187

Вероятность того, что за 10 часов элемент №2 не выйдет из строя:
P 2 (0) = e -λ2*t = e -0.05*10 = 0,6065

а) оба элемента будут работать безотказно;
P(2) = P 1 (0)*P 2 (0) = 0,8187*0,6065 = 0,4966
б) только один элемент выйдет из строя.
P(1) = P 1 (0)*(1-P 2 (0)) + (1-P 1 (0))*P 2 (0) = 0.8187*(1-0.6065) + (1-0.8187)*0.6065 = 0.4321

Пример №7 . Производство даёт 1% брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбраковано будет не больше 17?
Примечание : поскольку здесь n*p =1100*0.01=11 > 10, то необходимо использовать

вероятностью p = 0.7 . Найти наиболее вероятное числоm 0 людей, которые придут на собрание, и соответствующую вероятностьP n (m 0 ) .

Решение. Поскольку P 50 (m 0 )= C 50 m 0 (0,7)m 0 (0,3)50 − m 0 , то задача состоит в отыскании неотрицательного целого числаm 0 ≤ 50 ,доставляющего максимум функцииP 50 (m 0 ) . Мы видели выше, что такое число дается формулой (6.4). В

P 50 (35)= C 50 35 (0.7)35 (0.3)15 ≈ 0.123.

6.4. Формула Пуассона

Формулы (6.1) и (6.3) дают точныезначениявероятностей, связанных со схемой независимых испытаний Бернулли. Однако вычисления по этим формулам, особенно при больших значениях n иm , весьма затруднительны. Представляет большой практический интерес получение достаточно простых приближенных формул для вычисления соответствующих вероятностей. Впервые подобную формулу вывел в 1837 году французский математик и физик Симон Пуассон (1781–1840). Ниже дается формулировка результата Пуассона.

Рассмотрим схему независимых испытаний Бернулли, в которой число испытаний n «относительно велико», вероятность «успеха»p «относительно мала», а произведение λ= np «не мало и не велико»41 . При этих условиях справедлива формула

Это – знаменитое пуассоновское приближение для биномиального распределения. Доказательство формулы (6.6) будет дано в дополнении к настоящему параграфу.

41 Точный смысл взятых в кавычки терминов будет объяснен ниже, в частности, в § 6д.

Функция, стоящая в правой части формулы (6.6), называется

распределением Пуассона:

При таком обозначении p (k , λ) будет приближенным выражением для вероятностиb (k ;n , λn ), когдаn «достаточно велико».

Прежде, чем обсуждать формулу (6.6), приведем весьма показательные примеры ее использования.

Значения биномиального распределения и значения распределения Пуассона при n = 100,p = 0.01, λ= 1 представлены в табл. 6.2. Как мы видим, точность приближенной формулы достаточно высока.

Чем больше n , тем выше точность формулы Пуассона. Это наглядно представляет следующий пример. Вычислим вероятностьp k того, что в обществеиз500человекровноk человекродилисьводинитотжеконкретный день года. Если эти 500 человек выбраны наугад, то можно применить схему Бернулли изn = 500 испытаний с вероятностью «успеха»p = 1365 . Вычисления по точной формуле (6.1) и приближенной формуле (6.6) при λ= 500365≈ 1,3699 представлены в табл. 6.3. Как мы видим, ошибка лишь в четвертом десятичном знаке, что вполне приемлемо для практики.

Таблица 6.2

b (k ; 100, 1.100)

p (k ; 1)

Таблица 6.3.

b (k ; 500,1/ 365)

p (k , λ)

Рассмотрим следующий типичный пример на применение формулы

Пуассона.

Пусть известно, что вероятность «сбоя» в работе телефонной станции при каждом вызове равна 0,002. Поступило 1000 вызовов. Определить вероятность того, что при этом произойдет 7 «сбоев».

Решение. Естественно предположить, что в обычных условиях вызовы, поступающие на телефонную станцию – независимы друг от друга. Будем считать «успехом» в испытании – вызове – сбой телефонной станции. Вероятность сбоя (p = 0,002) можно считать «достаточно малой» величиной, а число вызовов (n = 1000) – «достаточно большим». Таким образом, мы находимся в условиях теоремы Пуассона. Для параметра λ получаем значение

Обсудим теперь пределы применимости формулы Пуассона. При

использовании любой приближенной формулы вопрос о пределах ее применимости возникает естественным образом. При этом мы встречаемся с двумя аспектами проблемы. Во-первых, закономерен вопрос о том, в каких реальных условиях применим закон Пуассона? Опыт показывает, что простое распределение Пуассона обладает сравнительно универсальной применимостью. Вообще, с точки зрения применений, математические теоремы бывают хорошими и плохими в следующем смысле: хорошие теоремы продолжают действовать, если даже нарушить их условия, а плохие сразу перестают быть верными при нарушении условий их вывода. Теорема Пуассона (6.6) является в этом смысле хорошей и даже превосходной. Именно, закон Пуассона продолжает действовать даже тогда, когда условия схемы Бернулли нарушаются (т.е. можно допускать переменную вероятность успеха и даже не слишком сильную зависимость результатов отдельных испытаний)42 . Можно даже утверждать, что распределение Пуассона обладает сравнительно универсальной применимостью. Это надо понимать в том смысле, что если экспериментальные данные показывают, что закон Пуассона неприменим, в то время как, сообразно со здравым смыслом, он должен был бы действовать, то естественнее подвергнуть сомнению статистическую устойчивость наших данных, чем искать какой-то другой закон распределения.Инымисловами,распределениеПуассонапредставляетсобой очень удачную математическую формулировку одного из универсальных (в рамках применимости теории вероятностей) законов природы.

