Чего не видит человеческий глаз. Глаз и зрение: интересные факты

Человеческий глаз часто приводят в качестве примера удивительной природной инженерии - но судя по тому, что это один из 40 вариантов устройств, которые появлялись в процессе эволюции у разных организмов, нам стоит поумерить свой антропоцентризм и признать, что по строению человеческий глаз не является чем-то совершенным.

Рассказ про глаз учше всего начать с фотона. Квант электромагнитного излучения неспешно влетает строго в глаз ничего не подозревающего прохожего, который жмурится от неожиданного блика с чьих-то часов.

Первая деталь оптической системы глаза - это роговица. Она меняет направление движения света. Это возможно благодаря такому свойству света, как преломление, ответственного в том числе за радугу. Скорость света постоянна в вакууме - 300 000 000 м/с. Но при переходе из одной среды в другую (в данном случае из воздуха в глаз) свет меняет свою скорость и направление движения. У воздуха коэффициент преломления равен 1,000293, у роговицы - 1,376. Это значит, что луч света в роговице замедляет свое движение в 1,376 раз и отклоняется ближе к центру глаза.

Любимый способ раскалывать партизан - светить им яркой лампой в лицо. Это больно по двум причинам. Яркий свет - это мощное электромагнитное излучение: триллионы фотонов атакуют сетчатку, и ее нервные окончания вынуждены передавать бешеное количество сигналов в мозг. От перенапряжения нервы, как провода, перегорают. При этом мышцы радужки вынуждены сжиматься так сильно, как только могут, отчаянно пытаясь закрыть зрачок и защитить сетчатку.

И подлетает к зрачку. С ним все просто - это отверстие в радужной оболочке. За счет круговых и радиальных мышц радужная оболочка может соответственно сужать и расширять зрачок, регулируя количество света, проникающего в глаз, как диафрагма в фотоаппарате. Диаметр зрачка человека может меняться от 1 до 8 мм в зависимости от освещенности.

Пролетев сквозь зрачок, фотон попадает на хрусталик - вторую линзу, ответственную за его траекторию. Хрусталик преломляет свет слабее, чем роговица, зато он подвижен. Хрусталик висит на цилинарных мышцах, которые меняют его кривизну, тем самым позволяя нам фокусироваться на предметах на разном расстоянии от нас.

Именно с фокусом связаны нарушения зрения. Самые распространенные - близорукость и дальнозоркость. Изображение в обоих случаях фокусируется не на сетчатке, как должно, а перед ней (близорукость), или за ней (дальнозоркость). Виноват в этом глаз, который меняет форму с круглой на овальную, и тогда сетчатка удаляется от хрусталика или приближется к нему.

После хрусталика фотон пролетает сквозь стекловидное тело (прозрачный студень - 2/3 объема всего глаза, на 99% - вода) прямиком на сетчатку. Здесь регистрируются фотоны, и сообщения о прибытии отправляются по нервам в мозг.

Сетчатка устлана клетками-фоторецепторами: когда света нет, они вырабатывают специальные вещества - нейротрансмиттеры, но как только в них попадает фотон, клетки-фоторецепторы перестают их вырабатывать - и это сигнал для мозга. Есть два типа этих клеток: палочки, которые более чувствительны к свету, и колбочки, которые лучше различают движение. Палочек у нас около ста миллионов и еще 6-7 миллионов колбочек, итого больше ста миллионов светочувствительных элементов - это больше 100 мегапикселей, что никакому «хасселю» не снилось.

Слепое пятно - точка прорыва, где совсем нет светочувствительных клеток. Оно довольно большое - 1-2 мм в диаметре. К счастью, у нас бинокулярное зрение и есть мозг, который совмещает две картинки c пятнами в одну нормальную.

На моменте передачи сигнала в человеческом глазу возникает проблема с логикой. Подводный, не особо нуждающийся в зрении житель осьминог в этом смысле гораздо последовательней. У осьминогов фотон сначала врезается в слой колбочек и палочек на сетчатке, сразу за которым ждет слой нейронов и передает сигнал в мозг. У человека свет сперва продирается сквозь слои нейронов - и только потом ударяется в фоторецепторы. Из-за этого в глазу есть первое пятно - слепое.

Второе пятно - желтое, это центральная область сетчатки прямо напротив зрачка, чуть выше зрительного нерва. Этим местом глаз видит лучше всего: концентрация светочувствительных клеток здесь сильно увеличена, поэтому наше зрение по центру визуального поля значительно острее периферийного.

Изображение на сетчатке перевернуто. Мозг умеет правильно интерпретировать картинку, и восстанавливает из перевернутого оригинальное изображение. Дети первые пару дней видят все вверх ногами, пока их мозг устанавливает свой фотошоп. Если надеть очки, переворачивающие изображение (это впервые проделали еще в 1896 году), то через пару дней наш мозг научится интерпретировать и такую перевернутую картинку правильно.

Человек и камера видят мир по-разному

Зачастую красивый пейзаж на фотографии выходит менее выразительно – с засвеченным небом, чёрными провалами в тенях. В чём причина? Почему камера не может попросту взять и отобразить мир таким, какой он есть на самом деле? Когда глаз смотрит на светлые или тёмные участки сцены, зрачок изменяет свой диаметр, сужаясь при взгляде на яркие объекты и расширяясь при взгляде на тени, регулируя, таким образом, количество света попадающего на сетчатку. Кроме того, рецепторы сетчатки способны варьировать свою чувствительность к свету в зависимости от его интенсивности. В результате мы можем различать детали, как в светах, так и в тенях, адаптируясь к условиям высокого контраста. Если контраст высок, стремитесь смягчить его, используя отражатель или заполняющую вспышку, чтобы слегка подсветить тени. Если вы не можете повлиять на освещение, и вынуждены жертвовать либо светлыми, либо тёмными участками сцены – жертвуйте тенями. Мы в большей степени приспособлены к восприятию деталей на свету, и потому чёрные тени выглядят значительно менее противоестественно, нежели плоские выбеленные света. Фотоаппарат экспонирует всю сцену с постоянными, предустановленными значениями диафрагмы, выдержки и ISO, и потому не в состоянии охватить разницу в степени освещённости высококонтрастной сцены. Выход такой: избегайте сцен, контраст которых не укладывается в динамический диапазон вашей камеры. Конечно, можно воспользоваться техникой HDR (High Dynamic Range), т.е., сделать несколько экспозиций одной и той же сцены, проработав отдельно тёмные и светлые участки, а затем объединить их в одно изображение в графическом редакторе. Но такое изображение получится синтетическим и неестественным.

Следующая интересная особенность человеческого зрения – его избирательность. Мы видим то, что нам интересно, и игнорируем незначимое для нас. Увидев достойный съёмки объект, например, цветущее весеннее дерево, фотограф наводит на него камеру и нажимает на спуск. Позже, разглядывая полученный снимок у себя дома, он с досадой обнаруживает, что под деревом мусорка, а небо пересекают высоковольтные провода. Уделяйте особое внимание углам кадра – там часто оказывается что-нибудь лишнее. Чем внимательнее вы будете в момент съёмки, тем меньше времени вам придётся потратить на последующее редактирование снимка.

Человек обладает бинокулярным зрением. Наличие двух глаз позволяет нам оценивать расстояние до различных объектов в трёхмерном мире. Фотоаппарат выдаёт плоскую, двумерную картинку, а далеко не всякая фотография способна передать объём и глубину пространства. Вы можете проверить это ещё до съёмки, закрыв один глаз, и взглянув на сцену так, как это сделала бы ваша камера.

Человеческому зрению свойственно цветопостоянство. Наш мозг выравнивает цветовой баланс таким образом, чтобы предметы по возможности сохраняли для нас свои естественные цвета независимо от цвета освещения. Белая бумага кажется нам одинаково белой, что днём, когда она освещена холодным светом, льющимся из окна, что вечером, когда на неё падает тёплый свет ламп накаливания. Мозг знает, что бумага должна быть белой и принимает меры, корректируя реальность, а глупая камера правдиво изобразит бумагу в одном случае синей, а в другом – оранжевой. В фотографии для достижения естественного эффекта следует использовать настройки баланса белого, регулируя его в зависимости от условий освещения либо самостоятельно, либо доверяя этот процесс автоматическому алгоритму.