Во-вторых, возникает вопрос о порядках величин тех параметров, которые входят в формулу Пуассона, и для которых выше мы использовали расплывчатые термины «относительно велико», «относительно мало», «не малоиневелико».Опятьже,разъясняющиеответыдаетпрактикаприменения формулы (6.6). Оказывается, что формула Пуассона достаточно точна для практического применения, если число испытанийn имеет порядок

42 Естественно, этими особенностями распределения Пуассона не следует злоупотреблять. Например, закон Пуассона заведомо нарушается в ситуациях сильной зависимости результатов отдельных испытаний.

нескольких десятков (лучше – сотен), а величина параметра λ = np лежит в пределах от 0 до 10.

Для иллюстрации применения формулы Пуассона, рассмотрим еще один пример .

Пусть известно, что на выпечку 1000 сладких булочек с изюмом полагается 10 000 изюмин. Требуется найти распределения числа изюмин в какой-то случайным образом выбранной булочке.

Решение. Последовательность независимых испытаний мы формируем следующим образом. Всего будет n = 10 000 испытаний (по числу изюмин), а именно: испытание с номеромk будет состоять в том, что мы определяем, попалалиизюминасномеромk внашуслучайновыбраннуюбулочку43 . Тогда, поскольку всего булочек 1000, вероятность того, что k -я изюмина попала именно в нашу булочку, естьp = 1/1000 (при условии достаточно хорошего перемешивания теста при приготовлении булочек). Применяем теперь распределение Пуассона с параметром λ= np = 10000 11000= 10. Получим:

P 10000 (k )≈ p (k ,10)= 10 k e − 10 .

В частности, вероятность того, что нам достанется булочка вовсе без изюма (k = 0) , равнаe − 10 ≈ 0,5 10− 4 . Наиболее вероятное число изюмин будет, согласно формуле (6.4), равно 10. Соответствующая вероятность

P 10000(10) ≈ 10 10 e − 10 ≈ 0,125 . 10!

Пример с булочками и изюминами, несмотря на его приземленную формулировку, носит весьма общий характер. Так, вместо изюмин в булочках можно говорить, например, о числе бактерий в капле воды, взятой из хорошо перемешанного ведра. Другой пример. Предположим, что атомы радиоактивного вещества распадаются независимо друг от друга, причем в течение данного интервала времени распад данного атома происходит с

43 Заметим, что на покупку булочки в магазине вполне можно смотреть как на случайный выбор.

Пусть в эксперименте проводятся повторные испытания по схеме Бернулли и число испытаний велико , вероятность появления наблюдаемого события в одном испытании мала , а параметр является постоянной величиной. Тогда для вероятности - вероятности того, что событие в испытаниях появится раз, справедливо соотношение

. (3.1)

При вычислении вероятности в таком случайном эксперименте можно использовать приближенную формулу

, (3.2)

которая называется формулой Пуассона, а число - параметром Пуассона.

Задача 3.1. Вероятность брака при изготовлении некоторого изделия равна 0,008. Найти вероятность того, что при контроле среди 500 изделий будет не более двух бракованных.

Решение: поскольку вероятность мала, а число испытаний велико, то можно применить формулу Пуассона с параметром . Искомая вероятность является вероятностью суммы трех событий: бракованных изделий оказалось два, одно или ни одного. Поэтому

Определение 3.1

Потоком событий называется последовательность событий, наступающих в случайные моменты времени.

Например , потоком событий будут вызовы, поступающие на АТС, сигналы при сеансе радиосвязи, сообщения, поступающие на сервер, и.т.д.

Определение 3.2

Поток событий называется пуассоновским (простейшим) если он обладает следующими свойствами:

1. Свойством стационарности , т.е. интенсивность потока - постоянная.

2. Свойством ординарности, т.е. появление двух или более событий за малый промежуток практически невозможно.

3. Свойством отсутствия последействия, т.е. вероятность появления событий за промежуток времени не зависит от того, сколько событий появилось на любом другом участке.

Если обозначить - вероятность появления событий пуассоновского потока c интенсивностью за время , то справедлива формула:

. (3.3)

Задача 3.2. Страховая компания обслуживает 10000 клиентов. Вероятность того, что в течение одного дня клиент обратится в компанию, равна 0,0003. Какова вероятность того, что в течение двух дней в нее обратятся 4 клиента?



Решение: Интенсивность потока клиентов в течение одного дня равна

Следовательно, .

Решение задач 3.1 и 3.2 в среде Mathcad показано на рис. 3.

Задача 3.3. Вероятность сбоя считывающего устройства турникета метрополитена в течение часа мала. Найти эту вероятность, если вероятность того, что за 8 часов будет хотя бы один сбой, равна 0,98, и если известно, что за час через турникет проходит в среднем 1000 человек?

Решение: По формулам (1.3) и (3.3) при вероятность того, что в течение 8 часов будет хотя бы один сбой, равна:

С помощью символьных команд, а затем определяется искомая вероятность .

Похожие публикации