почему глаз человека различает больше оттенков зеленого? доказано, что это так... но вот почему - не доказано)) и получил лучший ответ

Ответ от Evgeny M.[гуру]
Максимум солнечного излучения приходится на зеленую часть спектра. Солнце нам кажется не зеленым, а желтым исключительно из-за особенностей наших глаз и мозга. Усиление желтого цвета в мозге происходит в большей степени, чем зеленого. А на самом деле Солнце зеленого цвета.
В результате того, что Солнце зеленое, именно зеленые предметы максимально освещены на Земле. Чем предмет более освещен, тем больше градаций его цвета разнесены по энергии фотонов. То есть разные оттенки оказывают разное влияние на сетчатку глаза. Чем предмет менее освещен, тем меньше различаются между собой по энергии фотоны с разными цветами. Слабо освещенные предметы, вообще, для глаза выглядят как серые.
Это относится только к естественному свету. Если эксперименты по различению оттенков ставить при электрическом освещении, то совсем не обязательно, что глаз человека будет больше всего различать оттенки зеленого цвета.
Это также относится только к отраженному свету. Если цвет не отраженный естественный, то это уже не так. Например, на экране монитора и на экране телевизора глаз различает столько оттенков зеленого, сколько позволяет создать оттенков зеленого данный монитор. Их количество может быть меньше, чем, например, число оттенков желтого или синего. Это зависит от конкретных технических решений.

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: почему глаз человека различает больше оттенков зеленого? доказано, что это так... но вот почему - не доказано))

Ответ от Niemand [гуру]
Он в середине видимого спектра. Что тут доказывать – и так понятно.


Ответ от Вася Пупкин [гуру]
Больше, чем что?

Глаза - один из самых важных органов восприятия человеком окружающего мира. В повседневной жизни мы часто забываем об этом и не придаем этому значения. И напрасно. Ведь «глаз и зрение» - тема не только важная, но еще и очень интересная. Именно о ней мы и поговорим.

Глаз - это зрительный орган, которым обладает человек и животное. Человеческий глаз имеет свои особенности.

Он состоит из:
Глазного яблока.
Зрительного нерва - связующего звена между глазным яблоком и головным мозгом.
Дополнительных частей. Сюда относятся мышцы, помогающие яблоку вращаться, веки, а также слезные органы.

Одной из вспомогательных составляющих глаза является склера - оболочка, которая защищает глазное яблоко. К таковым относится и роговица - наиболее чувствительная зона тела человека в целом. За ней находится радужная оболочка. У каждого человека радужка обладает своим оттенком. Между ней и роговицей «полость» для водянистой жидкости, а в самой оболочке располагается зрачок. Он являет собой отверстие маленького размера, его диаметр варьируется в пределах 2-8 мм. При свете он уменьшается, в темноте наоборот - увеличивается.

За зрачком находится хрусталик. Такое название он получил из-за своей схожести с прозрачной двояковыпуклой линзой. Наружная часть хрусталика мягкая, напоминающая студень, внутренняя - более упругая и твердая. Вокруг хрусталика расположены мышцы, которые крепят его к уже упомянутой склере.
За хрусталиком, в свою очередь, находится стеклообразное тело. Его структура также схожа со студенистой массой.
И, наконец, задняя область склеры называется глазным дном. Оно покрыто сетчатой оболочкой, которое очень часто называют просто «сетчатка». Это - тончайшие волокна, которые являют собою разветвленные окончания зрительного нерва.

Теперь, когда мы знаем, из чего состоит наш орган зрения, перейдем к следующему секрету – каким образом происходит процесс восприятия глазами окружающих предметов?

Особенности глаз как органа зрения

Каким образом мы воспринимаем картинку

Глаза - один из самых важных органов восприятия человеком окружающего мира

Восприятие зрением окружающих предметов - многосложный процесс.

Происходит он таким образом:
Световой луч, попадая в глаз, преломляется в, так называемой, оптической системе, состоящей из роговицы, хрусталика и стеклообразного тела.
С помощью преломленного луча сетчатка создает реальную, уменьшенную, а также обратную картинку, на которой сосредоточен взгляд.
Световой луч становится раздражителем для окончаний зрительного нерва.
С помощью нервных волокон эти раздражители поступают в мозг. Так возникают зрительные ощущения - вырисовывается цельная картинка.

Интересный факт : картинка, появляющаяся на сетчатке, на самом деле, обратная, то есть, перевернутая. Первооткрывателем данного факта стал И. Кеплер. А ученый Р. Декарт (Франция), желая убедиться, так ли это, провел эксперимент с бычьим глазом. Он снял с задней части глаза слой и разместил в щели у окна. Буквально сразу ученый обнаружил следующее: полупрозрачная стенка дна глаза «показывала» изображение, наблюдаемое из окна, в перевернутом виде.

Почему глаза воспринимают картинку в неперевернутом виде

На фото: именно так происходит преобразование картинки, воспринимаемой глазом

Зрение - процесс, беспрестанно корректирующийся мозгом, который получает как посредством глаз, так и с помощью других органов чувств.
Интересный опыт был проведен Дж. Стреттоном - психологом из Америки (1896 г.). Ученый надел на себя очки, которые действовали на сетчатку так, что окружающая картинка на ней становилась не перевернутой, а «нормальной».

Вследствие произошло следующее: мир перевернулся в прямом смысле слова, предметы расположились вверх тормашками. Это вызвало дисбаланс в функционировании органов зрения и иных органов чувств. Будучи в этих очках, Дж. Стреттон три дня испытывал тошноту.

И только на четвертый день ученый пришел в себя - его мозг принял новые нестандартные условия и картинка нормализовалась.

Однако, когда он снял очки, изображение снова перевернулось. Восстановилось нормальное восприятие уже по истечения полтора часа.

Интересно то, что приспособиться подобным образом может лишь мозг человека. Когда такой эксперимент проводили на обезьяне, животное получило мощнейший психологический улар и впало в кому.

Глаза и

На фото: объяснение особенностей аккомодации

Когда человек переводит взгляд с далеко находящегося на близко расположенный предмет - изображение не теряет свою четкость. Почему это происходит? Потому, что мышцы, которым окружен хрусталик, влияют на кривизну поверхностей хрусталика, а, соответственно, и на оптическую силу органа.

При сосредоточенности взгляда наотдаленных объектах, мышцы расслабляются, а искривление хрусталика - относительно небольшое. Когда же человек переводит глаза на близлежащие предметы, те самые мышцы сжимают хрусталик, отчего кривизна увеличивается, а вместе с ней и оптическая сила.

Навык такого приспособления носит название «аккомодация».

Важно помнить: слишком близкое рассматривание объекта усиливает работу мышц и деформацию хрусталика, глаза утомляются. Потому оптимальным расстоянием от глаза до предмета (книга, компьютер) считается не менее 25 см.

Функции наших глаз

Благодаря тому, что человек имеет два, а не один орган зрения, он может давать оценку расположению предметов: насколько близко или далеко наблюдаемый объект.
А все потому, что сетчатки обеих глаз воспринимают одно и то же изображение по-разному (с разных сторон).

Чем ближе объект, тем более явственны различия. Такая способность глаз дает возможность воспринимать объемную (а не плоскую) картинку.

И еще одно преимущество двух глаз - увеличение поля зрения, то есть, возможность видеть больше вокруг себя.

Описание основных функций глаз

Можно ли видеть и при этом быть невидимым

Зрение - процесс, беспрестанно корректирующийся мозгом, который получает как посредством глаз, так и с помощью других органов чувств

Это, пожалуй, самый интересный вопрос, касающийся глаз и зрения. Первым на него попытался дать ответ Герберт Уэлс - английский писатель, произведший на свет роман «Человек-невидимка». Какова же суть ответа?

Человек может стать невидимым при условии, что его вещество превратится в прозрачную оптическую плоскость, такую же, как воздух. Так, световое отражение и преломление, которое возникает на границах абриса человека с воздухом, исчезнет. Появится человек-невидимка.
Чтобы было понятней, приведем пример: толченое стекло, похожее на белый порошок, моментально исчезает из поля зрения при помещении в воду. Почему? Потому, что вода имеет аналогичную стеклу оптическую плотность.

Еще один интересный эксперимент провел ученый Шпальтегольц (Германия). Он взял препарат мертвой ткани животного и напитал ее специальным веществом собственного приготовления. Затем опустил препарат в емкость, наполненную таким же веществом. Препарат стал невидимым.

Но с человеком такой эксперимент будет невозможен. Ведь ему необходимо быть незаметным на воздухе, но не находясь в емкости с каким-то веществом.

И даже если представить, что человек стал прозрачным, все равно возникнет вопрос: сможет ли видеть этот человек других? По всей видимости, нет, поскольку его органы зрения не смогут больше преломлять лучи света. Таким образом, сетчатка не воспринимет никаких картинок.

К тому же, чтобы в человеческом сознании сформировывались зримые образы, сетчатка должна поглощать свет, питаясь его энергией. Последняя нужна, чтобы возникали сигналы, доставляемые зрительным нервом в мозг. А поскольку невидимка станет обладателем прозрачных глаз, вышеописанный процесс не произойдет, он лишится восприятия через органы зрения - попросту ослепнет.

Этого факта писатель не учел, потому герой романа - обладатель вполне видящих глаз, и зрение остается с ним, даже несмотря на то, что сам он невидимый.

Итак, теперь мы знаем о глазах и зрении все. И совсем необязательно стремиться быть невидимкой. Ведь самой важной особенностью человек уже обладает - он может видеть и воспринимать окружающую красоту. Главное условие сохранения зрения: посещение окулиста для проведения и .

Строение человеческого глаза напоминает фотоаппарат. В роли объектива выступают роговица, хрусталик и зрачок, которые преломляют лучи света и фокусируют их на сетчатке глаза. Хрусталик может менять свою кривизну и работает как автофокус у фотоаппарата - моментально настраивает хорошее зрение на близь или даль. Сетчатка, словно фотопленка, запечатляет изображение и отправляет его в виде сигналов в головной мозг, где происходит его анализ.

1 -зрачок , 2 -роговица , 3 -радужка , 4 -хрусталик , 5 -цилиарное тело , 6 -сетчатка, 7 -сосудистая оболочка , 8 -зрительный нерв , 9 -сосуды глаза , 10 -мышцы глаза , 11 -склера , 12 -стекловидное тело .

Сложное строение глазного яблока делает его очень чувствительным к различным повреждениям, нарушениям обмена веществ и заболеваниям.

Офтальмологи портала "Все о зрении" простым языком описали строение глаза человека дарят вам уникальную возможность наглядно ознакомиться с его анатомией.


Человеческий глаз – это уникальный и сложный парный орган чувств, благодаря которому мы получаем до 90% информации об окружающем нас мире. Глаз каждого человека обладает индивидуальными, только ему присущими характеристиками. Но общие черты строения важны для понимания того, какой же глаз изнутри и как он работает. В ходе эволюции глаз достиг сложного строения и в нём тесно взаимосвязаны структуры разного тканевого происхождения. Кровеносные сосуды и нервы, пигментные клетки и элементы соединительной ткани – все они обеспечивают основную функцию глаза – зрение.

Строение основных структур глаза

Глаз имеет форму сферы или шара, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично оно укрыто от возможного повреждения. Спереди глазное яблоко защищают верхнее и нижнее веки. Свободные движения глазного яблока обеспечиваются глазодвигательными наружными мышцами, точная и слаженная работа которых позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно.

Постоянное увлажнение всей поверхности глазного яблока обеспечивается слезными железами, которые обеспечивают адекватную продукцию слезы, образующей тонкую защитную слёзную плёнку, а отток слезы происходит через специальные слезоотводящие пути.

Самая наружная оболочка глаза – конъюнктива. Она тонкая и прозрачная и выстилает также и внутреннюю поверхность век, обеспечивая легкое скольжение при движении глазного яблока и моргании век.
Наружная «белая» оболочка глаза – склера, является самой толстой из трёх глазных оболочек, защищает внутренние структуры и поддерживает тонус глазного яблока.

Склеральная оболочка в центре передней поверхности глазного яблока приобретает прозрачность и имеет вид выпуклого часового стекла. Эта прозрачная часть склеры называется роговицей, которая очень чувствительная благодаря наличию в ней множества нервных окончаний. Прозрачность роговицы позволяет свету проникать внутрь глаза, а её сферичность обеспечивает преломление световых лучей. Переходная зона между склерой и роговицей называется лимбом. В этой зоне находятся стволовые клетки, обеспечивающие постоянную регенерацию клеток наружных слоев роговицы.

Следующая оболочка - сосудистая. Она выстилает склеру изнутри. По её названию понятно, что она обеспечивает кровоснабжение и питание внутриглазных структур, а также поддерживает тонус глазного яблока. Сосудистая оболочка состоит из собственно хориоидеи, находящейся в тесном контакте со склерой и сетчаткой, и таких структур как цилиарное тело и радужка, которые располагаются в переднем отделе глазного яблока. Они содержат в себе много кровеносных сосудов и нервов.

Цилиарное тело – это часть сосудистой оболочки и сложный нервно-эндокринно-мышечный орган, играющий важную роль в продукции внутриглазной жидкости и в процессе аккомодации.


Цвет радужки определяет цвет глаза человека. В зависимости от количества пигмента в её наружном слое она имеет цвет от бледно-голубого или зелёноватого до тёмно-коричневого. В центре радужки находится отверстие – зрачок, через который свет попадает внутрь глаза. Важно отметить, что кровоснабжение и иннервация хориоидеи и радужки с цилиарным телом раличные, что отражается на клинике заболеваний такой в общем-то единой структуры, как сосудистая оболочка глаза.

Пространство между роговицей и радужкой является передней камерой глаза, а угол, образованный периферией роговицы и радужки, называется углом передней камеры. Через этот угол происходит отток внутриглазной жидкости сквозь специальную сложную дренажную систему в глазные вены. За радужкой находится хрусталик, который располагается перед стекловидным телом. Он имеет форму двояковыпуклой линзы и хорошо фиксирован множеством тонких связок к отросткам цилиарного тела.

Пространство между задней поверхностью радужки, цилиарным телом и передней поверхностью хрусталика и стекловидного тела называется задней камерой глаза. Передняя и задняя камеры заполнены бесцветной внутриглазной жидкостью или водянистой влагой, которая постоянно циркулирует в глазу и омывает роговицу, хрусталик, при этом питая их, так как собственных сосудов у этих структур глаза нет.

Самой внутренней, самой тонкой и самой важной для акта зрения оболочкой является сетчатка. Она представляет собой высокодифференцированную многослойную нервную ткань, которая выстилает сосудистую оболочку в её заднем отделе. От сетчатки берут начало волокна зрительного нерва. Он несёт всю полученную глазом информацию в виде нервных импульсов через сложный зрительный путь в наш мозг, где она преобразуется, анализируется и воспринимается уже как объективная реальность. Именно на сетчатку в конечном счёте попадает или не попадает изображение и в зависимости от этого, мы видим предметы чётко или не очень. Самой чувствительной и тонкой частью сетчатки является центральная область – макула. Именно макула обеспечивает наше центральное зрение.

Полость глазного яблока заполняет прозрачное, несколько желеобразное вещество – стекловидное тело. Оно поддерживает плотность глазного яблока и прилегает в внутренней оболочке - сетчатке, фиксируя её.

Оптическая система глаза

По своей сущности и предназначению, человеческий глаз – это сложная оптическая система. В этой системе можно выделить несколько наиболее важных структур. Это роговица, хрусталик и сетчатка. В основном, именно от состояния этих пропускающих, преломляющих и воспринимающих свет структур, степени их прозрачности зависит качество нашего зрения.
  • Роговица сильнее всех других структур преломляет световые лучи, далее проходяие через зрачок, который выполняет функцию диафрагмы. Образно говоря, как в хорошем фотоаппарате диафрагма регулирует поступление световых лучей и в зависимости от фокусного расстояния позволяет получать качественное изображение, так и зрачок функционирует в нашем глазу.
  • Хрусталик также преломляет и пропускает световые лучи далее на световоспринимающую структуру – сетчатку, своеобразную фотоплёнку.
  • Жидкость глазных камер и стекловидное тело также обладают преломляющими свет свойствами, но не такими значительными. Тем не менее, состояние стекловидного тела, степень прозрачности водянистой влаги глазных камер, наличие в них крови или других плавающих помутнений тоже может влиять на качество нашего зрения.
  • В норме световые лучи, пройдя через все прозрачные оптические среды, преломляются так, что попадая на сетчатку формируют уменьшенное, перевернутое, но реальное изображение.
Окончательный анализ и восприятие полученной глазом информации, происходит уже в нашем головном мозгу, в коре его затылочных долей.

Таким образом, глаз устроен очень сложно и удивительно. Нарушение в состоянии или кровоснабжении, любого структурного элемента глаза может отрицательно сказаться на качестве зрения.

Похожие публикации